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Abstract

Let Gm
n be a simple, connected and finite graph. Suppose ϕ : N → R+ is a positive and

increasing function. We consider the action of generalized maximal operator Mϕ
Gm

n
on ℓp

spaces and find optimal bound for the quasi norm ∥Mϕ
Gm

n
∥p for the case 0 < p ≤ 1. In

addition we find bounds for the norm ∥Mϕ
Gm

n
∥p for the case 1 < p < ∞. We also prove

some general results for 0 < p ≤ 1.
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1. Introduction
Let G (V, E) be a connected, finite and simple graph where V (G) is the set of vertices

and E(G) is the set of edges between the vertices of graph G. Let dG : V (G) × V (G) → R
be the geodesic metric space defined for u, v ∈ V (G) as the number of edges in shortest
path between u and v written as dG(u, v). The set NG(u) = {x ∈ V (G) | dG(u, x) = 1} is
the neighborhood of u in graph G, cardinality of neighborhood set is called degree of u
and is denoted as dG(u). For any function f : V (G) → R we can consider the generalized
maximal operator [1] Mϕ

G : ℓp → ℓp, such as

Mϕ
Gf(j) = sup

r≥0

1
ϕ (|B(j, r)|)

∑
s∈B(j,r)

|f(s)| (1.1)

where ϕ : N → R+ is a positive, increasing function and B(j, r) = {x ∈ V (G) | dG(j, x) ≤ r}
is the ball of radius r with center at j. Note that M t

G is the classical Hardy-Littlewood
maximal operator and M t1− s

r

G , where 0 < s < r, is the fractional maximal operator. As
distance takes only natural numbers as values, the radius r ≥ 0 considered in the definition
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of generalized maximal operator can be taken to be a natural number also the diameter
of the graph of n vertices is at most n − 1, so we can write the equation (1.1) such as

Mϕ
Gf(j) = max

r=0,1,...,n−1

1
ϕ (|B(j, r)|)

∑
s∈B(j,r)

|f(s)| . (1.2)

For 0 < p < ∞, the norm of Mϕ
G is define as

∥Mϕ
G∥p := sup

f ̸=0

∥Mϕ
Gf∥p

∥f∥p

where ∥f∥p =
( ∑

s∈V (G)
|f(s)|p

) 1
p

.

In the paper [2] authors proved that if 0 < p ≤ 1, then

∥MKn∥p =
(

1 + n − 1
np

) 1
p

,

if 1 < p < ∞, then (
1 + n − 1

np

) 1
p

≤ ∥MKn∥p ≤
(

1 + n − 1
n

) 1
p

, (1.3)

where Kn is a complete graph. In this paper we generalize the results given in [2].

2. Preliminaries
Definition 2.1. A family of graphs Gm

n as those simple graphs having n vertices with
one vertex say k (central vertex) of degree n − 1 and all other vertices of degree m, where
1 ≤ m ≤ n − 1.

Gm
n is a very large family of graphs as it contains both star graph Sn ∼ G1

n as well as
complete graph Kn = Gn−1

n as end-points, it has also many more important graphs in it.

Figure 1. G4
9 graph

For example if we take m = 3, then G3
n ∼ Wn (wheel graph). For k ∈ V (central vertex)

the B (k, r) for Gm
n is

B(k, r) =


{k} , for r = 0,

V, for r ≥ 1.

For j ∈ V other than k, the B (j, r) for Gm
n is

B(j, r) =


{j} , for r = 0,

{j}
∪

NGm
n

(j), for r = 1,

V, for r ≥ 2.
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Suppose j ∈ V , the generalized maximal operator for Gm
n is

Mϕ
Gm

n
f(j) =


max

{
1

ϕ(1) |f(j)| , 1
ϕ(n)

∑
x∈V

|f(x)|
}

, if j = k,

max
{

1
ϕ(1) |f(j)| , 1

ϕ(m+1)
∑

v∈B(j,1)
|f(v)| , 1

ϕ(n)
∑

x∈V
|f(x)|

}
, if j ̸= k.

(2.1)
Let see a particular example for the norm of generalized maximal operator on G2

7.

Example 2.2. Let G2
7 ∼ F7 (friendship graph of 7 vertices) with V = {1, 2, 3, 4, 5, 6, 7}

be the vertex set, 1 is the central vertex. There are 9 edges in this graph 1-2, 1-3, 1-4, 1-5,
1-6, 1-7, 2-3, 4-5 and 6-7, now it is easy to draw this graph. Take Dirac delta as function,
ϕ(t) = t2 and p = 1

2 , then we have

M t2

G2
7
δ1(j) =


1, for j = 1,

1
9 , for j = 2, 3, 4, 5, 6, 7,

and

M t2

G2
7
δ2(j) =



1, for j = 2,

1
9 , for j = 3,

1
49 , for j = 1, 4, 5, 6, 7.

