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FG-morphisms and FG-extensions

Ceren Sultan ELMALI∗ and Tamer UGUR†

Abstract

We investigate the relations between Fan-Gottesman compactification
and categories. We deal with maps having an extension to a homeomor-
phism between the Fan-Gottesman compactification of their domains
and ranges.
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The first section of this paper contains some preliminaries about categories. Category
theory provides the language and mathematical foundations for discussing properties of
large classes of mathematical objects such as the class of all sets or all groups while
circumventing problems such as Russell’s paradox. In fact S.Eilenberg and S. MacLane
[10,11] give a lot of informations about categories and functors. Category theory has
also played a foundational role for formalizing new concepts such as schemes which are
fundamental to major areas of contemporary research. Pioneering work of this nature
was done by A.Grothendieck [7], K. Morita [12,13,14,15] and others.

The second section of this paper contains some preliminaries about the Fan-Gottesman
compactification. In 1952, Ky Fan and Noel Gottesman defined a compactification that is
similar to the Wallman compactification, introduced by Henry Wallman in 1938 [17], and
afterwards called Fan-Gottesman compactification of regular spaces with a normal base
[5]. We investigated the relations between the Fan-Gottesman and Wallman compactifi-
cation and showed that Fan-Gottesman compactification of some specific and interesting
spaces such as normal A2 and T4 is Wallman-type compactification [4]. In this section we
show that Fan-Gottesman compactification can be obtained via base consisting of open
ultrafilters.
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In [9], Herrlich has stated that it is of interest to determine if the Wallman compacti-
fication may be regarded as a functor, especially as an epireflection functor, on a suitable
category of spaces. This problem was solved affirmatively by Harris in [8].

In [3], Belaid and Echi characterize when Wallman extensions of maps are homeomor-
phisms.

The third section of this paper, we define FG−morphism and FG−extension. Let
X,Y be two T3 spaces and q : X→Y a continuous map. An FG−extension of q is a
continuous map F (q) : FX→FY such that F (q) ◦ fX = fY ◦ q, where FX is the Fan-
Gottesman compactification of X and fX : X→FX is the canonical embedding of X
into its Fan-Gottesman compactification FX. We will characterize when Fan-Gottesman
extensions of maps are homeomorphisms.

1. Categories
A category C consist of a certain collection of object Ob(C) and for any two object

b, c ∈ Ob(C), there is a set morph(b, c) of morphism (function) between b and c. This
collection may be empty, but an identity morphism 1b must be contained in morph(b, b).
Furthermore if there are morphism morph(b, c) and morphism morph(a, b), then their
composition must be in morph(a, c). Given two categories C and D, then a map can be
defined between these, the so called functor, F : C→D. A functor send object of C to
object of D and morphism in C to morphism in D subject to certain condition. Further-
more, it is possible to define maps between functors, the so called natural transformation
[11].

One usually requires the morphisms to preserve the mathematical structure of the
objects. So if the objects are all groups, a good choice for a morphism would be a group
homomorphism. Similarly, for vector spaces, one would choose linear maps, and for
differentiable manifolds, one would choose differentiable maps.

In the category of topological spaces, morphisms are usually continuous maps between
topological spaces. However, there are also other category structures having topological
spaces as objects, but they are not nearly as important as the "standard" category of
topological spaces and continuous maps.

We denote by Top the category of topological spaces with continuous maps as mor-
phisms, and by Topi the full subcategory of Top whose objects are the Ti spaces. There
are several ways to generalize the usual separation properties T0, T1, T2, T3 and T4 of
topology to topological categories [1,2]. All the above categories are full reflective sub-
categories of Top. There is a universal Ti -space for every topological space X, we denote
it by Ti(X). The assignment X→Ti(X) defines a functor Ti from Top onto Topi, which
is a left adjoint functor of the inclusion functor Topi → Top.

