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On second-order linear recurrent homogeneous
differential equations with period &

Julius Fergy Tiongson Rabago™

Abstract

We say that w(z): R — C is a solution to a second-order linear re-
current homogeneous differential equation with period k (k € N), if it
satisfies a homogeneous differential equation of the form

w® (z) = pw™(2) + qu(z), Vz€R,

where p, ¢ € R* and w*)(z) is the k" derivative of w(z) with respect
to z. On the other hand, w(x) is a solution to an odd second-order
linear recurrent homogeneous differential equation with period k if it
satisfies
W (z) = —pw® (z) + qu(z), Vz eR.

In the present paper, we give some properties of the solutions of dif-
ferential equations of these types. We also show that if w(zx) is the
general solution to a second-order linear recurrent homogeneous differ-
ential equation with period k (resp. odd second-order linear recurrent
homogeneous differential equation with period k), then the limit of the
quotient w FY*) () /w™ () as n tends to infinity exists and is equal
to the positive (resp. negative) dominant root of the quadratic equation
2? —px —q = 0 as x increases (resp. decreases) without bound.

Keywords: Homogenous differential equations, second-order linear recurrence
sequences, solutions.

2000 AMS Classification: Primary: 34 B 05, 11 B 37. Secondary: 11 B 39.

Received 22 : 07 : 2013 : Accepted 05: 10 : 2013 Doi : 10.15672/HJIMS.2014437531

*Institute of Mathematics, College of Science, University of the Philippines Diliman, Quezon
City 1101, PHILIPPINES

fDepartment of Mathematics and Computer Science, College of Science, University of the
Philippines Baguio, Governor Pack Road, Baguio City 2600, PHILIPPINES
Email: jtrabago@upd.edu.ph, jfrabago@gmail.com



1. Introduction

Problems involving Fibonacci numbers and its various generalizations have been ex-
tensively studied by many authors. Its beauty and applications have been greatly appreci-
ated since its introduction. In 1965, a certain generalization of the sequence of Fibonacci
numbers was introduced by A. F. Horadam in [1], which is called as a second-order linear
recurrence sequence and is now known as Horadam sequence. Properties of these type
of sequences have also been studied by Horadam in [1]. In [2], J. S. Han, H. S. Kim,
and J. Neggers studied a Fibonacci norm of positive integers. These authors [3] have
also studied Fibonacci sequences in groupoids and introduced the concept of Fibonacci
functions in [4]. They developed the notion of this type of functions using the concept
of f-even and f-odd functions. Later on, a certain generalization of Fibonacci function
has been investigated by B. Sroysang in [5]. In particular, Sroysang defined a function
f(x): R — R as a Fibonacci function of period k, (k € N) if it satisfies the equation
flz+2k) = f(z + k) + f(z) for all z € R. Recently, the notion of Fibonacci function
has been further generalized by the author in [6]. The concept of second-order linear
recurrent functions with period k& which has been introduced by the author in [6] gave
rise to the concept of Pell and Jacobsthal functions with period k, which are analogues of
Fibonacci functions. Some elementary properties of these newly defined functions were
also presented by the author in [6]. Now, inspired by these results, we present in this
work the concept of second-order (resp. odd second-order) linear recurrent homogeneous
differential equations with period k, or simply SOLRHDE-k (resp. oSOLRHDE-k), and
study some of its properties.

The next section, which discusses our main results, is organized as follows. First, we
present some elementary results on second-order (and odd second-order) linear recurrent
homogeneous differential equation with period k, and then provide the form of its general
solution. Afterwards, we investigate the quotient w Y% () /1™ (), where w(z) is the
general solution to a SOLRHDE-k (or an oSOLRHDE-k), and find its limit as n tends to
infinity. Each of our results is accompanied by an example for validation and illustration.

2. Main Results
We start-off this section with the following definition.

2.1. Definition. Let k € N, p,¢ € R* and w: R — C be differentiable on R infinitely
many times. We say that w(z) is a solution to a SOLRHDE-f if it satisfies a differential
equation of the form given by

(21)  w® (@) = pu® (@) + qu(a),

for all z € R, where w® (z) is the k" derivative of w(x) with respect to z. If (p,q) =
(1,1),(1,2),(2,1), then w is a solution to a Fibonacci-like, Jacobsthal-like, and Pell-like
homogeneous differential equation with period k, respectively.

