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______________________________________________________________________________________________ 

 
Abstract. In this paper, modeling, simulation, and control of a six-degree of freedom Gough- Stewart robust parallel 
robot driven by pneumatic drivers are discussed. The robot modeling is performed based on the classical Lagrangian 
approach and a comprehensive dynamic model by taking into account the dynamics of the system in addition to the 
driving rigid dynamics are presented. Robust control strategy and Sliding mode control were used in order to control 
the robot. In this approach, the feedback control law presented such that the closed loop system defined by the SMC 
is robust against uncertainties and external disturbances. To demonstrate the appropriateness of the designed 
controller, its performance was compared with a feedback linearization controller and finally the computer simulation 
using MATLAB/Simulink validated the optimal performance of the designed controller. 
 
Keywords: Parallel Robot, Gough- Stewart Platform, Lagrangian Dynamic, Feedback Linearization, Sliding Mode 
Control 
_____________________________________________________________________________ 
 
1. INTRODUCTION 
 

The advantages of parallel robots, today known as Gough/Stewart platform (see Figure 1), in 
comparison with their series counterparts are the main reasons for their widespread use in 
industry. Including such advantages due to their closed physical structure is the ability to carry 
heavy loads, high accuracy and rigidity, as well as low inertia. Parallel mechanism was first 
proposed by Gough, England's governing board member, as a testing system of car wheel. 
Afterwards, Dr. Stewart improved the plan as a flight simulator resulted in various applications. 
Current industry make use of developed Stewart platform in applications such as separate 
platforms, endoscopic, simulating vehicles, flying simulation systems, rotary radio telescopes, 
and six-axis machine tools [1, 2]. 

 
Figure 1. Gough- Stewart electro- pneumatic mechanism [2]. 
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Despite their favorable properties, it is difficult to control parallel robots. To control this type 

of systems, a variety of control methods have been utilized. However, the control schemes with 

good control capabilities against model's disturbances and uncertainties are scarce. In most of 

the reported research in this field the Stewart structural dynamic model was taken into account 

but the dynamics of system operator is not considered [3]. The main focus of this paper is to 

provide a robust control method for controlling the Stewart mechanism driven by pneumatic 

drivers with regard to driving system dynamics in addition its rigid dynamics. 

The remaining parts of this paper are organized as follows. In Section II, classic Lagrangian 

dynamic model is used to derive dynamic model of system. Afterwards, pneumatic system was 

described along with its dynamic equations and its dynamic is extracted. In Section III, for the 

control purposes, the derived dynamic models from both systems are integrated into one set of 

equations. Section IV introduces the feedback linearization control and final control law is 

briefly described [4]. Here, the method of sliding mode control system was designed to control 

the system against elimination of nuisance factors such as external disturbances acting on the 

system and non-modeled dynamics as well as designed uncertainties [5]. In Section V, by the 

simulation of designed controller for optimal performance in the face of external disturbances 

applied to the system and the uncertainties in comparison with performance feedback 

linearization controller is shown. This paper is concluded in Section VII in while suggestions 

are given to develop control systems. 

2. SYSTEM MODELING 
2.1. Stewart Platform Dynamics 

In this section, the dynamic model of electro-pneumatic Stewart platform servomechanism 

with six degrees of freedom based on classical Lagrangian dynamics is presented. Lagrangian 

equation is defined as follows [6, 7]: 

)1(UTL −=

 

Where in equation (1), T is the kinetic energy and U is the potential energy of the system 

calculated from the following relationship: 
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	   Where in equation (4), the parameters q, D.E, and Q are the vector of generalized 
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coordinates, friction and damper forces vector, and the generalized forces vector respectively, 

which are calculated using the principle of virtual work. By placing Lagrangian equation into 

motion equation of a dynamic system, dynamic equation can be expressed in the following form 

[8]:	  

)5()()(),()( τ=+++ qFqGqqqCqqM fr !!!!!

 Where in equation (5), the parameters M, C, G, Ffr, and τ indicate positive definitive 

mass matrix with the order of 6*1, forces and torques generated by the vector provider of 

centrifugal forces and Carioles acceleration with the order of 6*1, vector provider of torque 

caused by the gravitational pull with the order of 6*1, vector provider of torque caused by the 

friction forces with the order of 6*1, and the vector of generalized forces applied with the order 

of 6*1, respectively. 

In equation (5), generalized torques vector can be rewritten in terms of applied forces of the 

mechanism drives: 

)6(pF
TJ=τ

 Where in equation (6), parameters J and Fp are Jacobian matrix of the system with the 

order of 6*6 and vector of driving forces with the order of 6*6, respectively. The driving force 

vector is defined as: 

 

)7(]6,,...,2,,1,[ pFpFpFpF =

 Using inverse kinematics mechanism and the equation (5), we have: 

)8()(*)(*),(*)(* pFdfrFqGdqqCdqM =+++ !!!!!