It is recalled that a continuous map q : Y → Z is said to be a quasihomeomorphism,
if U → q−1 (U) defines a bijection O (Z)→ O (Y ) [7], where O (Y ) is the set of all open
subsets of the space Y. If Z is T2 space and, q is not onto, thus q is not a quasihomeo-
morphism. As showed by the open sets Z, Z\{z} for some z ∈ Z. On the other hand,
if Z is R, with open sets {(−∞, c) : c ∈ (−∞,∞]} and Y is its subspace Q, then the
embedding is a quasihomeomorphism. A subset S of a topological space X is said to be
strongly dense in X, if S meets every nonempty locally closed subset of X [9]. In here,
locally closed means that every point x of S has a neighbourhood such that Vx ∩ S is
a closed subset of Vx. In other words, S is locally closed if and only if S = O ∩ F for
some open subset O of X and some closed subset F of X. In addition, one most evident
definition is equivalent to closedness. Thus, a subset S of X is strongly dense if and only
if the canonical injection S→X is a quasihomeomorphism. Besides, a continuous map



q : X→Y is a quasihomeomorphism if and only if the topology of X is the inverse image
of Y by q and the subset q(X) is strongly dense in Y [7].

It is known that T0 -identification of a topological space is done by Stone [17].
Now, we will construct T3 reflection for X in Top. Firstly, we construct regular reflec-

tion by taking the supremum of all regular topologies which are coarser than the topology
of X. This is a bireflection in Top, in other words, the underlying set stays the same.
Then, apply it to the T0− reflection. We get a space which is regular and T0, hence
regular and T1. The composite of the two reflection is T3-reflection.

Let X be a topological space and define ∼ on X by x ∼ y if and only if clX {x} =
clX {y} . Then, ∼ is an equivalence relation on X and the resulting quotient space X/ ∼ is
T0-space. This procedure and the space it produces are referred to as the T0-identification
of X. Clearly T0 (X) = X� ∼. T0 (X) is called T0− reflection. The canonical onto map
from X onto its T0- identification T0 (X) will be denoted by µX . It is clear that µX is
an onto quasihomeomorphism. If q : X → Y is a continuous map,

then the diagram is commutative. T0 defines a (covariant) functor from Top to itself.
Thus, we get a space which is regular and T0, hence regular and T1. The composite of
the two reflections is T3−reflection.

2. Fan-Gottesman Compactification
A compactification of a topological spaceX is a compact Hausdorff space Y containing

X as a subspace such that clYX = Y. In addition there are a lot of compactification
methods applying different topological space such as Aleksandrov (one-point), Wallman,
Stone-Cech. But, we study with Fan-Gottesman compactification.

Let β be a class of open sets in X. If it satisfies the following three conditions, it is
called a normal base.

(1) β is closed under finite intersections
(2) If B ∈ β, then X − clXB ∈ β, where clXB denotes the closure of B in X.
(3) For every open set U in X and every B ∈ β such that clXB ⊂ U , there exists a

set D ∈ β such that clXB ⊂ D ⊂ clXD ⊂ U .
We consider a regular space having a normal base for open sets i.e., which satisfies

the above three properties of normal base. A chain family on β is a non-empty family
of sets of β such that

clXB1 ∩ clXB2 ∩ ... ∩ clXBn 6= ∅

for any finite number of sets Bi of the family. Every chain family on β is contained in
at least one maximal chain family on β by Zorn’s lemma. Maximal chain families on β
will be denoted by letters as a∗, b∗, ..., and also the set of all maximal chain families on
β will be denoted by (X,β)∗. Whose topology is defined as follow. For each B ∈ β, let

τ (B) = {b∗ ∈ (X,β)∗ : there exists a A ∈ b∗ with clXB ⊂ A}



Then, the topology of (X,β)∗ is defined by taking

β∗ = {τ (B) : B ∈ β}

as a base of open sets. (X,β)∗ is a compact Hausdorff space and is a compactification of
our regular space. Afterwards this compactification is called Fan-Gottesman compactifi-
cation [6].

