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______________________________________________________________________________________________ 

 
Abstract. In recent years, parallel robots have become the focus of research since, as compared with similar serial 
robots, these robots possess many superior features. Upon a brief introduction of the Stewart parallel robot as a robot 
with the most industrial applications, its many advantages over similar serial robots were studied and a complete 
kinematic and dynamic analysis of this robot presented. Subsequently, to obtain an integrated system for control 
applications, a comprehensive model of this robot’s state- space was introduced through formulating the explicit 
governing equations for the Stewart system and its associated drive/actuator system. 
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1. INTRODUCTION 
 

As compared with their serial counterparts, parallel-linked robotic arms, better known as the 

Stewart Platform, have demonstrated greater advantages including higher stiffness and 

hardness, higher load-to-weight ratio, and greater precision; features that are now recognized by 

many researchers around the world. The parallel mechanism was first used for testing vehicle 

wheels by Gaff, a member of Britain’s ruling party. Later on, Dr. Stewart developed the parallel 

mechanism as a flight simulation system. His innovation found many useful and diverse 

applications in the subsequent years. Today, the generalized Stewart Platform is used in such 

applications as automation, defensive and security, transportation, and development of machine 

tools in shipbuilding industries [1]. 

Pneumatic drives are still very widely used in automation processes. As actuators, these 

drives are implemented in light-duty equipment with relatively high load-to-weight indexes. On 

the average, pneumatic actuators are preferred to hydraulic and electric actuators due to their 

approximately 20% lower cost manufacturing technology. The most significant advantages of 
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pneumatic systems are simple installation and maintenance, wide range of accessibility, clean 

and non-inflammable operation, and lower sensitivity to temperature change [2, 5]. 

In spite of the fact that the Stewart parallel robot has been researched on a wide scale, there 

are few published works on the dynamics of this robot’s drive system and the friction in its joint 

space. Various methods have been proposed for kinematic and dynamic analysis of this type of 

robot and the deriving of its governing equations. This article presents a systematic approach for 

obtaining these equations. In the first section, the direct and inverse kinematics of the 

mechanism are systematically analyzed. Upon completion of the kinematic analysis, the 

relevant equations were derived and their time derivatives obtained to yield the relations, in the 

form of velocity and Jacobian terms that existed between various components of the robot. The 

second section focuses on the dynamic analysis of the robotic system and presents a 

comprehensive model of the mechanism with regard to its actuator as well as its rigid-body 

dynamic. There are various methods for dynamic analysis of the Stewart mechanism. In the 

present study, the Lagrange method was used to extract the dynamic equations.  In this method, 

the dynamic equations are obtained by considering the work/energy stored in the system so as to 

automatically eliminate the burdensome constraint forces [3]. Finally, in the last section, the 

general governing equations are appropriately formulated to achieve an integrated system. 

 

2. SYSTEM MODELING 
2.1. Kinematics Analysis 

In this section, the kinematics of the Gough- Stewart presented. In Figure 1, an example of 

this mechanism is shown. 

 
Figure 1. Stewart electro- pneumatic mechanism [4]. 
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2.1.1. Inverse Kinematics Analysis 
 

In this section, the six-degree-of-freedom Goff-Stewart mechanism is studied. As was 

mentioned in the Introduction, the inverse kinematic analysis involves selecting an arbitrary 

path for the end effector to calculate the motion of all the existing links in the mechanism. This 

system consists of two planes A and B. Plane A is fixed whereas Plane B moves. These planes 

are pinned together at points Ai and Bi (rotational axes) via six bases fitted with lifting jacks. 

The movable plane can be moved via jack piston strokes. Figure 2, shows the components of the 

Stewart mechanism [1, 3]. 

  

(a)    (b) 

Figure 2. Top and beside view of a Stewart platform [6]. 

 

In Figure 2, Plane A is the base (fixed) platform, and Plane B the moving platform. Figure 3 
demonstrates the mass (center of gravity) coordinate system of the end effector (movable 
platform). 

 

Figure 3. Linear and angular motions [4]. 

In this system, (x,y,z,α,β,γ) is the coordinates of the movable platform center of gravity. The 
closed- loop kinematic equations can be expressed as [3, 4]: 
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In Equation 1, we have: 
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Equation 2 determines the position vector A relative to the fixed plane. The above vector’s 

parameters can be calculated for the following relations: 

)3(5,3,1
23

=⎯⎯→⎯−= ii forA
i

θπ
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)4(6,4,21 =⎯⎯→⎯+= − ifor
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In Equations 1 to 5, di, θA, θA,max and nAi represent the length of mechanism base vectors, 

rotation angles of the joints, maximum angle of each joint (for the joints installed on the base 

plane), and the unit vector along the rotational joints in the basic coordinate system. Equation 1 

also expresses the position vector Bi relative to the movable plane as: 
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So that the above vector’s parameters can be computed from the following relations: 
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In Equations 6 to 9, θB, max and nBi are the maximum joint angle (for the joints installed on 

the movable plane) and the unit vector along the rotational joints of the moving platform 

coordinates. Also, [ ]Tiziyixi bbbb =  expresses the position of vector 
B
ib  relative to the fixed 

plane. The unit vectors along each platform base can be obtained as: 