2.2. Example. Let p,qg € RT and 0 # ¢t € R. Define w(x) = a*®, where a > 0. Suppose
that w(z) is a solution to a SOLRHDE-k then (¢1na)?**a'® = p(tIna)*a*® + ga’®. Hence,
r? — pr — g = 0 where r = (tIna)*. Solving for r, we have r = (p £ \/p? + 4¢)/2. So,

a = exp (t7'@Y*), where @1 = (p £ 37 +49)/2. Thus, w(x) = Aexp (a'/*z) +
Bexp (ﬁl/kx), where « = &4 and = ®_ and, A, B are any arbitrary real numbers. If

we set k = 1, and w(0) = 0 and w'(0) = 1, then we get A+ B = 0 and a4 + 3B = 1.
Here we obtain,

2.2)  w(z) = — (o — ™).




Thus, (2.2) is a solution to a SOLRHDE-k, with £k = 1 and initial boundary conditions
w(0) = 0 and w’(0) = 1. Using the identity e* = >"°° (X™/nl), we can express (2.2) in
terms of power series, i.e. we have
e _ eﬂx o a® — ,Bn " e W, "
w(@:w:%(aﬁ =

where W, is the number sequence obtained from the recurrence relation given by
(2.3) Wo=0, Wi=1, Wnpy1 =pW,+qWn_1, VneN.
We note that a + 8 = p,a — 8 = \/;zm7 and aff = —q. Hence, for some particular
values of p and ¢, we have the following examples.
(1) For (p,q) = (1,1), the function defined by

f(z) = % (e¢” - e(lfo;)z) -y %xn7

where ¢ is the golden ratio and F, is the n** Fibonacci number, is a solution to
a Fibonacci-like homogeneous differential equation. By letting z = 1, we obtain
the identity

n=0

i F, . e? —el™?
—~ n! N

(2) For (p,q) = (1,2), the function defined by

oo

. x —x J’n n
](1’)25(62 —€ ):ZEI7

n=0

where J,, is the nt" Jacobsthal number, is a solution to a Jacobsthal-like homo-
geneous differential equation. By letting x = 1, we obtain the identity

oo

Jn e? —e !
ZH: 3

n=0

(3) For (p,q) = (2,1), the function defined by

1 (az (2*0’)1) G P, n
)= —— (e’ —e = E —z",
p(z) 22 n!

n=0

where o is the silver ratio and P, is the nt® Pell number, is a solution to a
Pell-like homogeneous differential equation. By letting z = 1, we obtain the

identity
io: & _ eo _ 6270
“— nl 22

2.3. Proposition. Let k € N, p,q,€ R and w(z) be a solution to the differential
equation (2.1). If gm(x):= w™ (z), then g(z) is also a solution to (2.1).

Proof. Let k € N and p,q, € RT. Suppose gm(x) = w(’")(m) where w(z) is a solution to
(2.1). Then,
2k (m) m (k) m
PO ol N ) BT e
" dx2k dx™ dxm™

proving the proposition. O

=pg¥ (z) + qgm (),




2.4. Example. Let j(z) = eDY" where k € N. It can be verified easily that j(z) =
(D% — oFim is o solution to a Jacobsthal-like homogeneous differential equation with
period 2, i.e.

j(4) (z) = e = et 4 9t = " (x) +2j(x), VzeR.

Now, define g(z) = +ie™™®. We show that g(z) is also a solution to a Jacobsthal-like
homogeneous differential equation with period 2, i.e.

¢P(x) = ¢’ (z) + 29(z), VxR
‘We note that,

g (@)= -, ¢'(z) = FieT™, ¢"(x) =", ¢W(x) = +iet".
Hence,

gV (z) = £iet™ = Fiet™ + 24+ e = ¢ (z) + 29(x).

We can also show this via Proposition (2.3). Since g(z) = j'(z), and j(z) is a solution
to a Jacosthal-like homogeneous differential equation with period 2, then so is g(z) by
Proposition (2.3).

2.5. Proposition. Let k € N, p,q,€ R" and, g(z) and h(z) be any two solutions
of the differential equation (2.1). Then, any linear combination of g(x) and h(zx), say
w(z) = Ag(x) + Bh(z) where A, B € R, is again a solution to (2.1).

Proof. The proof is straightforward. Let k € N, p, ¢, € R", and g(z) and h(z) be any two
solutions to the differential equation (2.1). Consider the function w(z) = Ag(x)+ Bh(z)
where A, B € R. Then,

w® (z) = Ag®M (z) + Bh®M (x)
= [49® (@) + BLY (@)] + 4 [Ag(w) + Bh()]
= pu®(2) + qu(a).
This proves the proposition. O

2.6. Example. Let j(z) = eV Shere k € N. It can be verified diretly that

the function j(z) = oD e, where t € {—1,(1 & 1/3i)/2}, is a solution to a
Jacobsthal-like homogeneous differential equation with period 3, i.e.