Hence ∥M t2

G2
7
δ1∥ 1

2
= 9 and ∥M t2

G2
7
δ2∥ 1

2
= 4.1927. By symmetry, we also have the esti-

mates for the remaining vertices: ∥M t2

G2
7
δ3∥ 1

2
= ∥M t2

G2
7
δ4∥ 1

2
= ∥M t2

G2
7
δ5∥ 1

2
= ∥M t2

G2
7
δ6∥ 1

2
=

∥M t2

G2
7
δ7∥ 1

2
= 4.1927, so ∥M t2

G2
7
∥ 1

2
= 9. This calculation can be obtained directly from

Proposition 3.1.
The operator Mϕ

Gn−1
n

(
Gn−1

n = Kn
)

is the smallest, in the pointwise ordering, among all
Mϕ

G, with G a graph of n vertices. That is for each f : V → R and every j ∈ V , we have
that

Mϕ

Gn−1
n

f(j) ≤ Mϕ
Gf(j). (2.2)

Consequently for every 0 < p < ∞,

∥Mϕ

Gn−1
n

∥p
p ≤ ∥Mϕ

G∥p
p. (2.3)

Lemma 2.3 ([2]). Let G be the graph, and Ω : ℓp(G) → ℓp(G) be a sublinear operator
with 0 < p ≤ 1. Then,

∥Ω∥p = max
j∈V

∥Ωδj∥p.

3. Main results
Proposition 3.1. If 0 < p ≤ 1, then

∥Mϕ
Gm

n
∥p =

( 1
ϕp(1)

+ n − 1
ϕp(m + 1)

) 1
p

and if 1 < p < ∞, then( 1
ϕp(1)

+ n − 1
ϕp(m + 1)

) 1
p

≤ ∥Mϕ
Gm

n
∥p ≤

(
1

ϕp(1)
+ (n − 1) max

{
(m + 1)p−1

ϕp(m + 1)
,

np−1

ϕp(n)

}) 1
p

.
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Proof. Let f : V → R be a function such that ∥f∥p = 1. Suppose that k ∈ V (Gm
n ) is the

central vertex of the graph define δk, then for 0 < p < ∞ we have

∥Mϕ
Gm

n
δk∥p =

(Mϕ
Gm

n
δk(k)

)p
+

∑
i∈V \{k}

(
Mϕ

Gm
n

δk(i)
)p

 1
p

=
( 1

ϕp(1)
+ n − 1

ϕp(m + 1)

) 1
p

.

Now suppose r ∈ V (Gm
n ) such that r ̸= k, we define δr, then we have

∥Mϕ
Gm

n
δr∥p =

((
Mϕ

Gm
n

δr(r)
)p

+
∑

i∈NGm
n

(r)\{k}

(
Mϕ

Gm
n

δr(i)
)p

+
∑

b∈{k}
∪

{x: x ̸∈NGm
n

(r)}

(
Mϕ

Gm
n

δr(b)
)p
) 1

p

=
( 1

ϕp(1)
+ m − 1

ϕp(m + 1)
+ n − m

ϕp(n)

) 1
p

.

As ∥δk∥p = 1 so we have for 0 < p < ∞

∥Mϕ
Gm

n
∥p ≥ max

{( 1
ϕp(1)

+ n − 1
ϕp(m + 1)

) 1
p

,

( 1
ϕp(1)

+ m − 1
ϕp(m + 1)

+ n − m

ϕp(n)

) 1
p

}
.

Due to the monotonicity of ϕ, the maximum is always attained at the first term, so

∥Mϕ
Gm

n
∥p ≥

( 1
ϕp(1)

+ n − 1
ϕp(m + 1)

) 1
p

.

For 0 < p ≤ 1 using Lemma 2.3 we get

∥Mϕ
Gm

n
∥p =

( 1
ϕp(1)

+ n − 1
ϕp(m + 1)

) 1
p

.

