

A study on certain inequalities for p-valent functions

Roya GHASEMKHANİ

Department Of Mathematics, Faculty of Science, University Of Jiroft, Jiroft, Iran

Received: 01.02.2015; Accepted: 05.05.2015

Abstract. In this paper, we derive conditions on the parameters a, b, c so that the function $z^p F(a, b; c; z)$ is pvalent starlike and p-valent convex functions in \mathcal{U} , where $F(a, b; c; z)$ denotes the classical hypergeometric function. We also consider an integral operator related to the hypergeometric function.

Keywords: starlike; convex; p-valent; hypergeometric function.

1. INTRODUCTION

Let $\mathcal{A}(p)$ be the class of functions f of the form

$$
f(z) = zp + \sum_{n=p+1}^{\infty} a_n z^n, (p \in \mathbb{N} = \{1,2,3,...\})
$$
\n(Error! No
\ntext of
\nspecified
\nstyle
\nstyle
\nstyle
\n% (Error!) No
\nspecified
\nsycle
\nin
\ndocument.-1)

which are analytic and p-valent in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$.

A function $f(z) \in \mathcal{A}(p)$ is called p-valent starlike of order β $(0 \leq \beta < p)$, $p \in \mathbb{N}$ if and only if

$$
Re\left\{\frac{zf'(z)}{f(z)}\right\} > \beta, z \in \mathcal{U}.
$$
\n(Error! No
text of
specified
style
specified
syclic
in
document.-2)

This function class is denoted by $S^*(p, \beta)$. Also a function $f(z) \in \mathcal{A}(p)$ is said to be p-valent convex of order β ($0 \le \beta < p$), $p \in \mathbb{N}$ if and only if

$$
Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \beta, z \in \mathcal{U}.
$$
\n(Error! No
text of
specified
style
specified
syclic
in
document.-3)

This class is denoted by $\mathcal{K}(p,\beta)$. Note that $S^*(1,\beta) \equiv S^*(\beta)$ and $\mathcal{K}(1,\beta) \equiv \mathcal{K}(\beta)$ are, respectively, the usual classes of starlike and convex functions of order β . Furthermore $S^*(p,0) \equiv S^*(p)$ and $\mathcal{K}(p,0) \equiv \mathcal{K}(p)$

^{*}Corresponding author. *Email address*: *Roya.Ghasemkhani@gmail.com*

Special Issue: The Second National Conference on Applied Research in Science and Technology

http://dergi.cumhuriyet.edu.tr/cumuscij ©2015 Faculty of Science, Cumhuriyet University

are, respectively p-valent starlike and p-valent convex functions

From (1.2) and (1.3) , we have

$$
f \in \mathcal{K}(p,\beta) \iff \frac{zf'}{p} \in \mathcal{S}^*(p,\beta).
$$

A function $f(z) \in \mathcal{A}(p)$ is said to be in $\mathcal{US}_p(\beta)$, the class of uniformly p-valent starlike functions of order β if

it satisfies the condition

$$
Re\left\{\frac{zf'(z)}{f(z)} - \beta\right\} \ge \left|\frac{zf'(z)}{f(z)} - p\right|, z \in \mathcal{U}.
$$

(**Error! No**

Also a function $f(z) \in \mathcal{A}(p)$ is said to be in $\mathcal{UCV}_p(\beta)$, the class of uniformly p-valent convex functions of order β if it satisfies the condition

$$
Re\left\{1+\frac{zf''(z)}{f'(z)}-\beta\right\} \ge \left|\frac{zf''(z)}{f'(z)}-(p-1)\right|, z \in \mathcal{U}.
$$
 (Error! No
spectified
style
style in
document.-5)

Uniformly p-valent starlike and p-valent convex functions were first introduced [1] when $p = 1$, $\beta = 0$ and [2] when $p \ge 1$, $p \in \mathbb{N}$ and then studies by various authors.

