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Abstract

Let G™ be a simple, connected and finite graph. Suppose ¢ : N — R™ is a positive and
increasing function. We consider the action of generalized maximal operator M, ¢ . on (P

spaces and find optimal bound for the quasi norm ||Mgm|]p for the case 0 < p < 1. In

addition we find bounds for the norm HMgme for the case 1 < p < oco. We also prove
some general results for 0 < p < 1.
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1. Introduction

Let G (V, E) be a connected, finite and simple graph where V(@) is the set of vertices
and E(G) is the set of edges between the vertices of graph G. Let dg : V(G) x V(G) — R
be the geodesic metric space defined for u,v € V(G) as the number of edges in shortest
path between u and v written as dg(u,v). The set Ng(u) = {z € V(G) | dg(u,x) =1} is
the neighborhood of v in graph G, cardinality of neighborhood set is called degree of u
and is denoted as dg(u). For any function f : V(G) — R we can consider the generalized

maximal operator [1] Mg : P — (P, such as

1
MGF() =sup e > | f(s)] (L.1)
r>0 ¢ (‘B(ja T)|) sEB(j,'I‘)
where ¢ : N — R is a positive, increasing function and B(j,7) = {z € V(G) | dg(j,x) < r}
is the ball of radius r with center at j. Note that Mf is the classical Hardy-Littlewood

maximal operator and MtG1 -7, where 0 < s < r, is the fractional maximal operator. As
distance takes only natural numbers as values, the radius 7 > 0 considered in the definition
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of generalized maximal operator can be taken to be a natural number also the diameter
of the graph of n vertices is at most n — 1, so we can write the equation (1.1) such as

1

MEf(j) = _max  —omr—s MO (1.2)
0= i 5
For 0 < p < 00, the norm of Mg is define as
MEf
311, = sup 1216l
20 1 fllp

=

where || f|, = < > |f(3)|p>

seV(G)
In the paper [2] authors proved that if 0 < p < 1, then

1
n—1\»r
Ml = (1+725) "

if 1 < p < o0, then

1 1
—1\>r —1\»
(1+222) <l < (147227 (13

n

where K, is a complete graph. In this paper we generalize the results given in [2].

2. Preliminaries

Definition 2.1. A family of graphs G]' as those simple graphs having n vertices with
one vertex say k (central vertex) of degree n — 1 and all other vertices of degree m, where
1<m<n-—1.

G™ is a very large family of graphs as it contains both star graph S, ~ G} as well as
complete graph K,, = G"~! as end-points, it has also many more important graphs in it.

Figure 1. G§ graph

For example if we take m = 3, then G2 ~ W,, (wheel graph). For k € V(central vertex)
the B (k,r) for GI" is

{k}, for r=0,
B(k,r) = {

V, for r>1.
For j € V other than k, the B (j,r) for G} is
{7}, for r=0,
B(j,r) = ¢ {7}UNen(4), for r=1,

V, for r>2.
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Suppose j € V, the generalized maximal operator for G} is

max{(bgl)\f<j>|7mvegj’l)\f@n,qﬁgmngfmw}? it j# k.
(2.1)

Let see a particular example for the norm of generalized maximal operator on G%.

Example 2.2. Let G2 ~ F; (friendship graph of 7 vertices) with V = {1,2,3,4,5,6,7}
be the vertex set, 1 is the central vertex. There are 9 edges in this graph 1-2, 1-3, 1-4, 1-5,
1-6, 1-7, 2-3, 4-5 and 6-7, now it is easy to draw this graph. Take Dirac delta as function,
¢(t) =% and p = 1, then we have

, 1, for j=1,
Mévgél(.?) =
g, for j=2,3,4,5,6,7,
and
1, for J =2,
Mgg(sQ(j) = for j=3,
ol for j=1,4,5,6,T.

ence 201l = 9 an 0l = 4. . By symmetry, we also have the esti-
H MtG 4] 9 and Mé 0 4.1927. B t Iso h the esti
7 2 7 2
mates for the remaining vertices: HMg;%égH% = HM&%&;H% = ”Mgg‘SSH% = HMg%éGH% =
||MtG2257||1 = 4.1927, so HMgQH; = 9. This calculation can be obtained directly from
7 2 72

Proposition 3.1.
The operator Mgm_l (Gn=! = K,,) is the smallest, in the pointwise ordering, among all

Mg, with G a graph of n vertices. That is for each f:V — R and every j € V, we have
that

M1 f(j) < MEF(). (22)
Consequently for every 0 < p < oo,
1MG 5 < IME. (2:3)

Lemma 2.3 ([2]). Let G be the graph, and Q2 : (P(G) — (P(G) be a sublinear operator
with 0 < p < 1. Then,

Qll, = max ||Q5;],.
1€2]]p I]Degll illp

3. Main results

Proposition 3.1. If0 <p <1, then

1 n—1
el = (55 * 3 )

=

and if 1 < p < oo, then

1

1 n—1 \» o ) (m—+1)P1 1 )\7
(¢p<1>+¢p<m+1)> S‘MG#M(MD*( D {¢p(m+1>’¢p<n>}> '
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Proof. Let f:V — R be a function such that || f||, = 1. Suppose that k € V(G}}') is the
central vertex of the graph define dy, then for 0 < p < co we have

S =

My selly = ((Mé’?w(@)” 2 (M%é’“(i))p)

ieV\{k}

_ ( 1 n n—1 >p
o \er(1)  gr(m+1))
Now suppose r € V(G}') such that r # k, we define §,, then we have
P

oy = (o) + S (MEo0)
NG ()\ (k)

bE (ugaw))

be{k} U{z zQNGw (r)}

p

- <¢p1<1> " ¢p<m_+1 5t o ) |

As |0kl = 1 so we have for 0 < p < oo

¢ max ! i : : il nomy?
Mzl = {(¢p<1> *Foen) (D BT ) }

Due to the monotonicity of ¢, the maximum is always attained at the first term, so