24)  j9%) =j""()+2j(x), VreR,
Define w(z) = Ae”® + Bez (V)i yhere A, B € R. Then,
w(ﬁ)(:r) — Ae " +Be%(1i\/§)m
=- [A(fz + Be%(liﬂi)z} +2 [Aeiz + Be%(liﬁi)z]
=w""(z) + 2w(z).

In fact, this can also be shown using Proposition (2.5). Since g(z) = e™® and h(z) =
exp(3(1 £ V/3)iz) are solutions of (2.4), then the function defined by w(z) = Ag(z) +
Bh(z), where A, B € R, is also a solution to (2.4) by Proposition (2.5).

2.7. Theorem. Let k € N, p,q, € RT and w(z) be a solution to the differential equation
(2.1). Furthermore, let {Wy}nro be a number sequence obtained from a second-order
linear recurrence relation defined by (2.3). Then,

25) w™(z) = Wow® (z) + ¢Wn_1w(z), VzeR, neNl.



Proof. We prove this using induction on n. Let k € N, p,q € R", and w(z) be a solution
to the differential equation (2.1). Then,

w® (@) = (™ (@) + ¢(0)w(z) = Wrw™ (z) + Wow(z),
w® (@) = pw'® (@) + g(Vw(z) = Waw™ (2) + gWrw(2),
dk:
W) = 7 (@) = pu a) + qu (@)
=p [p® (@) + qu(@)] + g0 ()
= (0" + 9w (@) + gpw(z)
= Wsw'™ (z) + ¢Waw(z).
Now we assume that the following equation is true for some natural number n,
w(nk)(w) = an(k)(x) + qWh—1w(x).
Hence,
(R gy — A [ am] _ (k)
w (z) = s [w ] =% [an () + anflw(ﬂU)}
= an(%)(x) + an_lw(k)(m)
=W, [pw(k)(x) + qw(m)} + qWn_1w™® (z)
= (PWa + qWn1) w™ (z) + gWouw()
= Wow™ (z) + Waw(z).
This proves the theorem. O

2.8. Corollary. Let k € N and f(x) be a solution to a Fibonacci-like differential equation
with period k. If {Fn}n=o is the sequence of Fibonacci numbers, then

F (@) = Fof® () + Fuci f(z), Vo €R, neN.
2.9. Example. Consider the solution f(z) =e V3% 46 a Fibonacci-like differential equa-
tion with period 4 given by the equation

fO@) = V@) + fz), VreR

Furthermore, let {F,,} be the sequence of Fibonacci numbers. By Corollary (2.8), we see
that

FD (@) = @+ VB)e VP = 20e VP 4 eV = By f D (2) + Faf (),
799 (@) = L7+ 3VB)e Y = 3ge VP 42 Y5 = B f (@) 4 Fuf(a)

Similarly, for Jacobsthal-like and Pell-like differential equations with period k we have
the following corollaries.

2.10. Corollary. Let k € N and j(z) be a solution to a Jacobsthal-like differential
equation with period k. If {Jn}olo is the sequence of Jacobsthal numbers, then

i (2) = Joi® (@) + 2J0_17(z), Vz €R, neN.
2.11. Example. Consider the solution j(z) = e~ ® to a Jacobsthal-like differential equa-

tion given by

-1

() =5 (x) + 2j(z), VzeR.



Furthermore, let {J, }n2 be the sequence of Jacobsthal numbers, i.e. {J,} ={0,1,1,3,5,11,21,43,85,171,... }.
By Corollary (2.10), we see that

i) = —e " =43(—e ") + 2(21)e " = Jrj (z) + 265 (),
i® () = e =85(—e ") +2(43)e " = Jsj' () + 2J7j(z),
i) = —e ™" = 171(—e ") + 2(85)e ™" = Joj' () + 2Js7 ().

2.12. Corollary. Let k € N and p(z) be a solution to a Pell-like differential equation
with period k. If {Pn}nzo is the sequence of Pell numbers, then

p"(z) = Pop™ (2) + Po_ip(z), Ve €R, neN.