Also denote $\mathcal{T}(p)$, the subclass of $\mathcal{A}(p)$ consisting of functions of the form

$$
f(z) = z^{p} - \sum_{n=p+1}^{\infty} a_{n} z^{n}, a_{n} \ge 0, p \in \mathbb{N}.
$$
 (Error! No
text of
specified
style in
document.-6)

We denote by $T^*(p, \beta)$, $C(p, \beta)$, $T^*(\beta)$ and $C_p(\beta)$ the classes obtained by taking intersections, respectively, of the classes $S^*(p, \beta)$ and $\mathcal{K}(p, \beta)$ with $\mathcal{T}(p)$; that is

$$
\mathcal{T}^*(p,\beta) = \mathcal{S}^*(p,\beta) \cap \mathcal{T}(p)
$$

$$
\mathcal{C}(p,\beta)=\mathcal{K}(p,\beta)\cap\mathcal{T}(p)
$$

$$
T^*_{p}(\beta) = uS_p(\beta) \cap T(p)
$$

$$
C_{\mathbf{p}}(\beta) = \mathcal{U}\mathcal{CV}_{\mathbf{p}}(\beta) \cap \mathcal{T}(\mathbf{p})
$$

The classes $T^*(p, \beta)$ and $C(p, \beta)$ were introduced by Owa (1985)[4]. In particular, the classes $T^*(1, \beta) = T^*(\beta)$ and $C(1, \beta) = C(\beta)$ when p=1, were studied by Silverman (1975)[3].

Note that $f \in \mathcal{T}^*(p, \beta) \Longleftrightarrow f \in \mathcal{T}^*(p, \beta)$, $f \in \mathcal{UCV}_p(\beta) \Longleftrightarrow f \in \mathcal{K}(p, \beta)$ and $f \in \mathcal{S}^*(p, \beta) \Longleftrightarrow f \in \mathcal{US}_n(\beta).$

Let $F(a,b;c;z)$ be the Gaussian hypergeometric function defined by

$$
F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} z^n
$$
 (Error! No
text of
specified
style in
document.-7)

Where $c \neq 0, -1, -2, ...$ and $(a)_n$ is the pochhammer symbol defined by

$$
(a)_n = \begin{cases} 1 & n = 0 \\ a(a+1)(a+2)...(a+n-1) \text{ } n \in \mathbb{N} \end{cases}
$$

We note that $F(a, b; c; 1)$ converges for $Re(c - a - b) > 0$ and is related to the Gamma function by

Corresponding to the function $F(a,b;c;z)$, we define $h_p(a,b;c;z) = z^p F(a,b;c;z)$.

Clearly $Z^p F(a, b; c; z)$ has the series representation of the form ((Error**! No text of specified style in document.**-1) where $a_n = \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}}$, hence we have

$$
h_p(a, b; c; z) = z^p + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n.
$$

2. MAIN RESULT

In this section, we determine necessary and sufficient conditions for h_p (a, b; c; z) = $z^p F(a, b; c; z)$ to be in $T^*(p, \beta)$ and $C(p, \beta)$. Furthermore, we consider an integral operator related to the hypergeometric function.

To prove the main result, we need the following lemmas.

Lemma 2.1 [4]

(i) A function $f(z)$ of the form ((Error! No text of specified style in document.-1) is in $u_{\mathcal{S}_p}(\beta)$ if it satisfies the condition

A study on certain inequalities for p-valent functions

$$
\sum_{n=p+1}^{\infty} (n-\beta) |a_n| \le p - \beta.
$$
\n(Error! No
text of
specified
style in
document.-9)

(ii) A function $f(z)$ of the form ((Error! No text of specified style in document.-1) is in $\mathcal{UCV}_{p}(\beta)$ if it satisfies the condition

$$
\sum_{n=p+1}^{\infty} \frac{n}{p} (n-\beta) |a_n| \le p - \beta.
$$
 (Error! No
text of
specified style
in
document.-10)

