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Abstract
The high order Newton iteration formulas are revisited in this paper. Translating the
nonlinear root finding problem into a fixed point iteration involving an unknown general
function whose root is searched, a double Taylor series is undertaken regarding the root
and the root finding function. Based on the error analysis of the expansion, a simple algo-
rithm is later proposed to construct Newton iteration formulae of any order commencing
from the traditional linearly convergent fixed point iteration method and quadratically
convergent Newton-Raphson method of frequently at the disposal of the scientific commu-
nity. It is shown that the well-known variants like the Halley’s method or Haouseholder’s
methods of high order can be reproduced from the general case outlined here. Some
further rare single-step classes of any order are shown to be derivable from the presented
algorithm. Finally, some new higher order accurate variants are also offered taking into ac-
count multi-step compositions which demand less computation of higher derivatives. The
efficiency, accuracy and performance of the proposed methods and also their potential
advantages over the classical ones are numerically demonstrated and discussed on some
well-documented examples from the open literature.
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1. Introduction
The open problem of searching for the best iteration formula for finding the root of a

given nonlinear function in terms of its accuracy and of the least computational operation
has attracted many investigators from plenty branches of science, see for instance [2,13,18,
29]. Therefore, an abundant variants of the classical Newton iteration formulae has been
developed in the literature. The current paper is also devoted to the derivation of Newton
iteration formulae and their well-known cousins, but from a different mathematical point of
view, yielding a simple algorithm to generate the well-documented iterative schemes from
which several new classes competing with the known ones are also shown to be derivable.

Nowadays, the development of this particular topic of numerical analysis is spectacu-
lar, with many researchers designing optimal higher-order iterative methods for solving
nonlinear equations. In the literature there are a lot of iterative methods of any order
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of convergence and many of them are optimal in some sense. After the introduction of
contemporary software programs capable of implementing symbolic evaluations, last two
decades witnessed many new variants of the classical Newton iteration schemes towards
gaining the best performing one having the least error and high convergence order. The
reason of richness of the literature on the variants of Newton’s method is due to a unique
constraint on the functional form of the root finding function and owing to this fact
the investigation of new and novel iteration methods will keep forming a versatile field.
Single-level and multi-level new iterations were hence proposed by investigators. To cite
a few of recent single level techniques, quadratic convergence techniques were outlined in
[5, 7, 24, 28]. The references [1, 4, 12, 22] dealt with modified and improved Newton itera-
tions possessing cubical rate of convergence. Additionally, the new variants having quartic
and higher order convergence properties were thoroughly illuminated in the publications
[8,17,26,27]. In order to avoid from the evaluation of higher derivatives generally appear-
ing in the classical Newton iteration formulas, some multi-level new classes were suggested
and analyzed in the references, [6,14,15,19,21,25,30]. Some derivative-free methods while
preserving the convergence order were also developed in the recent studies [9] and [11],
amongst many other earlier variants.

Although, the high order Newton iteration schemes for the nonlinear root finding prob-
lems known as the Householder’s iterations, the Halley’s iteration, the Schröder’s iterations
and the König’s iterations are well-documented in the literature, a proper procedure of
deriving them all in a single, simple and acute algorithm is missing, except the attempt
in [20] based on some complicated notion of the inverse function theorem and differential
operators. The present motivation is to fill this lacking and derive the whole classical
Newton iterations from a procedural algorithm based on double series expansion at the
root and also at the function whose root is targeted. An error analysis is established to
construct the algorithm reflecting correctly the order of the convergence of the studied
Newton method. The presented algorithm also gives a proof of why the classical Newton
algorithms of desired order are optimum in their formulae. The Theorem underlying the
algorithm may be thought of reinterpretation of the classical Schröder-Traubs theorem
[29]. New single-step classes having any order of convergence rate are also proposed from
the given algorithm. Moreover, new multi-step variants in combination with the knowns
are suggested. Their error analysis were also fulfilled on the mathematical basis. Their ac-
curacy and performance are eventually tested on some selected well-known test examples
available from the open literature.