Now, we determine the Fan-Gottesman compactification via open ultrafilters.

2.1. Definition. Let X be a T3 space and FX the subcollection of all maximal ultrafilter
of closed subsets on X. For each open set O ⊂ X, define O∗ ⊂ FX to be the set

O∗ =
{
Ĝ ∈ FX : Ĝ consists of clXO

}
Let Φ be the family of O∗. It is clear that Φ is the base for open sets of topology on
FX. FX is a compact space and it is called the Fan-Gottesman compactifications of X.

In order to avoid the confusion between FX and (X,β)∗, we will use FX when it
regarded as Fan-Gottesman compactification of X.

On the other hand, for each closed set D ⊂ X, we define D∗ ⊂ FX by D∗ ={
Ĝ ∈ FX : Ĝ consists of G ⊆ D for some G

}
. The following properties of FX are use-

ful;
(i) If U ⊂ X is open, then FX − U∗ = (FX − U)∗

(ii) If D ⊂ X is closed, then FX −D∗ = (FX −D)∗

(iii) If U1 and U2 are open in X, then (U1 ∩ U2)∗ = U∗
1 ∩U∗

2 and (U1 ∪ U2)∗ = U∗
1 ∪U∗

2

Properties We consider the map fX : X → FX defined by fX (x) = Ĝx, the closed
ultrafilter converging to x in X. In order to avoid the confusing between Ĝx and Ĝ, we
will use Ĝx when it regarded as the maximal filter of closures of open sets containing x.
Then the following properties hold.

(1) If U is open in X, then fX (U) = U∗. In particular fX (X) is dense in FX.
(2) fX is continuous and it is an embedding of X in FX if and only if X is a

T3−space.
(3) If U1and U2 are open subsets of X, then fX (U1 ∩ U2) = fX (U1) ∩ fX (U2).
(4) FX is a compact T2−space .

For a T3 space, we define FGX = F (X) and we call it the Fan-Gottesman compact-
ification of X. The notation FX is reserved only for T3 spaces so that it is better to
use some other notation for topological spaces. The same for fX : fX is reserved for
topological space; for T3 space, we define FX = fX ◦ µx where µx is the canonical onto
map from X onto its T3 − reflection, T3 (X) .

Since µx is an onto quasihomeomorphism, one obtains immediately that FGX can be
described exactly as FX for T3 space. The above properties are also true for a T3 space.

2.2. Remark. Let X be a T3 space. Then, the following properties hold:

(1) For each open subset U of X, we have FX (U) ⊆ U∗

(2) For each closed subset C of X, we have FX (C) ⊆ C∗

(3) Let U be open and C closed in a T3 space. Then, U ∩ C 6= ∅ if and only if
U∗ ∩ C∗ 6= ∅

2.3. Proposition. Let X be a T3 space and

(1) U be an open subset of X. If U is compact, then U∗ = FX (U) .
(2) V be a closed subset of X. If V is compact, then V ∗ = FX (V ) .



Proof. Suppose that V is closed in X. We have FX (V ) ⊆ V ∗ from Remark 1. If Ĝ ∈ V ∗,

then there exists G ∈ Ĝ such that G ⊆ V. Then V − G is compact by compactness of
V. Thus ∩

{
H ∩ (V −G) : H ∈ Ĝ

}
6= ∅. If x ∈ ∩

{
H ∩ (V −G) : H ∈ Ĝ

}
, then Ĝ =

FX (x) . Hence, Ĝ ∈ FX (V ) . Thus, V ∗ ⊆ FX (V ) . Therefore, V ∗ = FX (V ) .