2.13. Example. Consider the solution p(z) = e V7% {0 a Pell-like differential equation
with period 3 given by the equation
(26)  p@(z)=2p""(x) +p(x), VzeR

Furthermore, let { P, }52( be the sequence of Pell numbers, i.e. {P,} ={0,1,2,5,12,29,...}.
By Corollary (2.12), we see that

p(9>(ac) =(7T+ 5\/5)6%1 = 5oe Vo + 2e Voo _ Psp""'(z) + Pap(z),
P12 (@) = (17 + 12v2)e V7% = 120 V7% 4+ 5¢¥7% = Pyp'"' () + Psp(x),
p () = (41 + 29v2)e Vor — 290 V7T 4 12e V7T = Psp"'(z) + Pap(z).

In solving for the solution of equation (2.6), we obtain an approximation of the golden
ratio involving the silver ratio o. In particular, we obtain

¢ ~ 10 (/o sin(27/3) — 1)
This gives us a motivation to obtain a better approximation which is given by
. (2%°.5°5 - 315611

Looking at this approximation, it might be interesting to get a better approximation of
¢ in terms of o by altering the coefficient of 7 inside the sine function.

2.14. Corollary. Let k=1, p,q,€ RT and w(z) = e™® be a solution to (2.1). Further-
more, let {Wy}nlo be a number sequence obtained from (2.3). Then,

2.7 o"=aWn+qWn_1, VneN

Furthermore, if {Fn},{Jn}, and {P,} are the sequence of Fibonacci, Jacobsthal and Pell
numbers, respectively, then

(2.8) ¢" = ¢Fn + Fo_1, VneN,
(29) 2" '=J,4+J.1, VneN,
(2.10) o" =20P,+ P,_1, VneN,

where ¢ and o are the golden and silver ratio, respectively.

Proof. We note that w(z) = e*® is a solution to equation (2.1) with period k = 1. So,
by Theorem (2.7), we have

a"e™ = aW,e™ + qW,_1e*7,

proving equation (2.7). By letting (p,q) = (1,1), (1,2),(2,1), we obtain equations (2.8),
(2.9), and (2.10), respectively. O



In the following discussion, we study differential equations of the form
2.11)  w®(2) = —pw™ + qu(z), Vz €R,

where k € N and p, ¢ € RT. We call such equation as an odd second-order linear recurrent
homogeneous differential equation with period k, or simply, oSOLRHDE-k.

Solving equation (2.11) we obtain the solution

1/k 1/k
w(z) = ae® T 4 pe? T

where ¢, = COS(%) + isin (%), n=0,1,...,k—1, and a,b € R. If (p,q, k) =
(1,1,1), then we see that f(z) = e~ %" is a solution to the following differential equation

w'(z) = —w'(z) + w(z), VreR.

Similarly, for (p,q,k) = (1,2,1),(2,1,1), we see that the functions j(z) = ¢ ** and

p(x) = e~ 7% are solutions to the differential equations
jl/(x):_j/(x)+2j(x)v vz € R,
p'(z) = =2p'(2) +p(z), VzeR,

respectively. Also, if (p,q, k) = (1,1,3), then the function defined by f(z) = €', where
t € {—¥o, ¥o(1 £+/3i)/2}, is a solution to an odd Fibonacci-like homogeneous differ-
ential equation with period 3. i.e., f(z) = €' is a solution to

212) %)= - () + f(z), VzeR.

2.15. Theorem. Letk € N, p,q, € RT and w(z) be a solution to the differential equation
(2.11). Furthermore, let {W_,}32,, where W—,, = (=1)""'W,, be a number sequence
obtained from a second-order linear recurrence relation defined by

(2.13) Wo=0, W_=1, W_(n+1) = —pW_p +qW_p41, Vn € N.
Then,

(214)  w™(z) = W_,w™ (2) + gW_,1w(z), VzeR, neN.

Proof. We follow the proof of Theorem (2.7). Let k € N, p,q,€ Rt and w(z) be a
solution to the differential equation (2.11). Then,
w® () = (D™ (z + qg(0)w(x :W,1w(k> x) + gWow(x
q q )
0™ (@) = —pu® (@) + g(Dw(z) = W-2w® (@) + gW_100(2),
k
W @) = 15 (6 @) = e @)+ qu® @)
= —p [0 (@) + qu(@)] + qu® (@)
= (0" + 9w (@) + gpu(2)
= W_sw® (z) + ¢W_sw(z).

Now we assume that the following equation is true for some natural number n,

w™ (z) = W_,w™ (@) + W 1w (z).



