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On Lagrangian submersions
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Abstract
In this paper, we study Riemannian, anti-invariant Riemannian and
Lagrangian submersions. We prove that the horizontal distribution of
a Lagrangian submersion from a Kählerian manifold is integrable. We
also give some applications of this result. Moreover, we investigate the
effect of the submersion to the geometry of its total manifold and its
fibers.
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1. Introduction
The theory of Riemannian submersions was initiated by O’Neill [11]. In [18], the Rie-

mannian submersions were considered between almost Hermitian manifolds by Watson
under the name of almost Hermitian submersions. In this case, the Riemannian sub-
mersion is also an almost complex mapping and consequently the vertical and horizontal
distribution are invariant with respect to the almost complex structure of the total man-
ifold of the submersion. Afterwards, almost Hermitian submersions have been actively
studied between different kind of subclasses of almost Hermitian manifolds, for example,
see [5]. We note that almost Hermitian submersions have been extended to different
kind of subclasses of almost contact manifolds, for example, see [14]. Most of the studies
related to Riemannian or almost Hermitian submersions can be found in the book [4].
The study of anti-invariant Riemannian submersions from almost Hermitian manifolds
were initiated by S. ahin [15]. In this case, the fibres are anti-invariant with respect to the
almost complex structure of the total manifold. A Lagrangian submersion is a special
case of an anti-invariant Riemannian submersion such that the almost complex structure
of the total manifold reverses the vertical and horizontal distributions. In this paper, we
consider Riemannian, anti-invariant Riemannian and Lagrangian submersions. We will
focus Lagrangian submersions from a Kählerian manifold onto a Riemannian manifold
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and prove that the horizontal distribution of such a submersion is integrable and totally
geodesic. Using this result we obtain that such a submersion is a totally geodesic map
if and only if it has totally geodesic fibers. We also obtained other applications of the
result. In the last section, we show that non-existence of a Lagrangian submersion with
totally geodesic fibers from a non-flat Kählerian manifold. We also proved that if the
fibers of a Lagrangian submersion are totally umbilical, then the fibers are minimal.

2. Riemannian submersions
In this section, we give necessary background for Riemannian submersions.

Let (M, g) and (N, gN ) be Riemannian manifolds, where dim(M) > dim(N). A sur-
jective mapping π : (M, g)→ (N, gN ) is called a Riemannian submersion [11] if:

(S1) π has maximal rank, and

(S2) π∗, restricted to (kerπ∗)
⊥, is a linear isometry.

In this case, for each q ∈ N , π−1(q) is a k-dimensional submanifold of M and called
fiber, where k = dim(M)−dim(N). A vector field on M is called vertical (resp. horizon-
tal) if it is always tangent (resp. orthogonal) to fibers. A vector field X on M is called
basic if X is horizontal and π-related to a vector field X∗ on N, i.e., π∗Xp = X∗π(p) for
all p ∈ M. As usual, we denote by V and H the projections on the vertical distribution
kerπ∗ and the horizontal distribution (kerπ∗)

⊥, respectively. The geometry of Riemann-
ian submersions is characterized by O’Neill’s tensors T and A, defined as follows:

(2.1) TEF = V∇VEHF +H∇VEVF,

(2.2) AEF = V∇HEHF +H∇HEVF

for any vector fields E and F on M, where ∇ is the Levi-Civita connection of gM . It is
easy to see that TE and AE are skew-symmetric operators on the tangent bundle of M
reversing the vertical and the horizontal distributions. We summarize the properties of
the tensor fields T and A. Let V,W be vertical and X,Y be horizontal vector fields on
M , then we have

(2.3) TVW = TWV,

(2.4) AXY = −AYX =
1

2
V[X,Y ].

On the other hand, from (2.1) and (2.2), we obtain

(2.5) ∇VW = TVW + V∇VW,

(2.6) ∇VX = TVX +H∇VX,

(2.7) ∇XV = AXV + V∇XV,

(2.8) ∇XY = H∇XY +AXY,

and if X is basic, then H∇VX = AXV. It is not difficult to observe that T acts on the
fibers as the second fundamental form while A acts on the horizontal distribution and
measures of the obstruction to the integrability of this distribution. For details on the
Riemannian submersions, we refer to O’Neill’s paper [11] and to the book [4].



3. Anti-invariant Riemannian submersions
A smooth manifold M is called almost Hermitian [19] if its tangent bundle has an

almost complex structure J and a Riemannian metric g such that

(3.1) g(E,F ) = g(JE, JF )

for any vector fields E and F on M. Let M be a 2m-dimensional almost Hermitian man-
ifold with Hermitian metric g and almost complex structure J , and N be a Riemannian
manifold with Riemannian metric gN . Suppose that there exists a Riemannian submersion
π :M → N such that kerπ∗ is anti-invariant with respect to J, i.e., J(kerπ∗) ⊆ (kerπ∗)

⊥.
Then the Riemannian submersion π is called an anti-invariant Riemannian submersion.
For the details, see [15].