)10(/)( iiii Dabps −+=   

In Equation 10, the coordinates of the moving platform (p) center of gravity (c.g.) is 

demonstrated as: 

)11(],,[ Tzyxp =  

And each actuator length vector is calculated from the following relation: 
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If Di represents the lengths of the Stewart mechanism bases, then: 
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Based on Equation 13, we can argue that at each instant, the status information of the 

moving platform can be accessed. Also, as negative length does not exist, only the positive part 

of the above relation shall be acceptable. Now, by substituting the relevant parameters in 

Equation 13, we can rewrite Di as: 
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In Equation 14, rA and rB are the radii of the fixed and moving planes respectively. Also, the 

rotation matrix 
A
BR  can be calculated from the following relation: 
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In Equation 15, we have: s=sin, c=cos 

2.1.2. Forward Kinematics Analysis 

As was pointed out in the Introduction, the purpose of analyzing the system in this section is 
to calculate the coordinates of the moving platform c.g. using the existing joints in the 
mechanism. The relation between the c.g. coordinates and the joint coordinates in the 
mechanism can be rewritten as [1]: 
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2.2. JACOBIAN ANALYSIS 

The Jacobian of a system actually describes the relation between dependent and independent 

variables in that system. As shall be defined later, the momentum of a system is a function of 

the change in the stroke of the pneumatic cylinders. Therefore, the Jacobian matrix (the 

magnitude of which represents the length of the bases in the mechanism) can be calculated from 

the following relation [4, 5]: 

)17(]6,5,4,3,2,1[ ddddddq !!!!!!! =Δ  

)18(],[ T
pp wvX =!  

In Equations 17 and 18, q!Δ  and X!  are the output vector and the momentum respectively. 

The Jacobian equation can be extracted from the closed-loop equation of the ith member (i.e., 

the velocity of that member). Considering the physical structure of the system in Fig. 2, we can 

write: 

)19(iBiAioAipbop +=+  

Taking the time derivative of Equation 19, wee obtain: 

)20(iiiiiipp dsswdbwv +×=×+  

So that in Equation 20, we have: 

)21(iii BAs =  

)22(ii pBb =  

In the above relation, wi, vp, and wp represent the angular velocity of the i-th member 

relative to the fixed plane, the linear velocity of Vector P, and the angular velocity of Vector P 

respectively. Multiplying both sides of the Equation 20 by si, we obtain [6]: 
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2.3. DYNAMICS ANALYSIS 

In this section, the Lagrangian (energy) method was used to extract the kinetic equations. In 

this method, the kinetic equations are obtained via the work/energy stored in the system so that 

the bothersome constraint forces can be eliminated automatically. The Lagrangian equation is 

expressed as [1, 6]: 
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Where in equation (26), T is the kinetic energy and U is the potential energy of the system 

calculated from the following relationship: 
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Where in equation (29), the parameters q, D.E, and Q are the vector of generalized 

coordinates, friction and damper forces vector, and the generalized forces vector respectively, 

which are calculated using the principle of virtual work. By placing Lagrangian equation into 

motion equation of a dynamic system, dynamic equation can be expressed in the following 

form: 

)30()()(),()( τ=+++ qFqGqqqCqqM fr !!!!!
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Where in equation (30), the parameters M, C, G, Ffr, and τ indicate positive definitive mass 

matrix with the order of 6*1, forces and torques generated by the vector provider of centrifugal 

forces and Carioles acceleration with the order of 6*1, vector provider of torque caused by the 

gravitational pull with the order of 6*1, vector provider of torque caused by the friction forces 

with the order of 6*1, and the vector of generalized forces applied with the order of 6*1, 

respectively. In equation (5), generalized torques vector can be rewritten in terms of applied 

forces of the mechanism drives [1]: 
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As element of the inertia matrix (M) are calculated according to the following equations [6]: 
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In Eq. (41) Also, the platform mass and g is the gravitational acceleration equal to 8.9 N/m2. 