Hence,
w TP () = ik [w(nk)] = i [W w™® (z) + qW. w(z)
T dzk T dxk -n qW—n+1
= W™ (2) + qW_ni10™® ()
=W_, [—pw(k)(ﬂc) + qw(m)} + qunHw(k)(:c)
= (—pW_n +qW_ni1) w(k)(:v) + gW_rw(x)
= W,(nﬂ)w(k)(x) + gW_pw(z),

proving the theorem. O

2.16. Corollary. Let k € N and f(x) be a solution to an odd Fibonacci-like differential
equation with period k. If {F,}arq is the sequence of Fibonacci numbers then,

f(nk)(w) = F—nf(k)(l’) +F piif(z), VeeR, neN

2.17. Example. Consider the solution f(z) = e Ya/2(4V80e 14 the differential equa-
tion (2.12). By Corollary (2.16), we see that

1 .
f(ls)(x) = _5(11 + 5\/5)6( ¥6/2)(14+V3i)z

= —5¢€( Yé/2)(1+V3Bi)z + —36( ¥3/2)(1+V30)z

— Fsf ¥ (2) + Faf(a).

2.18. Corollary. Let k € N and j(z) be a solution to an odd Jacobsthal-like differential
equation with period k. If {J,}olo is the sequence of Jacobsthal numbers then,

i (@) = J_ni® (@) + 2] n1j(z), Ve e€R, neN.
2.19. Example. Consider the solution j(z) = e~ Y2 46 the odd Jacobsthal-like differ-
ential equation with period 5 given by

i (@) = =P (@) + 2j(z), VzeR.
By Corollary (2.18), we see that

5 5, 5

% (@) = —32e7 V2 = 11(=2¢~ V2*) 4 2(=5)e” Y = J_5i¥ () + 2J_af(2).
2.20. Corollary. Letk € N and p(z) be a solution to an odd Pell-like differential equation
with period k. If {Pn}nzo is the sequence of Pell numbers then,

p"(z) = P_,p™ (2) + P_piip(z), Vo €R, neN.

2.21. Theorem. Let k €N, p,q € RT, and consider the SOLRHDE-k defined by (2.1).
Then,

k
(2.15) Qwi(z) = Z (c;e® + ;%) , Vz eR,

j=1
where ¢;,¢; € R and, r; and t;, for all j=1,2,...,k are roots of o and 3, respectively,
is the general solution of the given homogeneous differential equation.

Proof. Let {r;}¥_; and {t;}}_, be the set of k*" roots of a and 8, i.e.

rj = |oz\1/]C {cos (L 22%]) + ¢ sin (L 22%])} ,



and

tj = |5|1/k [cos <7et +k27rj) + ¢sin (L 227“)} s

where j = 1,2,...,k, 6, = arg(a) and §; = arg(B). Note that 7,5 and t;, are all

distinct then, {e™%,e™%, ... e} and {17, e2% ..., e'**} are linearly 1ndependent sets
of solutions of the homogeneous linear equation defined in (2.1). Hence, by Proposition
(2.5), conclusion follows. O

2.22. Example. Consider the Jacobsthal-like homogeneous differential equation (2.4)
with period 3. By Theorem (2.21), we have the general solution

192(1+v3i)x -1 ¥201-v3i)e

ng(w)—cle T 4+ coe” + c3e

T Ee " 4 Gpe?(1HVBIT | 5oz (1-VBIe,

Also, if ¢ and o are the golden ratio and silver ratio, respectively, then the general
solution to a Fibonacci-like and Pell-like homogeneous differential equation are given by

k
Qrx(x Z cj eXp (¢ /k Oq;x ) + Z Cj exp ((¢ — 1)1/k®2j+11‘)
j=1

and

k
Qpi(z Zc exp ( /k®2jx) + Zéj exp ((2 - G')l/k@2j+1x) ,
j=1

where O,, = cos (mTr/k) +isin (mn/k) and ¢jr, s € R, for all x € R, respectively.

In the rest of our discussion, we investigate the quotient of solutions of a second-order
linear recurrent homogeneous differential equation with period k.