Lemma 2.2[4]

(i) A function $f(z)$ of the form ((Error! No text of specified style in document.-1) is in $T^*(p, \beta)$ if and only if it satisfies

$$
\sum_{n=p+1}^{\infty} (n-\beta) a_n \le p-\beta.
$$
\n(Error! No
text of
specified style
in
document.-11)

(ii) A function $f(z)$ of the form ((Error! No text of specified style in document.-1) is in $C(p, \beta)$ if and only if it satisfies

Lemma 2.3[7] A function $f(z)$ of the form ((Error! No text of specified style in document.-1) is p-valent in U if $\sum_{n=1}^{\infty} (n+p) a_{n+p} \le p$.

Theorem 2.4 If $a, b > 0$ and $c > a + b + 1$, then $h_p(a, b; c; z) = z^p F(a, b; c; z)$ to be in $\mathcal{US}_p(\beta)$ if

$\Gamma(c)\Gamma(c-a-b)$	(Error !	No	
$\Gamma(c-a)\Gamma(c-b)$	($\frac{ab}{(p-\beta)(c-a-b-1)}$	< 2.	10
$\frac{1}{(p-a)\Gamma(c-b)}$	11	11	
$\frac{1}{(p-a)\Gamma(c-b)}$	12		
$\frac{1}{(p-a)\Gamma(c-a-b-1)}$	23		
$\frac{1}{(p-a)\Gamma(c-a-b-1)}$	35		

Proof. Since

$$
h_p(a,b;c;z) = z^p F(a,b;c;z) = z^p + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n,
$$
 (Error! No
next
spectfied style

document.-14)

By the condition (2.1), we need only show that

$$
\sum_{n=p+1}^{\infty} (n-\beta) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \le p-\beta.
$$
\n(Error! No
\ntext of specified style
\nin document.-15)

Now

$$
\sum_{n=p+1}^{\infty} (n-\beta) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}}
$$
\n
$$
= \sum_{n=p+1}^{\infty} (n-p) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} + (p-\beta) \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-1} \text{ text of } b}{(c)_{n-p}(1)_{n-1} \text{ speedified}} \text{in}
$$
\n
$$
= \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_{n-1}} + (p-\beta) \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n}.
$$
\n
$$
(6)
$$
\n16)

Noting that $(\theta)_n = \theta(\theta+1)_{n-1}$ and applying (1.7), (1.8) we may express (2.8) as

$$
\frac{ab}{c} \sum_{n=1}^{\infty} \frac{(a+1)_{n-1}(b+1)_{n-1}}{(c+1)_{n-1}(1)_{n-1}} + (p-\beta) \left(\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} - 1 \right)
$$

$$
= \frac{ab}{c} \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} + (p-\beta) \left(\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right)
$$

$$
= \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left\{ \frac{ab}{c-a-b-1} + (p-\beta) \right\} - (p-\beta).
$$

By the condition (2.7) and above expression, we have:

\n $\Gamma(c)\Gamma(c-a-b)$ \n	\n (Error! No text of first specified style\n																									
\n $\Gamma(c-a)\Gamma(c-b)$ \n	\n (a) $\Gamma(c-b)$ \n	\n (b) $\Gamma(c-a)$ \n																								
\n $\Gamma(c-a)\Gamma(c-b)$ \n	\n (c) $\Gamma(c-b)$ \n	\n (d) $\Gamma(c-b)$ \n																								
\n $\Gamma(c-a)\Gamma(c-b)$ \n	\n (e) $\Gamma(c-b)$ \n	\n (f) $\Gamma(c-b)$ \n	\n (g) $\Gamma(c-b)$ \n	\n (h) $\Gamma(c-b)$ \n	\n (i) $\Gamma(c-b)$ \n	\n (j) $\Gamma(c-b)$ \n	\n (k) $\Gamma(c-b)$ \n	\n (k) $\Gamma(c-b)$ \n	\n (l) $\Gamma(c-b)$ \																	

Hence condition (2.5) holds.■

Remark 2.5 In Theorem 2.4, $\beta = 0$ and $p = 1$ gives the sufficient condition for $zF(a, b; c; z)$ to be in the class S_p of uniformly starlike functions in \mathcal{U} .