1 n—1 P
181> (555 + )

For 0 < p <1 using Lemma 2.3 we get

B =

1Myl = (qﬁp(l) T+ 1))

Now we will prove the upper bound for 1 < p < oo

D=

IIMégfllpZ((Mé?mf N+ > (MG ))

ieV\{k}

L p L w max )P
= <max{¢p(1)yf(k:)| (gvu( )) }+Z€V§j\{k} {(bp( A

1 p p %
s [ Z vol) by (S ) })

after applying Holder’s inequality we get

S

> max{ s P Ofma})

ieV\{k}

1 1 _
IME, 1y < sup (max {WWW, . } "
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shere 7= s ke 4177y} 6 g O < o and
#(D’f(i)’p < ¢p1(j)jp_1 for all vertices then we have

M, < L L)
Ml < (¢p<n>” R TE )
_ (n“ +<n—1>jp1>;
= \ow " em )

il )" < g™ and G| o)l > Gogi” ™" for some io then

1 _ 1 ,
MGl < sup (e + S st

io €y 1> ks

1 p—1)?
i > G )

i€arm 1O <50y

npP~! 1 (n —2) P71 z
= <¢p<n>+¢p<1>+ () )

If ¢%(1)|f(k:)\p > 1 -nP~! and #(1)|f(io)|p > %]p_l for some i, then

¢P(n) P
1 1 .
38l < s (e AP + > o eI
ioéﬁ(l)|f(io)|p>¢z}(j)jpil
U
2 )
i€y IF DIP<gpiyiP
1 1 ’
] DO Ol VRN
ye(ky Ulio} i€ gy LF@)IP< gy o=
1
P

1 (n —2)4Pt
= (wn* () )

I ool P 2 Goyn?™" and gyl (D < G557 then we have

=

1
240))

3

1
[MEpls < sup | s lfEIP + >
i€ gpeny | f (DIP< gpzy 9P~

1 (n —1)4P71 z
= <</>p<1>+ () )

Now we will prove some general results. For rest of the paper we assume 0 < p < 1.

0

Theorem 3.2. For the general graph G with n vertices we have

MG 15 < IMENE < | M, 117
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Proof. Lower bound of this theorem is trivial. We have to prove only the upper bound.
Let 7 € V and define §;, then we have

p
MG = (Mg )"+ Y (MG (=)
zeV\{j}
P
B
clearly 2 < |B(j,r)| for the radius r > 1, so we get
1 n—1
MEs;|IP < +
Mol = 5oy * o)

by using Lemma 2.3, we get
IMEIIE < 1|7, 5.

Theorem 3.3. G = G"~! if and only if HMng || M n LB

Proof. If G = G"! then HMng = HMgn_al is a trivial case. We have only to prove

the converse part, for that let G # G7~! then there exist two different vertices z and y in
V such that dg (x,y) > 1. Let consider two sets X = B(z,1) ={j eV : dg(z,j) <1}
and Y = B(y,1) = {j eV : dg(y,j) <1}. It is clear that |X|,|Y| > 2. Thus, we
consider two cases.

n
R

Case 1. min {|X|, Y]} <
5. Let k € X such that it is different from x and we define 0y,

We assume that | X| <
then

IMGolE = > (M&ow(v))”

ev

ME(R) + (M) + Y (MEo())
veV\{z,k}

Il
&

since Mgék( ) > W for each v € V, so we get

. P 1 n—2

MGl > |ME], > ¢p(1) T xp T em)
> 1o, 1 n-2
BRZOREI ORI

> MG,

which completes the proof of case 1.

Case 2. min {|X|, Y[} > 5.
It is easy to see that X NY # @. Let k € X NY and define g, then

MGl = (MESR()" + (MEow(@))" + (M) + > (MEo(v))"
veV\{z,y,k}
1 1 1 n—3

= o) T xy T T em)
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Clearly | X|,|Y| <n—1, so

. o 1 2 n—3
1Ml = 1Mol = 5y * 51y T o)

> MG,

Theorem 3.4. G ~ G if and only if HMgHg = HMg1 13-

Proof. G ~ G} = HMng = HMZ1 ||p is trivial. Now suppose that G = GL and hence
n > 3 then 3 © # y in V such that dg(z),dg(y) > 1. Suppose that || f||; < 1, for every
function f : V' — R then, either Mgf( ) = DL o Mgf(j) < m. Take the set

¢(1)
X = {j eV :MSLf(j) = g;gjg} then we have

IMESIE = 3 (MEFG )+Z(M§f )’

jex JEX
< ME£(3) =
j;(( ¢ ) J%( + 1)
If z,y € X, then
M fl; < (1) + (2)
If z ¢ X, then since X # (), we have
b eup 1 1 n—2
Welle = Gm * wacm+1 T o0
< 1 n 1 n—2
TooP(l)  9P(3)  P(2)

Similarly case when y & X. So

1 n—2 1 1 n—2
IMEE < s { s + oy 5y * ) < P

which completes our arguments. ([l

If we put ¢(t) = t and m = n—1 in the result of Proposition 3.1, then we get the expres-
sion (1.3). Moreover, if we put ¢(¢) = ¢ in the results of Theorems 3.2, 3.3 and 3.4 then
we get the same results as proved in [2], which shows that this work is a generalization of [2].
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