There are some other recent paper which involve other structures such as almost prod-
uct [6], almost contact [9], Sasakian [7] and cosymplectic [8]. In any cases, the definition
of anti-invariant Riemannian submersion is the same as the above definition. Besides
there are many other notions related with that of anti-invariant Riemannian submersion,
such as slant submersion [16] and semi-invariant submersion [17]. The key of this defini-
tions consists on considering the fibres as submanifolds of the almost Hermitian manifold
M having the corresponding property. Because of that, we may consider that the follow-
ing names are more convenient: totally real, instead of anti-invariant, but semi-invariant
(cfr. [17]) of CR-submersion (cfr. e.g. [10]) because definition of a CR-submersion de-
pends on certain CR-submanifold of the total manifold, instead of the fact the fibres are
CR-submanifolds. As one can see, names are quite complex in this field.

An almost Hermitian manifold M is called a Kählerian manifold if

(3.2) (∇EJ)F = 0

for any vector fields E and F on M, where ∇ is the Levi-Civita connection on M. Let
(M, g, J) be a Kählerian manifold. The Riemannian curvature tensor [19] of (M, g, J) is
defined by R(E,F )G = ∇[E,F ]G − [∇E ,∇F ]G for vector fields E,F and G on M . We
put R(E,F,G,K) = g(R(E,F )G,K) where K is a vector field on M . The holomorphic
sectional curvature [19] of M is defined for any unit vector field E tangent to M via

(3.3) H(E) = R(E, JE,E, JE).

We note that a Kählerian manifold with vanishing holomorphic sectional curvature is
flat [19]. The manifold M is called a complex space form if it is of constant holomorphic
sectional curvature. We denote by M(c) a complex space form of constant holomorphic
sectional curvature c. Then the Riemannian curvature tensor R of M(c) is given by

(3.4) R(E,F )G = c
4
{g(F,G)E − g(E,G)F + g(JF,G)JE

−g(JE,G)JF + 2g(E, JF )JG}

for any vector fields E,F and G on M(c) [19]. In this point, we give the following
proposition.

3.1. Proposition. Let π : M(c) → N be a Riemannian submersion from a complex
space form M(c) with c 6= 0 onto a Riemannian manifold N. Then the fibers of M(c) are
invariant or anti-invariant with respect to the almost complex structure J of M(c) if and
only if

(3.5) g((∇UT)VW,X) = g((∇V T)UW,X),

where U, V and W are vertical vector fields and X is a horizontal vector field on M(c).



Proof. Let U, V and W be vertical vector fields and X be a horizontal vector field on
M(c). Then from (3.4), we have

(3.6) R(U, V )W = c
4
{g(V,W )U − g(U,W )V + g(JV,W )JU

−g(JU,W )JV + 2g(U, JV )JW} .

From (14), we see that R(U, V )W is vertical, if the fibers are invariant or anti-invariant
with respect to the almost complex structure J ofM(c). So, we get easily, R(U, V,W,X) =
0. Therefore, (3.5) follows from the following O’Neill curvature formula {1} [11]:

R(U, V,W,X) = g((∇V T)UW,X)− g((∇UT)VW,X).

Conversely, assume that (3.5) holds. Then for U, V and W , it is not difficult to see
that R(U, V )W is vertical from the above O’Neill curvature formula. If we put W = U
in (3.6), then we have

(3.7) R(U, V )U =
c

4
{g(V,U)U − g(U,U)V + g(U, JV )JU}.

Thus, we see that g(U, JV )JU is vertical from (15), since R(U, V )U is vertical. So, we
conclude that either JU is vertical or g(U, JV ) = 0. It means that either J(kerπ∗) ⊆
kerπ∗ or J(kerπ∗) ⊆ (kerπ∗)

⊥, i.e., either the fibers are invariant or anti-invariant with
respect to the almost complex structure J of M(c). �

3.2. Corollary. Let π :M(c)→ N be an anti-invariant Riemannian submersion from a
complex space form M(c) with c 6= 0 onto a Riemannian manifold N. Then the equality
(3.5) holds.