2. Methodology
We want to approximate the root of a nonlinear function f(x), that occurs at the point

x = α, so

f(α) = 0. (2.1)

Dissimilar to the previous publications in the field, in place of stating a formula for the
approximation and then checking out its convergence rate, we work out the Newton’s high
order formulas from the error analysis beforehand considering the convergence rates. The
following such a methodology may be called as error elimination.

To start with, it is known that the root of f(x) is also the fixed point of

x = g(x) = x + F (f(x), x), (2.2)

where F might be any function satisfying only the constraint

F (f(α), α) = F (0, α) = 0. (2.3)
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We assume that F has as many derivatives of high order as f . With an initial guess x0
to the root x = α, we can write the following fixed point iteration from (2.2)

xn+1 = g(xn) = xn + F (f(xn), xn), n ≥ 0. (2.4)
Let us now expand F near the root α into its Taylor’s polynomial so that (2.4) turns out
to be

xn+1 = xn + F (0, α) + (xn − α)
1!

dF

dx
|x=α + (xn − α)2

2!
d2F

dx2 |x=α + · · ·

+ (xn − α)n

n!
dnF

dxn
|x=α + R(ζ), (2.5)

where the remainder
R(ζ) = (xn − α)n+1

(n + 1)!
dn+1F

dxn+1 |x=ζ

will be omitted from now on with ζ ∈ (xn, α).
In view of (2.3) and defining the point-wise error

en+1 = xn+1 − α,

(2.5) can be rewritten as

en+1 = en

[
1 + dF

dx
|x=α + en

2!
d2F

dx2 |x=α + · · · + en−1
n

n!
dnF

dxn
|x=α

]
. (2.6)

As mentioned, in general we do not have the knowledge of function F , except the
constraint (2.3). However, this constraint helps us derive the Taylor expansion of F near
the point f(α) = 0 in the format

F (f(x), x) = F (0, x) + f(x)
1!

∂F

∂f
|f=0 + f(x)2

2!
∂2F

∂f2 |f=0 + · · · + f(x)n

n!
∂nF

∂fn
|f=0, (2.7)

in which the remainder is omitted again.
Since the partial derivatives in (2.7) are depending on x, we may write (2.7) in a more

convenient form as

F (f(x), x) = −A1(x)
( f(x)

f ′(x)

)
− A2(x)

( f(x)
f ′(x)

)2
− A3(x)

( f(x)
f ′(x)

)3
− · · ·

− An(x)
( f(x)

f ′(x)

)n
, (2.8)

where An(x) are to be determined.
The accuracy of the iterative scheme (2.4) is measured by

limn→∞
en+1
ep

n
= C, (2.9)

where p is the order of accuracy of the method and C is the asymptotic error. We observe
from (2.6) that

en+1
en

=
[
1 + dF

dx
|x=α + en

2!
d2F

dx2 |x=α + · · · + en−1
n

n!
dnF

dxn
|x=α

]
. (2.10)

Hence, if we require the iterative scheme in (2.5) to be linear with p = 1, then from (2.8),
(2.9) and (2.10) we have

C = 1 − A1(x) (2.11)
and the corresponding iterative scheme in (2.5) will be simply the linear fixed point iter-
ation (Euler) with A1(x) being still arbitrary.

Now, if we require that the iterative method in (2.5) is of second order or quadratic
with p = 2 in (2.9), then the error in (2.11) should be eliminated resulting in

A1(x) = 1. (2.12)



428 M. Turkyilmazoglu

So, F must be now

F (f(x), x) = −
( f(x)

f ′(x)

)
− A2(x)

( f(x)
f ′(x)

)2
− A3(x)

( f(x)
f ′(x)

)3
− · · ·

−An(x)
( f(x)

f ′(x)

)n
. (2.13)

Therefore, at the quadratic level of approximation, if we demand the least evaluations
the remaining coefficients in (2.13) must be disregarded leading to the classical Newton’s
iteration from (2.4) or (2.5)

xn+1 = xn − f(xn)
f ′(xn)

. (2.14)