Now, suppose that U is open inX. Let Ĝ ∈ U∗. Thus, U ∈ Ĝ. Since, ∩
{
H : H ∈ Ĝ

}
6=

∅, we take an x ∈ ∩
{
H : H ∈ Ĝ

}
. It is seen that Ĝ = FX (x) . Therefore, according to

Remark 1, U∗ = FX (U) . �

3. FG-morphisms and FG -extensions
Recall from [3] that a subset S of a topological space X is said to be sufficiently

dense if S meets each nonempty closed subset and each nonempty open subset of X. By
an almost -homeomorphism (α-homeomorphism, for short), we mean a continuous map
q : X → Y such that q (X) is sufficiently dense in Y and the topology of X is the inverse
image of Y by q.

3.1. Definition. i) A subset C of a topological space is said to be openly dense if C
meets each nonemty open subset of X.

Thus we have the following implications:
Strongly dense⇒Sufficiently dense ⇒openly dense

⇓
Dense

3.2. Definition. By a Fan-Gottesman morphism (FG-morphism, for short), we mean
a continuous map q : X → Y such that q (X) is openly dense in Y and the topology of
X is the inverse image of Y by q.We conclude that

homeomorphism ⇒quasihomeomorphism ⇒ α-homeomorphism ⇒ FG-morphism

3.3. Theorem.
(1) The composition of two FG-morphisms is an FG-morphism.
(2) If q : X → Y is an FG-morphism and X is T0, then q is injective.
(3) If q : X → Y is an FG-morphism and Y is T1, then q is an onto homeomor-

phism.
(4) If q : X → Y is an FG-morphism, X is T0 and Y is T1, q is a homeomorphism.

Proof. We show that (1). Let p : X → Y and q : Y → Z be two FG-morphisms. Clearly,
the topology of X is the inverse image of Z by q ◦ p. Let A be open subset of Z. Since
q−1 (A) is open in Y, the p (x) ∩ q−1 (A) 6= ∅, so that A ∩ q (p (X)) 6= ∅. Hence, q ◦ p is
an FG-morphism.

(2) Let x1, x2 be two points of X with q (x1) = q (x2) . Suppose that x1 6= x2. Then,
there exists an open subset U of X such that x1 ∈ U, x2 /∈ U, since X is T0. Because there
exists an open subset H of Y satisfying q−1 (H) = U, we get q (x1) ∈ H and q (x2) /∈ H,
which is impossible. It follows that q is injective.

(3) Let y ∈ Y . Then, {y} is a locally closed subset of Y. Hence, {y}∩ q (X) 6= ∅, since
q (X) is strongly dense in Y. Thus, y ∈ q (X) , hence q is an onto map.

(4) It is clear that q is homeomorphism from (2) and (3). �

Now, we define FG-extensions.

3.4. Definition. A continuous map q : X → Y between T3 spaces is said to be an FG-
extension, if there is a continuous map F (q) : FX → FY such that fY ◦ q = F (q) ◦ fX .



3.5. Theorem. Let X,Y be two T3 spaces and q : X → Y an FG-morphism. Then, q
has an FG-extension which is a homeomorphism.

Proof. We remark that diagram in the introduction commutes. Hence, T3 (q)◦µx = µy◦q.
Thus, T3 (q) ◦ µx is an FG-morphism. Now, T3 (q) is an FG-morphism from Proposi-
tion 2.1, since µx is a quasihomeomorphism. Therefore, T3 (q) is a homeomorphism by
Proposition 2.1. It follows that T3 (q) has a canonical FG-extension F (T3 (q)) which
is a homeomorphism. Thus, the diagram commutes. If we denote FG (q) = F (T3 (q)),
then the diagram indicates clearly that FG (q) is an FG-extension of q which is a home-
omorphism.

�

It is known that if X is a T4 space, then FGX = wX = β (X) (the Wallman and
Stone-Čech compactification, respectively)[4].

3.6. Corollary. If T3 (X) is a T4 space, then FGX = w (T3 (q)) = β (T3 (q)) .

3.7. Definition. Let X be a T3 space and Y a subspace of X.

(1) Y is called a Fan-Gottesman generator (FG−generator) of X, if FGY is home-
omorphic to FGX.