Now we will prove the upper bound for 1 < p < ∞

∥Mϕ
Gm

n
f∥p =

(Mϕ
Gm

n
f(k)

)p
+

∑
i∈V \{k}

(
Mϕ

Gm
n

f(i)
)p

 1
p

=

max
{

1
ϕp(1)

|f(k)|p,
1

ϕp(n)

(∑
w∈V

|f(w)|
)p}

+
∑

i∈V \{k}
max

{ 1
ϕp(1)

|f(i)|p,

1
ϕp(m + 1)

 ∑
x∈B(j,1)

|f(x)|

p

,
1

ϕp(n)

(∑
w∈V

|f(w)|
)p



1
p

after applying Hölder’s inequality we get

∥Mϕ
Gm

n
∥p ≤ sup

max
{

1
ϕp(1)

|f(k)|p,
1

ϕp(n)
np−1

}
+

∑
i∈V \{k}

max
{

1
ϕp(1)

|f(i)|p,
1

ϕp(j)
jp−1

} 1
p
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where 1
ϕp(j)jp−1 = max

{
1

ϕp(m+1) (m + 1)p−1 , 1
ϕp(n)np−1

}
. If 1

ϕp(1) |f(k)|p ≤ 1
ϕp(n)np−1 and

1
ϕp(1) |f(i)|p ≤ 1

ϕp(j)jp−1 for all vertices then we have

∥Mϕ
Gm

n
∥p ≤

 1
ϕp(n)

np−1 +
∑

i∈V \{k}

1
ϕp(j)

jp−1

 1
p

=
(

np−1

ϕp(n)
+ (n − 1) jp−1

ϕp(j)

) 1
p

.

If 1
ϕp(1) |f(k)|p ≤ 1

ϕp(n)np−1 and 1
ϕp(1) |f(i◦)|p > 1

ϕp(j)jp−1 for some i◦ then

∥Mϕ
Gm

n
∥p ≤ sup

( 1
ϕp(n)

np−1 +
∑

i◦∈ 1
ϕp(1) |f(i◦)|p> 1

ϕp(j) jp−1

1
ϕp(1)

|f(i◦)|p

+
∑

i∈ 1
ϕp(1) |f(i)|p≤ 1

ϕp(j) jp−1

1
ϕp(j)

jp−1
) 1

p

≤
(

np−1

ϕp(n)
+ 1

ϕp(1)
+ (n − 2) jp−1

ϕp(j)

) 1
p

.

If 1
ϕp(1) |f(k)|p ≥ 1

ϕp(n)np−1 and 1
ϕp(1) |f(i◦)|p > 1

ϕp(j)jp−1 for some i◦ then

∥Mϕ
Gm

n
∥p ≤ sup

( 1
ϕp(1)

|f(k)|p +
∑

i◦∈ 1
ϕp(1) |f(i◦)|p> 1

ϕp(j) jp−1

1
ϕp(1)

|f(i◦)|p

+
∑

i∈ 1
ϕp(1) |f(i)|p≤ 1

ϕp(j) jp−1

1
ϕp(j)

jp−1
) 1

p

= sup

 ∑
y∈{k}

∪
{i◦}

1
ϕp(1)

|f(y)|p +
∑

i∈ 1
ϕp(1) |f(i)|p≤ 1

ϕp(j) jp−1

1
ϕp(j)

jp−1


1
p

≤
(

1
ϕp(1)

+ (n − 2) jp−1

ϕp(j)

) 1
p

.

If 1
ϕp(1) |f(k)|p ≥ 1

ϕp(n)np−1 and 1
ϕp(1) |f(i)|p ≤ 1

ϕp(j)jp−1 then we have

∥Mϕ
Gm

n
∥p ≤ sup

 1
ϕp(1)

|f(k)|p +
∑

i∈ 1
ϕp(1) |f(i)|p≤ 1

ϕp(j) jp−1

1
ϕp(j)

jp−1


1
p

≤
(

1
ϕp(1)

+ (n − 1) jp−1

ϕp(j)

) 1
p

.

�

Now we will prove some general results. For rest of the paper we assume 0 < p ≤ 1.

Theorem 3.2. For the general graph G with n vertices we have

∥Mϕ

Gn−1
n

∥p
p ≤ ∥Mϕ

G∥p
p ≤ ∥Mϕ

G1
n
∥p

p.
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Proof. Lower bound of this theorem is trivial. We have to prove only the upper bound.
Let j ∈ V and define δj , then we have

∥Mϕ
Gδj∥p

p =
(
Mϕ

Gδj(j)
)p

+
∑

x∈V \{j}

(
Mϕ

Gδj(x)
)p

= 1
ϕp(1)

+
∑

x∈V \{j}

 1
ϕ (|B(j, r)|)

∑
w∈B(j,r)

δj(w)


p

clearly 2 ≤ |B(j, r)| for the radius r ≥ 1, so we get

∥Mϕ
Gδj∥p

p ≤ 1
ϕp(1)

+ n − 1
ϕp(2)

by using Lemma 2.3, we get
∥Mϕ

G∥p
p ≤ ∥Mϕ

G1
n
∥p

p.

�

Theorem 3.3. G = Gn−1
n if and only if ∥Mϕ

G∥p
p = ∥Mϕ

Gn−1
n

∥p
p.