The above methodology is also a procedural proof that the classical Newton’s method
is the most optimum one in terms of quadratic convergence and least computational de-
mands. Otherwise, recalling that F in (2.4) can be any arbitrary function, all other forms
of quadratic iterative schemes must have the term − f(xn)

f ′(xn) in their leading-order series
expansion, therefore it may be presumed that

F = F ( f(x)
f ′(x)

, x)

for the quadratic convergence to hold. Indeed, we may have numerous variants, amongst
many others, such as the following one-parameter families

xn+1 = xn − f(xn)
hf(xn) + f ′(xn)

= xn − f(xn)
f ′(xn)

( 1
1 + h f(xn)

f ′(xn)

)
,

xn+1 = xn + 1
2h

ln
[ (

1 − h
f(xn)
f ′(xn)

)2 ]
, (2.15)

xn+1 = xn − 1
h

xn(1 − e
−h

f(xn)
xnf ′(xn) ),

...

in which h is a real parameter. We see that the quadratic iterative schemes in (2.15) are
not optimum in the sense that either they require more functional evaluations or more
arithmetic operations to pass to the next iterate, as compared with (2.14). On the other
hand, it should be alerted that the iterative schemes proposed in (2.15) might have some
explicit advantages where the classical Newton’s method (2.14) fails. For instance, at the
turning points or for the initial guess taken near the extreme points of f(x), these might
be useful, even better with a convergence control parameter h, see Section 4 for their
performances.

At the quadratic convergence level, the error by the leading order term in (2.13) pene-
trated to the next order can be evaluated from (2.9) and (2.10) as

C = − 1
2!

( f(x)
f ′(x)

)′′
|f=0 = 1

2!
f ′′(x)
f ′(x)

. (2.16)

Therefore, for a cubical rate of convergence level with p = 3 in (2.9), F in (2.13) must
compensate for the error in (2.16), dictating the form of A2(x) as

A2(x) = 1
2!

f ′′(x)
f ′(x)

. (2.17)
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Hence, at the cubical convergence order of approximation, (2.13) must now take the
form

F (f(x), x) = −
( f(x)

f ′(x)

)
− f ′′(x)

2f ′(x)

( f(x)
f ′(x)

)2
− A3(x)

( f(x)
f ′(x)

)3
− · · ·

−An(x)
( f(x)

f ′(x)

)n
, (2.18)

It should be anticipated here that there is no restriction on the coefficients An(x) for
n ≥ 3, provided that a cubic rate iterative scheme is aimed at. Again, for the sake of the
least computations, of course the coefficients An(x); n ≥ 3 must be dropped from (2.18),
thus from (2.5) leading to

xn+1 = xn − f(xn)
f ′(xn)

− f ′′(xn)
2f ′(xn)

( f(xn)
f ′(xn)

)2
, (2.19)

which is know as the Householder’s iteration or Schröder’s iteration (see the book by
Householder [16]).

We also remind that cubical accuracy of an approximation imposes for all other variants
to obey their Taylor series expansions evaluated at f = 0 as in equation (2.18), actually

F = F ( f(x)
f ′(x)

,
f ′′(x)
f ′(x)

, x).

For instance, anticipating that f is small we may rewrite F in (2.18) in the form

F (f(x), x) = − f(x)
f ′(x)

( 1
1 − A2(x) f(x)

f ′(x)

)
= − f(x)

f ′(x)

(
1 + f ′′(x)

2f ′(x)
f(x)
f ′(x)

+ · · ·
)
. (2.20)

Hence, retaining the first two terms in (2.20), we simply get the cubical iteration known
as Halley’s iteration or König’s iteration (see the book by Householder [16])

xn+1 = xn −
f(xn)
f ′(xn)

1 − f ′′(xn)
2f ′(xn)

f(xn)
f ′(xn)

= xn + 2

(
1

f(xn)

)′

(
1

f(xn)

)′′ , (2.21)

possessing the error

C = 3f ′′(x)2 − 2f ′(x)f (3)(x)
12f ′(x)2 , (2.22)

which can also be constructed from a geometrical point of view or from another mathe-
matical treatment of quadratic Newton-Raphson iteration in (2.14) [2].