In equation (30), the torque vector can be rewritten in terms of the forces driving mechanism: 

)42(pF
TJ=τ

 

Where in equation (42), parameters J and Fp are Jacobian matrix of the system with the order 

of 6*6 and vector of driving forces with the order of 6*6, respectively. The driving force vector 

is defined as: 
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Using inverse kinematics mechanism and the equation (43), we have [5]: 
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Where in equation (44), parameters d, M*(q), C*(q, q! ), G*(q), and )(* dfrF !
 are the vector of 

mechanism lengths drivers, definitive mass matrix with the order of 6*6, vector provider of 

centrifugal forces and carioles with the order of 6*1, vector provider of torque caused by the 

gravitational pull with the order of 6*1, vector provider of friction forces in the joint space with 

the order of 6*1, respectively. In equation (8), the terms M*(q), ),(* qqC !  and G*(q) can be 

calculated using the following relationship: 

[ ] )45(1)()(
1

)()(* −−
= qJqMTqJqM  

[ ] [ ] )46(),()(),(
1

)(),(* qqqJqMqqCTqJqqC !!!!! ⋅−
−

=  

[ ] )47()()()(
1* qGqJqG T −

=  



 
SANAEİ, DALALİYAN MİANDOAB, RİKHTEHGAR GİASİ 

 

48	  
	  

There are many ways to obtain the friction vector, so that in this paper, the calculation 

method is applicable to the following expression [5]: 

)48()(*)(*)(*)(*frF dsFdcFdvFd !!!! ++=  

As in equation (48) parameters
*
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*
cF and

*
sF , respectively sticking friction force, Coulomb 

friction force and friction force are static. Each element of the friction force is calculated from 

the following relationship: 
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That the relations (49), (50) and (51), Parameter bj, j-th element parameter friction sticking 

and the parameter Fext, j, j-th element external force and Fs0, j, jth element and volatile energy 

Fc0, j, jth element of the parameter is the Coulomb friction. And the sign function is expressed 

as follows: 
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	  3. PNUEMATIC SYSTEM DYNAMICS 

In this section, the pneumatic system dynamic model will be derived. Figure 4 depicts the 

pneumatic system along with its components. 
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Figure 4. Pneumatic system [3]. 

The governing equations for the pneumatic system can be written as 

[3]:
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The parameters sT , 1γ , fF , gR , vK , M , pA , nA , pP , nP , pV  , and nV  are the working 

temperature, specific temperature coefficient, friction force, the universal gas constant, servo-

valve constant, piston mass, piston cross sectional area (region p), piston cross sectional area 

(region n), nominal pressure in region p, nominal pressure in region n, nominal volume in 

region p, and nominal volume in region n respectively. 

 

4. STATE- SPACE MODEL 
 

For control purposes, it is necessary to write the Stewart Platform system and the pneumatic 

system equations in the integrated form so that the overall input and output of the system can be 

determined. Since the system is multi-variable, it is better to write its equations in the state-

space form. For this, the state-space equations for each system must be separately extracted. For 

simplicity, we omit the * superscript from the parameters in the final equations [8]. 
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4.1. Stewart Constract State-Space Model 

Now, we can rearrange the terms of Equation 41 in terms of the second time derivative of the 

actuator lengths: 
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The state equations of the system are defined as: 
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Therefore, the state-space equation for the Stewart Platform system is obtained as: 
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4.2. State-Space Equation of Pneumatic System 
 

Assuming that the cross sections of the two internal sections in the cylinder are equal and 

that the pressure difference between these two cylinder sections is Pd, we obtain: 
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Thus, the state equation for the pneumatic system is: 
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In Equation 61, we have: 
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4.3. System State-Space Model 
 

In this section, we obtain the overall integrated system equations through selecting suitable 

state variables. To this end, we must first change the state variables in the pneumatic system to 

the following form: 
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Taking the derivative of Equation 62, we obtain: 
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And placing 1x!  and 3x! into 4x!  relation, thus: 
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Thus, the pneumatic system state-space equations can be rewritten in matrix form as: 
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Now, we rewrite the Stewart Platform variables in terms of the new state variables as: 
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Therefore, the state-space equations for the integrated system are: 
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5. CONCLUSIONS 
 

In this paper, a systematic approach was followed for the kinematic analysis of the Stewart 

mechanism. In the proposed method, the inverse kinematics of the system was appropriately 

analyzed using the Stewart parallel robot geometry, and subsequently, the direct kinematics of 

the mechanism was extracted based on the findings obtained from the inverse kinematics 

approach. Upon completion of the kinematic analysis (where the behavior of the system was 

described regardless of the causes (forces) that gave rise to displacement, velocity, and 

acceleration), the relations between various system components were extracte by using 

kinematic time derivatives in the form of velocity and Jacobian terms. Theen, the dynamic 

analysis was conducted on the system to obtain a comprehensive dynamic model through 

considering actuator dynamics and the existing friction forces at the joints as well as the rigid 

body dynamics of the system as a whole. The dynamic analysis of the Stewart mechanism was 

conducted through the Lagrangial method (for obtaining kinetic equations of the system). In this 

method, the equations are obtained by taking into account the work/energy stored in the system 

so as to eliminate the undesirable constraint forces. Ultimately, to achieve an integrated system 

for control purposes, the equations for the whole system were duly formulated in the form of 

state- space equations. 
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