In the next theorem, we find constraints on a, b and c that lead to necessary and sufficient conditions for h_p (a, b; c; z) to be in the class $\mathcal{T}^*(p, \beta)$.

Theorem 2.6

(i) If a, $b > -1$ and $c > 0$ and ab < 0, then h_p (a, b; c; z) to be in $\mathcal{T}^*(p, \beta)$ $(\mathcal{T}^*_{p}(\beta))$ if and only if

$$
c \ge a + b + 1 - \frac{ab}{p - \beta}.
$$

(ii) If $a, b > 0$ and $c > a + b + 1$, then $F_p(a, b; c; z) = z^p(2 - F(a, b; c; z))$ is in $\mathcal{T}^*(p,\beta)\left(\mathcal{T}^*_{p}(\beta)\right)$ if and only if

$$
\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\left\{1+\frac{ab}{(p-\beta)(c-a-b-1)}\right\} \le 2.
$$
\n(Error! No
text of
spectfied style
in
document.-18)

Proof. (i) Since

$$
h_p(a, b; c; z) = z^p + \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n = z^p + \frac{ab}{c} \sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b)}{(c+1)_{n-p-1}} \frac{\text{(Error! Nospecified to the provided HTML representation)}
$$

$$
= z^p - \left| \frac{ab}{c} \right| \sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^n,
$$

According to the condition (2.3), we must show that

$$
\sum_{n=p+1}^{\infty} (n-\beta) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \le \left| \frac{c}{ab} \right| p - \beta.
$$
 (Error! No
etext of specified style
in document.-20)

Noting that $(\theta)_n = \theta(\theta+1)_{n-1}$ and then applying (**Error! Reference source not found.**) and (**Error! Reference source not found.**), we have

$$
\sum_{n=p+1}^{\infty} (n - \beta) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} = \sum_{n=0}^{\infty} (n + 1 + p - \beta) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1}
$$

\n
$$
= \sum_{n=0}^{\infty} (n + 1) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}} + (p - \beta) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}} \qquad \text{(Error! Notext oftext of1000 test of1010 test of1010 test of1020 test of1030 test of1040 test of10
$$

Hence, (2.12) is equivalent to

(**Error! No text of specified style in document.**-2 2)

The above expression is valid if and only if

$$
1 + (p - \beta) \frac{c - a - b - 1}{ab} \le 0,
$$

which is equivalent to $c \ge a+b+1-\frac{ab}{p-\beta}$ and the proof is complete.

(ii) Since F_p (a, b; c; z) = $z^p - \sum_{n=p+1}^{\infty} \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} z^n$, the necessary of (2-13) for F_p to be in $f^*(p,\beta)\left(\mathcal{T}^*(\beta)\right)$ follows from condition (2.4).

Theorem 2.7 If $a, b > 0$ and $c > a + b + 2$, then h_p (a, b; c; z) to be in $\mathcal{UCV}_p(\beta)$ if

$$
\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left\{ 1 + \left(\frac{2p+1-\beta}{p(p-\beta)}\right) \left(\frac{ab}{c-a-b-1}\right) + \frac{(a)_2(b)_2}{p(p-\beta)(c-a-b-2)_2} \right\} \le \text{ specified} \text{ or } \text{ of the right,}
$$
\n
$$
\text{ or } \text{ if } \text
$$

Proof. In view of (ii) of lemma (2.1), we need only show that

$$
\sum_{n=p+1}^{\infty} n(n-\beta) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} \le p(p-\beta)
$$
\n(Error! No
\ntext{test of
\nspecified style
\nin
\ndocument.-24)