Amongst the many other variants, we may propose yet a further one-parameter family
of cubical iterations from rearranging F in (2.18) as

F (f(x), x) = − f(xn)
f ′(xn)

(
1 − h + h

1 − A2(x)
h

f(xn)
f ′(xn)

)
, (2.23)

giving rise to the cubical iterative scheme

xn+1 = xn − f(xn)
f ′(xn)

(
1 + hf(xn)f ′′(xn)

2hf ′(xn)2 − f(xn)f ′′(xn)

)
, (2.24)

with the error

C = (−3 + 6h)f ′′(x)2 − 2hf ′(x)f (3)(x)
12hf ′(x)2 , (2.25)

where h is a real parameter. It is noticed that when h is set to unity, our one parameter
family (2.24-2.25) evolves into the classical Halley’s iteration (2.21-2.22). To get the least
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error in absolute value sense, it is better choose h = 1/2 in (2.24-2.25) leading to the
cubical iteration

xn+1 = xn − 1
2

f(xn)
f ′(xn)

(
1 + 1

1 − f(xn)f ′′(x)
f ′(xn)2

)
, (2.26)

having the error

C = −f (3)(x)
6f ′(x)

. (2.27)

The accuracy and performance of new proposal in (2.26) and (2.27), which is a super-
Halley scheme, are discussed in Section 4. We now generalize the problem of finding
coefficients An(x) in (2.8) in the following Theorem.

Theorem 2.1. The coefficients An(x) in (2.8) for the higher order Newton iteration
schemes (Schröder’s iterations) can be generated from the algorithm

A1(x) = 1,

An(x) = − 1
n!

[ n−1∑
k=1

Ak(x)
( f(x)

f ′(x)

)k](n)
|f=0, n ≥ 2, (2.28)

where the superscript n is to mean derivative of order n with respect to x and An+1(x) is
simply the error of the nth order convergent iterative scheme.

Proof. A1(x) is obtained as in (2.12) and A2(x) is obtained as in (2.17). Following the
above methodology, whenever for instance, the quartic convergence is desired with p = 4
in (2.9-2.10), then the accumulated error due to (2.20), that is

C = − 1
3!

−3f ′′(x)2 + f ′(x)f (3)(x)
f ′(x)2 (2.29)

must be compensated which yields

A3(x) = C = − 1
3!

[
A1(x)

( f(x)
f ′(x)

)
+ A2(x)

( f(x)
f ′(x)

)2](3)
|f=0 (2.30)

corresponding to n = 3 in (2.28). So, the rest of the proof follows. ⋄ �

Corollary 2.2. At the (n + 1)th convergence rate of an approximation, the shape of F
must be in the form

F = F ( f(x)
f ′(x)

,
f ′′(x)
f ′(x)

,
f ′′′(x)
f ′(x)

, · · · ,
f (n)(x)
f ′(x)

, x). (2.31)

Corollary 2.3. Two distinct variants of quartic convergent iteration may be derived from
(2.28) by considering only the three terms in the fashion

xn+1 = xn − A1(xn) f(xn)
f ′(xn)

[ 1

1 − A2(xn) f(xn)
f ′(xn) − A3(xn)

(
f(xn)
f ′(xn)

)2

]
, (2.32)

where A3(x) = A3(x)
2 − 1

12
f (3)(x)
f ′(x) , having the error

C = 6f ′′(x)3 − 6f ′(x)f ′′(x)f (3)(x) + f ′(x)2f (4)(x)
24f ′(x)3 , (2.33)

and

xn+1 = xn − A1(xn) f(xn)
f ′(xn)

[
1 + A2(xn) f(xn)

f ′(xn)

 1
1 − A3(xn)

A2(xn)
f(xn)
f ′(xn)

 ]
, (2.34)
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having the error

C = 9f ′′(x)4 − 6f ′(x)f ′′(x)2f (3)(x) − 4f ′(x)2f (3)(x)2 + 3f ′(x)2f ′′(x)f (4)(x)
72f ′(x)3f ′′(x)

, (2.35)

both competing with the classical Newton iteration of quartic convergence rate (Schröder)
obtained from (2.28) with the error