(2) Y is called a strong Fan-Gottesman generator (sFG-generator) of X, if the
canonical embedding i : Y → X has an FG-extension FG (i) which is a home-
omorphism.

Clearly, sFG-generator⇒ FG−generator

3.8. Theorem. Let X, Y be two T3 spaces and q : X → Y a continuous map. Then,
the following statements are equivalent:

(1) q has an FG-extension which is a homeomorphism.
(2) q (X) is an sFG-generator of Y and the topology of X is the inverse image of

Y by q.

Proof. (i) ⇒ (ii) Firstly, we show that the topology of X is the inverse image of Y by
q. Let U be an open subset of X. Since FG (q) is a homeomorphism, FG (q) (U∗) = V is
a closed subset of wY. Set G = F−1

y (V ) . We prove that U = q−1 (G) .
(a) Let x ∈ U. Then, FX (x) ∈ FX (U) ⊆ U∗. Hence, FG (q) (FX (x)) ∈ FG (q) (U∗) =

V which gives FY (q (x)) ∈ V. It follows that q (x) ∈ F−1
Y (V ) = G. Therefore, x ∈

q−1 (G) .
(b) Conversely, let x ∈ q−1 (G) . Then, q (x) ∈ G = F−1

X (V ) ; this means that
(FY ◦ q) (x) ∈ V, so that FG (q) (FX (x)) ∈ V = FG (q) (U∗) . Since FG (q) is bijec-
tive, FX (x) ∈ U∗. Hence, x ∈ F−1

X (U∗) = U. We have proved that U = q−1 (G) . In
other words, the topology of X is the inverse image of Y by q.

Secondly, we show that q (X) is an sFG-generator of Y . According to (1), the map
q1 : X → q (X) induced by q is an FG-morphism. Hence, q1 has an FG-extension F (q1)
which is a homeomorphism, by Proposition 2.1. Thus, the diagrams commute.



Let j : q (X)→ Y be the canonical embedding. Clearly, the diagram commutes.
Therefore, j has FG (q) ◦ (FG (q))−1 = Id as an FG-extension which is a homeomor-

phism. This means that q (X) is an sFG generator of Y. (ii)⇒ (i) We assume (ii) . The
map q1 : X → q (X) induced by q is an FG-morphism. Thus, according to Proposition
2.1, q1 has an FG-extension F (q1) which is a homeomorphism. On the other hand, the
canonical embedding j : q (X) → Y has an FG-extension which is a homeomorphism,
by Proposition 2.1. It follows that the two diagrams commute.

Therefore, F (j)◦F (q1) is an FG-extension of q : X → Y which is a homeomorphism.
�

Theorem 3.4 seems us to the following classical fact about the Stone-Ćech compacti-
fication eX : X → βX of a Tychonoff space X .

Consider any continuous mapping p : X → Y, where Y is also Tychonoff. Then, the
map β (p) : βX → βY is a homeomorphism if and only if p is a dense C∗-embedding.

We can mention this analogy in our paper.

3.9. Theorem. If X and Y are Tychonoff spaces, then the following are equivalent for
a map f : X → Y ;

(1) F (f) [FX\X] is contained in FY \Y.
(2) The diagram

is pullback.

Proof. (1) ⇒ (2) Suppose that h : Z → FX and g : Z → Y are mapping such that
F (f) ◦ h = fY ◦ g. Since fY ◦ g [Z] is contained in FY and F (f) sends FX\X into
FY \Y , we have that h [Z] is contained in X. Hence, defining I : Z → X by I (z) = h (z) ,



it is shown that the square is pullback.(2) ⇒ (1) Choose p in FX and assume that
F (f) (p) = y belongs to Y. Then, let h be the map which embeds {p} into FX and g be
the map from the subspace {p} which sends p to F (f) (p) . Then, F (f) ◦ h = fY ◦ g so
that there exist a map I : {p} → X such that h = fx ◦ I. Hence, p belongs to X. �
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