Now

$$
\sum_{n=p+1}^{\infty} n(n-\beta) \frac{(a)_{n-p}(b)_{n-p}}{(c)_{n-p}(1)_{n-p}} = \sum_{n=0}^{\infty} \left[(n+1+p)(n+1+p-\beta) \right] \frac{(a)_{n+1}(b)_{n}}{(c)_{n+1}(1)_{n}}
$$

\n
$$
= \sum_{n=0}^{\infty} (n+1)^2 \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} + (2p-\beta) \sum_{n=0}^{\infty} (n+1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} + p(p-\beta) \sum_{n=0}^{\infty} \frac{(a}{c} \frac{(Error! No\nspecified\n
$$
= \sum_{n=0}^{\infty} (n+1) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_n} + (2p-\beta) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_n} + p(p-\beta) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n}}{(c)_{n+1}(1)_n} \frac{\text{style in}}{s}
$$

\n
$$
= \sum_{n=1}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n-1}} + (2p+1-\beta) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_n} + p(p-\beta) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}
$$
$$

A study on certain inequalities for p-valent functions

$$
= \sum_{n=0}^{\infty} \frac{(a)_{n+2} (b)_{n+2}}{(c)_{n+2} (1)_n} + (2p+1-\beta) \sum_{n=0}^{\infty} \frac{(a)_{n+1} (b)_{n+1}}{(c)_{n+1} (1)_n} + p(p-\beta) \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n}
$$

Using $(a)_{n+k} = (a)_n (a+k)_n$ we may write the above expression as

$$
\frac{(a)_2(b)_2}{(c)_2} \frac{\Gamma(c+2)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} + (2p+1-\beta) \frac{ab}{c} \frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} + p(p-\beta) \left(\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1\right).
$$

The last expression is bounded above by $p(p-\beta)$ if and only if (2.15) holds.

Remark 2.8 In Theorem 2.7, $\beta = 0$ and $p = 1$ reduces to a necessary and sufficient condition for $zF(a, b; c; z)$ to be in the class UCV of uniformly convex functions in U .

Theorem 2.9

- (i) If $a, b > -1$, $ab < 0$ and $c > a + b + 2$, then $h_p(a, b; c; z)$ is in $\mathcal{C}(p, \beta)\left(\mathcal{C}_p(\beta)\right)$ if and only if
- $(a)_2(b)_2+(1+2 p.\beta)ab(c-a-b-2)+p(p-\beta)(c-a-b-2)_2\geq 0.$ (**Error! No text of specified style in document.**-26)
- (ii) If $a, b > 0$ and $c > a + b + 2$, then $F_p(a, b; c; z) = z^p(2 F(a, b; c; z))$ is in $C(p, \beta)$ $(C_p(\beta))$ if and only if

$$
\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left\{ 1 + \left(\frac{2p+1-\beta}{p(p-\beta)}\right) \left(\frac{ab}{c-a-b-1}\right) + \frac{(a)_2(b)_2}{p(p-\beta)(c-a-b-2)_2} \right\} \le \text{ specified} \text{ or } \text{ of } \text{ style } in \text{ document.}-27 \text{ document.}-27 \text{ } 27 \text{ } 27 \text{ } 37 \text{ } 48 \text{ } 58 \text{ } 68 \text{ } 68 \text{ } 69 \text{ } 61 \text{ } 63 \text{ } 64 \text{ } 65 \text{ } 66 \text{ } 65 \text{ } 68 \text{ } 69 \text{ } 61 \text{ } 63 \text{ } 64 \text{ } 65 \text{ } 66 \text{ } 65 \text{ } 66 \text{ } 65 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 69 \text{ } 61 \text{ } 63 \text{ } 64 \text{ } 65 \text{ } 66 \text{ } 66 \text{ } 65 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 69 \text{ } 66 \text{ } 68 \text{ } 69 \text{ } 61 \text{ } 63 \text{ } 64 \text{ } 65 \text{ } 66 \text{ } 65 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 69 \text{ } 61 \text{ } 63 \text{ } 65 \text{ } 66 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 69 \text{ } 68 \text{ } 69 \text{ } 61 \text{ } 63 \text{ } 65 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 65 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 69 \text{ } 69 \text{ } 61 \text{ } 61 \text{ } 63 \text{ } 64 \text{ } 65 \text{ } 66 \text{ } 66 \text{ } 66 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 69 \text{ } 66 \text{ } 67 \text{ } 68 \text{ } 69 \
$$