C = 15f ′′(x)3 − 10f ′(x)f ′′(x)f (3)(x) + f ′(x)2f (4)(x)
24f ′(x)3 , (2.36)

and also with the Householder’s fourth order iteration (König)

xn+1 = xn + 3

(
1

f(x)

)′′

(
1

f(x)

)′′′ , (2.37)

with the error

C = 3f ′′(x)3 − 4f ′(x)f ′′(x)f (3)(x) + f ′(x)2f (4)(x)
24f ′(x)3 . (2.38)

The performance of (2.32) and (2.34) can be found in Section 4.

Corollary 2.4. Yet, another variant of one-parameter family of quartic convergent iter-
ation may be derived from (2.28) or accounting for the form in (2.31) by rearranging the
terms in the fashion

xn+1 = xn − f [x]
f ′[x]

1 − f ′′[x]
2f ′[x]

f [x]
f ′[x] + (−1 + h)f (3)[x]

6f ′[x]

(
f [x]
f ′[x]

)2

1 − f ′′[x]
f ′[x]

f [x]
f ′[x] + hf (3)[x]

6f ′[x]

(
f [x]
f ′[x]

)2

 , (2.39)

having the error

C = 3f ′′[x]3 + 2(−3 + h)f ′[x]f ′′[x]f (3)[x] + f ′[x]2f (4)[x]
24f ′[x]3

. (2.40)

Notice that h = 1 yields the König’s iteration of fourth-order (2.37-2.38). Taking the
advantage of having less error in absolute value sense, however, we must choose h = 3
leading to

xn+1 = xn − f(xn)
f ′(xn)

1 − f ′′(xn)
2f ′(xn)

f(xn)
f ′(xn) + f (3)(xn)

3f ′(xn)

(
f(xn)
f ′(xn)

)2

1 − f ′′(xn)
f ′(xn)

f(xn)
f ′(xn) + f (3)(xn)

2f ′(xn)

(
f(xn)
f ′(xn)

)2

 , (2.41)

having the error

C = 3f ′′(x)3 + f ′(x)2f (4)(x)
24f ′(x)3 . (2.42)

Section 4 can be referred for the performance of (2.41).

Corollary 2.5. Similar variants may be produced from (2.28) competing with higher order
Schröder’s iterations and (d+2)th order convergence rate Householder’s (Köni’s) iterations

xn+1 = xn + (d + 1)

(
1

f(x)

)(d)

(
1

f(x)

)(d+1) . (2.43)

At least we may propose the following variant produced from (2.28)

xn+1 = xn − A1(xn) f(xn)
f ′(xn)

( 1
1 −

∑d
n=2 An(xn)

(
f(xn)
f ′(xn)

)n

)
, (2.44)
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where An(x) is appropriately modified form of An(x).

Corollary 2.6. The iterative scheme proposed in the reference [1] as a result of the Ado-
mian decomposition is simply a subclass of cubically convergent Newton iteration method
obtained from (2.28). Indeed, the error of the method in [1] is given by

C = − f ′′′(x)
6f ′(x)

, (2.45)

which coincides with the error of the proposed scheme here in (2.27).

3. Multi-step iterations
In this section, by combining the introduced methods in Section 2, using predictor-

corrector technique multi-step iterations requiring less derivative computations are derived.
The composition of known methods and the approximation of the derivative of the last
step, in order to preserve the optimality of the method, is an standard procedure for
designing optimal new schemes, refer to the books [3] and [23].