 Where in equation (8), parameters d, M*(q), C*(q, q! ), G*(q), and )(* dfrF !
 are the vector 

of mechanism lengths drivers, definitive mass matrix with the order of 6*6, vector provider of 

centrifugal forces and Carioles with the order of 6*1, vector provider of torque caused by the 

gravitational pull with the order of 6*1, vector provider of friction forces in the joint space with 

the order of 6*1, respectively. In equation (8), the terms M*(q), ),(* qqC !  and G*(q) can be 

calculated using the following relationship: 
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2.2. Pnuematic System Dynamics 
 

In this section, the pneumatic system dynamic model will be derived. Figure 2 depicts the 

pneumatic system along with its components. 

 
Figure 2. Pneumatic system [2]. 

 
Equations of pneumatic system (see Figure 2) can be expressed as [2]: 
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The pneumatic system's parameters are presented in Table 1: 

 
 
Table 1. Parameters of pneumatic system [2]. 

 
parameter Name Value Parameter Name Value 

Ts Temperature 300 K An Piston area 
(Chamber n) 

4.94 × 10-4 
m2 

γ1 Ratio of 
specific heat 

1.4 Ap Piston area 
(Chamber p) 

5.72 × 10-4 
m2 

Ff Friction 
forces 

47 N.s/m Pp Nominal 
pressure in 
chamber p 

2.5 × 105 Pa 
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Rg Universal gas 
constant 

287 J/kg.K Pn Nominal 
pressure in 
chamber n 

2.5 × 105 Pa 

Kv Servo valve 
constant 

0.0023 kg/s.V Vp Nominal 
volume in 
chamber p 

5.683×10-5 
m3 

M Piston mass 0.2 kg Vn Nominal 
volume in 
chamber n 

5.285×10-5 
m3 

System input 
pressure 

4 bar 

 
3. INTEGRATION of SYSTEM STATE EQUATIONS 
 

For control purposes, it is necessary to present integrated system of equations of Stewart 

platform and pneumatic system; meanwhile the input and output of the system are determined. 

Since the system is a multivariate system, the system of equations should be written in state-

space form. To do this, the state-space equations are derived for each system individually. It 

should be noted that for the simplicity of relationships, the asterisk (*) on top of the final 

parameters is ignored [9]. 

 
3.1. Stewart Constract State- Space Model 

In order to derive a state-space model of Stewart platform, equation (8) is sorted based on the 

second time derivative of the drivers' lengths: 
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The system state variables are defined as: 
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 Thus, the state space equation of Stewart platform system is obtained as: 
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3.2. EXTRACTİON OF PNEUMATİC SYSTEM STATE- SPACE EQUATİONS  

If the cross-sectional area between two inner sections of the cylinder are assumed equal, and 

the pressure difference between the cylinders is considered as Pd, thus: 
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 The pneumatic system state- space equation can be expressed 
as:
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 In equation (20), we have:	  
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3.3. System State- Space Model  

In this section, the integrated equations of the total system are derived by selecting the 

appropriate state variables. First, the pneumatic system state variables will be changed as 

follows: 
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By taking derivatives of equation (21) with respect to time, we have: 
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 The pneumatic system state- space equations can be rewritten in matrix form as: 
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 Stewart platform variables based on the new state variables of new system can be 

rewritten as: 
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 Thus, the integrated system's state space equations can be expressed in the following 

form: 
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5. CONTROLLER DESİGN 
5.1. Feedback Linearization 

 

The main idea of this method is that the dynamics of nonlinear systems (completely or 

partially) to be linear such that the linear control methods are used to control them. Further, how 

to use this method for the control of Stewart system will be expressed. Firstly, the error signal is 

defined as [9, 10]: 

)30(ydye −=

 Where in equation (30), the parameters e, yd, and y represent the error signal, the input 
reference signal, and the output signal of system, respectively. From equation (21), we have: 

)31(5xycxy =⇒=

	   Thus, according to equation (31), equation (30) can be rewritten in the following form:	  

)32(5xdye !!! −=

	   Taking double derivation of equation (32) with respect to time, we have: 

)33(5xdye !!!!!! −=

	   Now, by placement of the equation (27) into equation (33) we have: 

)34(4
1

6)(1 xMxfrFcMdye −++−+= !!!!

	   In order to write the control law, for simplicity, the friction term in equation (34) is 

neglected. Again, we take derivative of the relationship with respect to time and we have:	  
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)35(6xdye !!!!!!!! −=

	   Equating the variable P and v, we have:	  
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 Here, by placement of equations (23) and (27) into equation (36), we have: 
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	   Equation (37) can be rewritten in terms of the input signal V:	  
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	   The dynamic error equation, i.e. the equation (33), is rewritten in terms of P: 

)39(6 pdyxdye −=−= !!!!!!!!!!!

	   Then the equation P is defined in terms of the dynamic error as:	  

)40(321 eKeKeKdyp +++= !!!!!!

	   By inserting equation (40) into equation (39), the dynamic error equation is obtained as 

follows:	  

)41(0321 =+++ eKeKeKe !!!!!!