4. Lagrangian submersions
Let M be a 2m-dimensional almost Hermitian manifold with Hermitian metric g

and almost complex structure J , and N be a Riemannian manifold with Riemannian
metric gN and let π : M → N be an anti-invariant Riemannian submersion. Then
we call π a Lagrangian Riemannian submersion or briefly, a Lagrangian submersion,
if dim(kerπ∗) = dim((kerπ∗)

⊥). In this case, the almost complex structure J of M
reverses the vertical and the horizontal distributions, i.e., J(kerπ∗) = (kerπ∗)

⊥ and
J((kerπ∗)

⊥) = kerπ∗.

In Symplectic Geometry, a Lagrangian submersion π : (M,ω)→ N from a symplectic
manifold onto a manifold is a submersion having the fibres Lagrangian submanifolds (see,
e.g. [1]), i.e., ω|π−1(q) = 0.

An almost Hermitian structure (J, g) defines an almost symplectic structure ω(X,Y ) =
g(JX, Y ), and then we can consider compare both definitions. It is easily shown that
they coincide:

4.1. Lemma. Let π : (M,J, g)→ N be a submersion from an almost Hermitian manifold
onto a manifold. Then the following conditions are equivalent:

(1) The fibres of π are Lagrangian submanifolds.
(2) J(kerπ∗) = (kerπ∗)

⊥.
Moreover, the horizontal distribution (kerπ∗)

⊥ is also Lagrangian.

Proof. (1) ⇒ (2). Let X and Y be vertical, that is; X,Y ∈ kerπ∗. Then g(JX, Y ) =
ω(X,Y ) = 0, thus proving (2). Reversing the reasoning, one has the other implication.

�



In order to have a Lagrangian submersion π : (M,J, g) → N dimensions must be re-
lated in the following way: dim(M) = 2dim(N). The most natural examples of manifolds
having this relation are given by the tangent (resp. cotangent) bundle of M = TN → N
(resp. M = T ∗N → N). In the seminal paper [2], Dombrowski introduces the almost
complex structure J on the tangent bundle TN of a manifold N having a linear connec-
tion, which is given by the conditions J(XH) = XV ; J(XV ) = −XH , H and V being
the horizontal and vertical lifts. On the other hand, Sasaki [13] introduced the diagonal
lift gD, or Sasaki metric, over the tangent bundle of a Riemannian manifold (N, g), given
by g(XH , Y H) = g(XV , Y V ) = g(X,Y ); g(XH , Y V ) = 0. Thus, the tangent bundle
(TN, J, gD) of a Riemannian manifold (N, g) is an almost Hermitian manifold. Then one
easily obtains:

4.2. Lemma. With the above notation, π : (TN, J, gD) → (N, g) is a Lagrangian sub-
mersion.

We want to emphasize that the same considerations can be done about the cotangent
bundle.

LetM be a Kählerian manifold with Hermitian metric g and almost complex structure
J , and N be a Riemannian manifold with Riemannian metric gN . Now we examine
how the Kählerian structure on M places restrictions on the tensor fields T and A of a
Lagrangian submersion π :M → N .

4.3. Lemma. Let π : M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then we have

a) TV JE = JTV E b) AXJE = JAXE

where V is a vertical vector field, X is a horizontal vector field, and E is a vector field
on M.

Proof. Using (2.5)-(2.8), we obtain easily both assertions from (3.2). �

We remark that Lemma 4.3 was proved partially in [15].

4.4. Corollary. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then we have

AXJY = −AY JX
where X and Y are any horizontal vector fields on M.

Proof. Let X and Y be any horizontal vector fields on M, from Lemma 4.3-b), we have
AXJY = JAXY. Since the tensor A has the alternation property, we get JAXY =
−JAYX = −AY JX. �

4.1. The Horizontal Distribution. We now prove that the horizontal distribution
(kerπ∗)

⊥ is integrable and totally geodesic. It is well-known that the vertical distribution
kerπ∗ is always integrable.

4.5. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then the horizontal distribution (kerπ∗)

⊥ is integrable
and totally geodesic.

Proof. Let X and Y be any horizontal vector fields on M, since AXY = 1
2
V[X,Y ], it is

sufficient to show that AX = 0. If Z is a horizontal vector field on M, then using (2.4),
(2.8), (3.1), (3.2) and Corollary 4.4, we have



g(AXJY, Z) = −g(AY JX,Z) = −g(∇Y JX,Z) = −g(J∇YX,Z)
= g(∇YX, JZ) = −g(AXY, JZ) = g(AXJZ, Y ) = −g(AZJX, Y )
= g(AZY, JX) = −g(AY Z, JX) = g(AY JX,Z) = −g(AXJY, Z).

Therefore AXJY = 0. By Proposition 2.7-(e) ([18]), we get AX = 0. �

4.2. Applications. In this subsection, we give some applications of Theorem 4.5.

4.6. Corollary. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then we have

(∇π∗)(X, JY ) = (∇π∗)(JX, Y ) = 0,

where X and Y are any horizontal vector fields on M, and ∇π∗ is the second fundamental
form [15] of π.