2.23. Theorem. Let p,q € RT and k € N be the period of a SOLRHDE-k defined in
w{(PHDF) (g

(2.1) and let w(z) be its general solution. Then, the limit lim, moTE exists and
is given by

DR (g
(2.16) nh_>n;o @) =a (resp. B), as x — oo (resp. z — —0),

where a and B are the roots of the quadratic equation x> — px —q = 0. Particularly,
if f(x),j(x), and p(z) are solutions to a Fibonacci-like, Jacobsthal-like, and Pell-like
homogeneous differential equation with period k, respectively, then

f((nJrl)k)( )

(2.17)  lim =¢ (resp. 1 —¢), as z — oo (resp. x — —00)

<<n+1)k)(m)
(2.18) lim ——————+ =2 (resp. — 1), as = — oo (resp.x — —o0)
n—o0 ](”)(1‘)
(219) tim 2@ o ) ( )
2.19 im =o (resp.1—0), as x— oo (resp.x — —00).
n— oo p(")(x)
Proof. Let k,n € N, p,q € R", and consider the quotient Q(z): = Wf();;), where

w(z) = w'™ (z) satisfies a SOLRHDE-k. We suppose & — co. The case when z — —oo
can be proven in a similar fashion.

We consider two cases: (i) Q(z) < 0, and (ii) Q(z) > 0.



CASE 1. Suppose that Q(z) < 0. Hence, we can assume without loss of generality
(WLOG) that w(z) > 0 and w™® (z) < 0. By assumption, w(x) satisifes (2.1), so we have

W (z) = —pw® (z) + qu(x),
W (@) = pu® (@) — qu (@) = p(~—pu™ () + qu(z)) — g™ ()
=" + 9w (@) + pqu(w),

o (@) = pu™ (z) + qu (2)

= pw + qw
=p(—(p" + Quw™ (z) + puw(x)) + q(—pw™ (z) + qu(z))

= —(* + 2pq)w (z) + ¢(p* + @)™ (z),

w™ (2) = = Wow™ (2) + W_1w(z), VneN,

where W, is the number sequence satisfying equation (2.3). We let w(z) = w™(z).
Hence, by Proposition (2.3), w(z) is also a solution to (2.1). It follows that

o) 1 () W) 4 gt
w(z) w("k>(ac) dxk —Wow®) (x) + ¢Wh—1w(zx)
w® () L + qu(z)
_w(k)(x)—f—qw( ) o=t
So we have
W@ —e® (@) 4 qu(e)
lim = lim W
n—oo w(;r; n— oo —w(k)(l’)—‘rq’u)( ) ‘;‘;nl

fwm(x) (limn%oo W"“) + qu(z)

—w®) (@) + qu(e) (limne 5=t

Since 8 = (p — /P> +4¢)/2 € (—1,0), then lim, o 8" = 0. Thus,

(k) —aw™
- (z) __—ow (z) 4+ qu(z) — o < oo,
n—oo w(x) —w®) (z) + a~tqw(z)
because lim,— o0 WV'{;:I = limy— o0 "‘7137:/53:“ =aand a > .

CASE 2. Suppose (WLOG) that w(z) and w™® (z) are both positive. By Proposition
(2.3), w(z) = w™) (2) is also a solution to (2.1). Hence,
(k) (n+1)k) (k)
L@ @@ W w® (@) + W)
n—oo W 1:) n—o00 w(’ﬂk)( ) n—o00 an(k)(q;) + an71w(m)
w® () L + qu(z)

lim W
PR w0 (@) + quie) Tt

w® () (limnaoo W"“) + qu(zx)
W) (@) + qu(e) (limg oo =t )
= .

By letting (p,q) = (1,1),(1,2),(2,1), we obtain equations (2.17), (2.18), and (2.19),
respectively. This completes the proof of the theorem. O




We also have the following theorem for oSOLRHDE-£.

2.24. Theorem. Let p,q € RT and k € N be the period of an 0SOLRHDE-k defined
by (2.11) and let w(x) be its solutions. Then, the limit limp— oo %))(1;))(@ exists and is
given by

(2.20)  lim w0 (@)

Jim W —B (resp. — ), as x — oo (resp. x — —0o0),

where a and B are the roots of the quadratic equation z* — px — g = 0. Particularly, if
f(z),j(x), and p(x) are solutions to an odd Fibonacci-like, odd Jacobsthal-like, and odd
Pell-like homogeneous differential equation with period k, respectively, then

f<<n+1)k)( )

nILH;o Fol () —(1—¢) (resp. — ), as = — oo (resp. x — —00)
((”+1)k)

nl;n;o ](")(x)(x) =1 (resp. —2), as x— oo (resp.x — —o0)
((n+1)k)

lim 7(30) =—(1—-o0)(resp. —0o), as = — oo (resp.x — —o0).

The proof of the above theorem follows the same argument as in the proof of Theorem
(2.23), so we omit it.
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