	   Thus, the final control law is obtained by the placement of the equation (40) into 
equation (38) as follows	  
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4.2. Sliding Mode Controller Design 
 

Among the various methods for robust control, sliding mode control (SMC) plays a 

fundamental role. Because in addition to the stabilization of certain systems and systems with 
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uncertainties, this controller has also the ability of disturbance rejection. Moreover, this 

controller has a low sensitivity to changing system parameters. For the designing purpose of this 

controller, at first the sliding surface is defined as follows [10]: 

)43()(
1
te

n

dt
ds

−
⎟
⎠

⎞
⎜
⎝

⎛
+= λ

	  

Where in equation (43), the parameters s, e(t), and n are sliding level, error signal, and 

system order respectively; and λ is strictly positive constant. Dynamics when they are in sliding 

mode can be written as follows:	  

)44(0=s!
 

By solving the above equation for conventional control input, we find an expression for V 

called the equivalent control Veq which can be expressed as a continuous control law 

maintaining 0=s!  if dynamics are defined. Thus, this control input can be expressed as: 

By employing the switching control to overcome uncertainties, the control signal is obtained 

as follows:

 

Where, sgn is the sign function defined as follows: 
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5. SIMULATION RESULTS 
 

In this section, the implementation of control systems designed in MATLAB/Simulink is 

discussed and simulation process is completed with the inclusion of appropriate amounts of 

control gains. In Figure 3, the control system of Gough/Stewart platform is shown. The 

simulations carried out in this paper consist of three stages, each of which is discussed. 
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Figure 3. Gough- Stewart platform control system [2]. 
 
5.1. Phase I: Evaluate Of the Performance of Controller Designed Without Considering 
the Uncertain and External Disturbances 
 

In this section, the performance of control systems designed in normal conditions (absence 
of external disturbances and uncertainties) is examined. Figure (4- a) illustrates the feedback 
linearization control system response. Figure (4- c) shows a sliding mode control system. As it 
is noticeable in both figures, the outputs of the model are completely consistent with the 
corresponding inputs, and the steady-state error of the system is zero according to the Figures 
(4- b) and (4- d). As a result, the controlled system in the application of both controllers is 
always stable and the output of the system follows corresponding inputs without error. 

  

(a)    (b)  

  

(c)     (d)  

Figure 4. Dynamic response of the control systems with steady- state error diagram in normal conditions 
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5.2. Phase II: Evaluation of the performance of the designed controller against 
disturbance input actions 
 

In this section, the performance of designed control systems is examined by employing 
disturbances of the unity impulse. Figure (4- a) depicts the feedback linearization control system 
response. Figure (4- c) shows a sliding mode control system. When feedback linearization 
control system is used, a disturbance in the form of impulse is inserted at the time delay of 0.5 
second. It was noticed that this disturbance leads to the instability of system and steady state 
error is infinite (see Figure (4- b)). Further, in the case of using sliding mode control system, 
this disturbance is inserted at the time delay of 0.2 second during the simulation exercise, but in 
this case the outputs of the model is completely consistent with the corresponding inputs and the 
steady-state error of the system as shown in Figure (4- d) is equal to zero. Thus, the system is 
stable when uses this controller. 

 

   

(a)     (b)    

   

(c)      (d)    

Figure 5. Dynamic response of the control systems with steady-state error diagram with disturbance 
 
5.3. Phase III: Evaluation of the controller designed, by considering the uncertainly of the 
structural 
 

In this section, the performance of the designed control system is examined by applying 
uncertainty in the mass quantity of the cylinder which is a kind of structural uncertainty. Figure 
(4- a) illustrates the feedback linearization control system response. While, Figure (4- c) shows 
a sliding mode control system. Given the 10 percent increase of the cylinder mass quantity as an 
uncertain parameter, it was found that sliding mode controller system has been resistant against 
uncertainties and the output of the system follows the reference input without steady-state error 
(see Figure 4-d). However, the feedback linearization controller has not the ability to control the 
system and the system was unstable (see Figure 4- b). 
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)a(     (b)     

   

   (c)     (d) 
Figure 6. Dynamic response of the control systems with steady-state error diagram with uncertain of mass 

 
 

6. CONCLUSIONS 
 

In this paper, a robust control strategy was proposed in order to control the six degrees of 

freedom Gough/Stewart parallel robot with pneumatic drivers. Results of the simulation verified 

the performance of the optimal controller design. As in the first phase, the disturbance of 

impulse type was inserted into the input of the system and it was observed that the sliding mode 

controller optimally removed the disturbance effect on the input and the system remained stable. 

Whereas applying feedback linearization controller system resulted in unstable condition. 

In the second phase, the designed controller performance was assessed in the presence of 

uncertainty such that the increase in mass of the cylinder by 10 percent was considered as an 

uncertainty parameter. It was observed that the sliding mode control system is robust in the face 

of uncertainty and system output had no steady-state error, following the reference input 

appropriately. However, the feedback linearization controller has no ability to control the 

system and the system was unstable. For the future research, adaptive control method is 

proposed to control the system. 
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