3.1. Some two-step iterations
We may provide in the sequel some new two-step iterations possessing cubical order of

convergence. For instance,

xn+1 = xn − α
f(xn − β f(xn)

f ′(xn))
f ′(xn)

, (3.1)

with the pairs

(α, β) = (−3 +
√

5
2

, −1 −
√

5
2

) (3.2)

and

(α, β) = (3 −
√

5
2

,
1 +

√
5

2
) (3.3)

both having the error of order

C = 3f ′′(xn) − α−1f ′(xn)f ′′′(xn)
6f ′(xn)2 . (3.4)

Similar designs were also suggested in [10].
Moreover, combining the classical quadratic Newton iteration with the cubical House-

holder’s yields

xn+1 = xn − f(xn)
f ′(xn)

−
f

(
xn − f(xn)

f ′(xn)

)
f ′

(
xn − f(xn)

f ′(xn)

) −
f

(
xn − f(xn)

f ′(xn)

)2
f ′′

(
xn − f(xn)

f ′(xn)

)
2f ′

(
xn − f(xn)

f ′(xn)

)3 , (3.5)

having the sixth order convergence rate with the error

C = 3f ′′(x)5 − f ′(x)f ′′(x)3f (3)(x)
48f ′(x)5 . (3.6)

Additionally, combining the classical quadratic Newton iteration with the cubical Hal-
ley’s method yields

xn+1 = xn − f(xn)
f ′(xn)

+
2f

(
xn − f(xn)

f ′(xn)

)
f ′

(
xn − f(xn)

f ′(xn)

)
−2f ′

(
xn − f(xn)

f ′(xn)

)2
+ f

(
xn − f(xn)

f ′(xn)

)
f ′′

(
xn − f(xn)

f ′(xn)

) , (3.7)
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Table 1. The performance of new algorithms in (2.15) against the classical qua-
dratic Newton algorithm in (2.14) on the test function (4.1). Adjacent to the
number of iterations, the corresponding values of h are given in parenthesis.

Initial guess NQ NQ1 NQ2 NQ3
x0 = 2 Divergent 3 (h = 0.319) 3 (h = −0.890) 20 (h = 0.922)
x0 = 5 Divergent 4 (h = 0.314) 5 (h = −0.844) 21 (h = 0.785)

having the sixth order convergence rate with the error

C = 3f ′′(x)5 − 2f ′(x)f ′′(x)3f (3)(x)
96f ′(x)5 . (3.8)

3.2. A three-step iteration
Finally, a three-level of classical quadratic Newton method is presented as

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)
f ′(yn)

,

xn+1 = zn − f(zn)
f ′(zn)

, (3.9)

which has eight-order accuracy with the error

C = f ′′(x)7

128f ′(x)7 . (3.10)

4. Illustrations and comparisons
In this section, the new variants as presented in Section 2 are applied to a variety

of worked examples chosen from the recent open literature in an aim to measure their
efficiency, accuracy and performance against the classical iterative schemes. The dynamic
basins of attraction analysis in order to determine the appropriate length of interval of
convergence is out of the scope of the present work.

We consider the test functions
f(x) = tan−1 x, (4.1)
f(x) = x3 − 2x + 2, (4.2)

f(x) = π − 2x sin
(

π

x

)
, (4.3)

f(x) = x2 − (1 − x)5, (4.4)
f(x) = x3 + 4x2 − 10, (4.5)

f(x) = −1 + x4

4
sin x, (4.6)

f(x) = xex2 − sin2 x + 3 cos x + 5, (4.7)
f(x) = x2 − ex − 3x + 2, (4.8)

which are taken, respectively from the references [15], [29], [24], [1], [8], [4], [15] and [14].
The initial check is presented in Table 1 on the classical quadratic Newton iteration (NQ)

given by equation (2.14) against the newly proposed quadratic iterations (NQ1,NQ2,NQ3),
respectively given by the expressions in equation (2.15). It is of no surprise to see in Table
1 that the classical Newton iteration algorithm diverges away from the root, since zero is
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Table 2. The performance of new algorithms in (2.15) against the classical qua-
dratic Newton algorithm in (2.14) on the test function (4.2) possessing the root
x = −1.769292354238631. Adjacent to the number of iterations, the corresponding
values of h are given in parenthesis.