Proof. It follows immediately from our main result Theorem 4.5, Corollary 3.1([15]) and
Corollary 3.2([15]). �

It is well-known that a differential map π between two Riemannian manifolds is called
totally geodesic if ∇π∗ = 0. Now we give a necessary and sufficient condition for a
Lagrangian submersion to be a totally geodesic map.

4.7. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then π is a totally geodesic map if and only if it has
totally geodesic fibers.

Proof. Let V andW be any vertical vector fields onM, if TV JW = 0, then from Lemma
4.3, we get TVW = 0. On the other hand, from Proposition 2.7-(d)([18]), it follows that
TV = 0, which means that the Lagrangian submersion π has totally geodesic fibers. Thus
the assertion follows from Theorem 4.5 and Theorem 3.4([15]). �

Now, we simply decompose theorems given in [15]. First, we recall the following facts
given in [12].

Let B =M ×N be a Riemannian manifold with metric g. Assume that the canonical
foliations DM and DN intersect perpendicularly everywhere. Then g is the metric tensor
of

(i) a twisted product M ×f N if and only if DM is a totally geodesic foliation and
DN is a totally umbilical foliation,

(ii) a usual product of Riemannian manifolds if and only if DM and DN are totally
geodesic foliations.

Thus, from Theorem 4.5, Theorem 4.2([15]) and Theorem 4.3([15]), we have the fol-
lowing result.

4.8. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then
a) M is a locally twisted product manifold of the form M(kerπ∗)⊥ ×f Nkerπ∗ if and only
if π has totally umbilical fibers,
b) M is a locally product of manifold if and only if π has totally geodesic fibers.



5. The Geometry of Total Manifold and Fibers
In this section, we prove some characterization results for a Lagrangian submersion

from a Kählerian manifold onto a Riemannian manifold.

Let M be a Kählerian manifold with Hermitian metric g and almost complex struc-
ture J and let π : M → N be a Lagrangian submersion from the manifold M onto a
Riemannian manifold N. Since A ≡ 0, the O’Neill’s curvature formula {2} [11] reduces
to

(5.1) R(X,V, Y,W ) = g((∇XT)VW,Y )− g(TVX,TWY ),

where V and W are vertical, and X and Y are horizontal vector fields on M.

5.1. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then the holomorphic sectional curvature H of M
satisfies

a) H(X) = gM ((∇XT)JXJX,X)− ‖TJXX‖2,

b) H(V ) = gM ((∇JV T)V V, JV )− ‖TV V ‖2,

where X is a unit horizontal and V is a unit vertical vector field on M.

Proof. Both assertion a) and assertion b) follow easily from (3.3), (5.1), Lemma 4.3 and
(3.1). �

We know from Proposition 1.2([3]) that if T is parallel, i.e., ∇ET = 0, for any vector
field E on M , then T = 0. Therefore, by Theorem 5.1 we obtain the following result.

5.2. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. If the tensor field T is parallel, then the holomorphic
sectional curvature H of M vanishes. Namely, M is flat.

We remark that Theorem 5.2 describes the geometry of the total manifold of the
Lagrangian submersion studied above. On the other hand, if the tensor T vanishes, then
the fibers are totally geodesic. Thus, from Theorem 5.1 and Theorem 5.2, we have the
following result.

5.3. Corollary. Let M be a non-flat Kählerian manifold. Then there is no Lagrangian
submersion π with totally geodesic fibers from M onto a Riemannian manifold N.

Now, we recall that any fiber of a Riemannian submersion π : (M, g) → (N, gN ) is
called totally umbilical if

(5.2) TUV = g(U, V )η

for any U, V ∈ kerπ∗, where η is the mean curvature vector field of the fiber in M. The
fiber is called minimal, if η = 0, identically [4].

5.4. Proposition. Let π : M → N be a Lagrangian submersion from a Kählerian
manifold M onto a Riemannian manifold N. If the fibers of M are totaly umbilical, then
either kerπ∗ = {0} or 1-dimensional or the mean curvature vector field η vanishes, i.e.,
the fibers are minimal.

Proof. If kerπ∗ = {0} orDim(kerπ∗) = 1, then the conclusion is obvious. IfDim(kerπ∗) ≥
2, then we can choose U, V ∈ kerπ∗, such that g(U, V ) = 0 and ‖U‖ = 1. By Lemma
4.3-(a) and (5.2), we have



g(η, JV ) = g(TUU, JV ) = −g(TUJV, U) = −g(JTUV,U) = 0. Hence, it follows that
η = 0. �
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