Proof. If G = Gn−1
n then ∥Mϕ

G∥p = ∥Mϕ

Gn−1
n

∥p is a trivial case. We have only to prove
the converse part, for that let G ̸= Gn−1

n then there exist two different vertices x and y in
V such that dG (x, y) > 1. Let consider two sets X = B (x, 1) = {j ∈ V : dG (x, j) ≤ 1}
and Y = B (y, 1) = {j ∈ V : dG (y, j) ≤ 1}. It is clear that |X| , |Y | ≥ 2. Thus, we
consider two cases.

Case 1. min {|X| , |Y |} ≤ n
2 .

We assume that |X| ≤ n
2 . Let k ∈ X such that it is different from x and we define δk,

then

∥Mϕ
Gδk∥p

p =
∑
v∈V

(
Mϕ

Gδk(v)
)p

=
(
Mϕ

Gδk(k)
)p

+
(
Mϕ

Gδk(x)
)p

+
∑

v∈V \{x,k}

(
Mϕ

Gδk(v)
)p

since Mϕ
Gδk(v) ≥ 1

ϕ(n) for each v ∈ V , so we get

∥Mϕ
G∥p

p ≥ ∥Mϕ
Gδk∥p

p ≥ 1
ϕp(1)

+ 1
ϕp (|X|)

+ n − 2
ϕp(n)

≥ 1
ϕp(1)

+ 1
ϕp
(

n
2
) + n − 2

ϕp(n)

> ∥Mϕ

Gn−1
n

∥p
p,

which completes the proof of case 1.

Case 2. min {|X| , |Y |} > n
2 .

It is easy to see that X ∩ Y ̸= ∅. Let k ∈ X ∩ Y and define δk, then

∥Mϕ
Gδk∥p

p =
(
Mϕ

Gδk(k)
)p

+
(
Mϕ

Gδk(x)
)p

+
(
Mϕ

Gδk(y)
)p

+
∑

v∈V \{x,y,k}

(
Mϕ

Gδk(v)
)p

≥ 1
ϕp(1)

+ 1
ϕp (|X|)

+ 1
ϕp (|Y |)

+ n − 3
ϕp(n)

.
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Clearly |X| , |Y | ≤ n − 1, so

∥Mϕ
G∥p

p ≥ ∥Mϕ
Gδk∥p

p ≥ 1
ϕp(1)

+ 2
ϕp (n − 1)

+ n − 3
ϕp(n)

> ∥Mϕ

Gn−1
n

∥p
p.

�
Theorem 3.4. G ∼ G1

n if and only if ∥Mϕ
G∥p

p = ∥Mϕ
G1

n
∥p

p.

Proof. G ∼ G1
n ⇒ ∥Mϕ

G∥p = ∥Mϕ
G1

n
∥p is trivial. Now suppose that G � G1

n and hence
n ≥ 3 then ∃ x ̸= y in V such that dG(x), dG(y) > 1. Suppose that ∥f∥1 ≤ 1, for every
function f : V → R then, either Mϕ

Gf(j) = |f(j)|
ϕ(1) or Mϕ

Gf(j) ≤ 1
ϕ(dG(j)+1) . Take the set

X =
{

j ∈ V : Mϕ
Gf(j) = f(j)

ϕ(1)

}
, then we have

∥Mϕ
Gf∥p

p =
∑
j∈X

(
Mϕ

Gf(j)
)p

+
∑
j ̸∈X

(
Mϕ

Gf(j)
)p

≤
∑
j∈X

(
Mϕ

Gf(j)
)p

+
∑
j ̸∈X

1
ϕp (dG(j) + 1)

.

If x, y ∈ X, then

∥Mϕ
Gf∥p

p ≤ 1
ϕp(1)

+ n − 2
ϕp(2)

.

If x ̸∈ X, then since X ̸= ∅, we have

∥Mϕ
Gf∥p

p ≤ 1
ϕp(1)

+ 1
ϕp(dG(j) + 1)

+ n − 2
ϕp(2)

≤ 1
ϕp(1)

+ 1
ϕp(3)

+ n − 2
ϕp(2)

.

Similarly case when y ̸∈ X. So

∥Mϕ
G∥p

p ≤ sup
{ 1

ϕp(1)
+ n − 2

ϕp(2)
,

1
ϕp(1)

+ 1
ϕp(3)

+ n − 2
ϕp(2)

}
< ∥Mϕ

G1
n
∥p

p,

which completes our arguments. �
If we put ϕ(t) = t and m = n−1 in the result of Proposition 3.1, then we get the expres-

sion (1.3). Moreover, if we put ϕ(t) = t in the results of Theorems 3.2, 3.3 and 3.4 then
we get the same results as proved in [2], which shows that this work is a generalization of [2].
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