Initial guess NQ NQ1 NQ2 NQ3
x0 = −2 5 3 (h = 0.7190) 3 (h = −1.269) 3 (h = −1.269)
x0 = 0 Divergent 5 (h = −0.107) 5 (h = 0.2160) Divergent
x0 = 1 Divergent 6 (h = −0.103) 6 (h = 0.2120) 18 (h = 0.0040)

a turning point of f(x). On the other hand, NQ1 and NQ2 successfully resolve the root
within a very small number of iterations. NQ3 also catches the root within a reasonable
number of iterations, though the algorithm has a singular character at zero. Near the
maxima of the function, the failure of the classical Newton iteration by entering into
infinite loop (2-cycle) is seen in Table 2. However, we observe from both Tables that the
parameter h contributes to the success of the proposed algorithms by means of adjusting
the rate of convergence. It is recalled that in the case of failure of the classical Newton
iterations near the points of inflexion or extremum, either higher order Newton methods
or successive over-relaxation is generally suggested. Besides, the quadratic algorithms in
(2.15) constitute powerful alternatives. Another curious example of failure of the classical
Newton’s quadratic method was presented in [15], see equation (4.3). Taking the initial
guess x0 = 1/2, the Newton’s method converges to the point zero which is not the actual
root of the function in (4.3), but the real root is x = 1.657400240258006. Keeping in
mind the geometric meaning of the classical Newton’s method, figure 1 fairly explains
the tendency of failure. On the other hand, with the same initial approximation NQ1
converges to the root within 5 iterations assigning h = 0.901, NQ2 converges to the root
within 8 iterations assigning h = 5.005 and NQ3 converges to the root within 4 iterations
assigning h = 0.862. All these algorithms converge faster than the recently presented one
in [15] based on a vector form which took 18 iterations.

Figure 1. Graph of the function in (4.3).

Next, the accuracy and performance of newly proposed single-step cubical iteration
(NC) given by equation (2.26) is tested against the classical quadratic Householder’s it-
eration (Schröder) (NS) in (2.19), the classical Halley’s or Könnig’s iteration (NHK) in
(2.21) as well as the algorithm of the reference [1] (AB) on the test function (4.4) in Table
3. The best performance on the test function is observed for our proposed cubic iteration
method as compared to the others. Table also justifies our assertion in Corollary 5 that
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Table 3. The performance and accuracy of the new algorithm in (2.26) against
the classical cubical Newton algorithm in (2.19), the classical Halley’s iteration in
(2.21), the algorithm of the reference [1] on the test function (4.4) possessing the
root x = 0.345954815848242. Initial approximation is x0 = 3.

Iter NS NHK AB NC
1 2.309185040310916 2.134723926380368 2.116938139481553 0.423431620504596
2 1.559422964223167 0.721648446504665 0.837748863864384 0.344873683670437
3 0.508379803859623 0.287962091869351 0.272745463769937 0.345954819218795
4 0.337284989965960 0.346136448288485 0.346827109618553 0.345954815848242
5 0.345954823310806 0.345954815839783 0.345954814080809
6 0.345954815848242 0.345954815848242 0.345954815848242

Table 4. The performance of new algorithms in (2.32), (2.34) and (2.41) against
the classical quartic Householder’s iteration in (2.36) and the classical quar-
tic Könnig’s iteration in (2.37) on the test function (4.5) having the root x =
1.365230013414097.

Initial guess HQ KQ PQ1 PQ2 PQ3
x0 = 1 3 3 3 3 3
x0 = 10 5 4 5 4 5
x0 = 100 8 7 7 7 7

Table 5. The performance and accuracy of the new algorithms in (3.1,3.2) and
(3.1,3.3) against the classical cubical Newton algorithm in (2.19) and the clas-
sical Halley’s iteration in (2.21) on the test function (4.6) for its root x =
1.418344180662527. Initial approximation is x0 = 2.1.

Iter NS NHK MQ1 MQ2
1 1.586846277446990 1.580466213654476 1.497483028980226 2.011823215688909
2 1.423519529811290 1.421244951596745 1.419042687095258 1.725367747206929
3 1.418344423339663 1.418344200579770 1.418344181297605 1.453308741122478
4 1.418344180662527 1.418344180662527 1.418344180662527 1.418408301922735
5 1.418344180662936
6 1.418344180662527

even though NC and AB has the same errors, NC is a better cubically convergent iterative
scheme.

It is later demonstrated the history of iterations in Table 4 to tabulate the performance
of the newly proposed single-step quartic iterations, namely (PQ1,PQ2,PQ3) in equations
(2.32), (2.34) and (2.41) against those of the classical quartic Householder’s iteration
(Schröder) (HQ) in (2.36) and the classical quartic Könnig’s iteration (KQ) in (2.37). The
competing performance of our newly proposed quartic convergent iterative methods with
the existing ones is witnessed. We should also state that the present algorithms performs
better as compared to the quadratic methods of [8].

As for the multi-step methods, the accuracy and performance of cubical iterative meth-
ods (3.1,3.2) (MQ1) and those of (3.1,3.3) (MQ2) is given over the classical iterations
(NS) and (NHK) in Table 5 on the test function (4.6). Although both the new proposals
compete with the well-documented ones, the third order MQ1 seems to perform better for
the present problem.
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Table 6. The performance of new algorithms in (3.5) and (3.7) against the clas-
sical sixth-order Schröder’s iteration (S6) in (2.28) and Konig’s iteration (K6) in
(43) on the test function (4.7) for its root x = −1.207647827130919.

Initial guess S6 K6 NH6 NK6
x0 = −5 13 7 12 10
x0 = −3 7 4 6 5
x0 = −1 2 2 2 2
x0 = 1 Divergent 5 3 3
x0 = 2 7 16 Divergent 5

Table 7. The performance and accuracy of the new algorithm in (3.7) against
the classical eighth-order Schröder’s iteration (SE) in (2.28) and Konig’s it-
eration (KE) in (43) on the test function (4.8) possessing the root x =
0.2575302854398608. Initial approximation is x0 = 5.

Iter SE KE NE
1 2.4642661690426630 5.4063466209445250 2.0050680443844201
2 -0.069507913507796 14.380905931142920 0.2575294164543645
3 0.2575300355441590 7.4001957390452030 0.2575302854398608
4 0.2575302854398608 0.7631615414212887
5 0.2575309154917721
6 0.2575302854398608

Sixth-order accurate multi-step methods proposed in (3.5) (NH6) and in (3.7) (NK6) are
then tested in Table 6 on the test function 4.7 against the classical sixth-order Schröder’s
iteration (S6) in (2.28) and Konig’s iteration (K6) in (43). In terms of converged iteration
numbers, again good performance of the newly offered two-step techniques are anticipated
from the Table.

Finally, the performance of multi-step eighth-order accurate method proposed in (3.9)
(NE) is investigated versus the performance of classical eighth-order Schröder’s iteration
(SE) in (2.28) and Konig’s iteration (KE) in (43) on the test function (4.8) in Table 7,
which reveals the good performance of the newly proposed three-step method.

5. Concluding remarks
The classical Newton iteration formulas of any order for finding the root of a nonlinear

equation are revisited in an aim to design and construct them from an easily pursuable
procedure. A simple methodology of derivation of the iterative schemes is hence pursued
on the ground of error elimination. Making use of a general fixed-point representation of
the equation and double expansion of the representation around the root and the nonlinear
function whose root is searched for, a simple algorithm is presented based on the error
tracking.

Starting from the conventional linearly convergent fixed point iteration method and
quadratically convergent Newton-Raphson method, the algorithm is shown to produce
the well-formulated high order Newton iteration formulae as well as their well-documented
variants like the Schröder’s and the König’s iterations all known as Householder’s itera-
tions. Taking into account of the algorithm, some rare classes of new variants of any
convergence rate are shown to be derivable with alternative errors so that they noticeably
compete with the known formulas with a detectable gain. The well-accepted deficiencies
of the classical Newton-Raphson method such as the divergence near a point of inflection,
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the oscillatory behavior near the local extremum and the divergence near-zero slope are
exhibited to be defeated by the newly proposed beneficial quadratic alternative iterative
schemes.

Finally, some new higher order accurate competitive variants by forming the composi-
tion of the derived variants are proposed giving rise to novel multi-step approximations
which demand less computation of higher derivatives. The utility and performance of the
proposed methods and their potential advantages over the classical ones of the same order
are discussed on some well-documented examples from the open literature.
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