Proof. (i) Since h_p (a, b; c; z) has the form (2.11), we see from (ii) of lemma 2.2 that our conclusion is equivalent to

$$
\sum_{n=p+1}^{\infty} n (p - \beta) \frac{(a+1)_{n-p-1} (b+1)_{n-p-1}}{(c+1)_{n-p-1} (1)_{n-p}} \le \left| \frac{c}{ab} \right| p (p - \beta).
$$
\n(Error! No
next of specified style
in document.-28)

Now

$$
\sum_{n=p+1}^{\infty} n (p - \beta) \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}}
$$
\n
$$
= \sum_{n=0}^{\infty} (n+1+p)(n+1+p-\beta) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}}
$$
\n
$$
= \sum_{n=0}^{\infty} [(n+1)^2 + (2p - \beta)(n+1) + p(p - \beta)] \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}}
$$
\n
$$
= \sum_{n=0}^{\infty} (n+1)^2 \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}}
$$
\n
$$
+ (2p - \beta) \sum_{n=0}^{\infty} (n+1) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}} + p(p - \beta) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}}
$$
\n
$$
= \sum_{n=0}^{\infty} (n+1) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n}
$$
\n
$$
+ (2p - \beta) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} + p(p - \beta) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}}
$$
\n
$$
= \frac{(a+1)(b+1)}{(c+1)} \sum_{n=0}^{\infty} \frac{(a+2)_n(b+2)_n}{(c+2)_n(1)_{n+1}} + (2p+1-\beta) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_{n+1}}
$$

$$
= \frac{(a+1)(b+1)}{(c+1)} \sum_{n=0}^{\infty} \frac{(a+2)_n(b+2)_n}{(c+2)_n(1)_n} + (2p+1-\beta) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} + p(p-\beta) \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n}
$$

$$
=\frac{\Gamma(c+1)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)}\times
$$

$$
\left((a+1)(b+1)+(2p+1-\beta)(c-a-b-2)+\frac{p(p-\beta)}{ab}(c-a-b-2)_2\right)
$$

$$
-\frac{p(p-\beta)c}{ab}.
$$

This is less than or equal to $\left|\frac{c}{ab}\right| p(p-\beta)$ if and only if

$$
(a+1)(b+1) + (2p+1-\beta)(c-a-b-2) + \frac{p(p-\beta)}{ab}(c-a-b-2)_2 \le 0,
$$

Which is equivalent to (2.18) .

(iii) From Theorem (2.7) it follows.

3. AN INTEGRAL OPERATOR

In this section, we illustrate some results obtained by a particular integral operator G_p (a, b; c; z) acting on F (a, b; c; z) as follows

$$
G_p(a, b; c; z) = p \int_0^z t^{p-1} F(a, b; c; t) dt
$$

$$
= z^{p} + \sum_{n=1}^{\infty} \left(\frac{p}{n+p}\right) \frac{(a)_n (b)_n}{(c)_n (1)_n} z^{n+p}.
$$

Theorem 3.1

- (i) If $a, b > 0$ and $c > a + b$, then $G_p(a, b; c; z)$ to be in $S^*(p)$ if
- (**Error! No text of** $\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c)\Gamma(c-b)} \leq 2.$ **specified style in document.**-29)
	- (ii) If $a, b > -1$, $ab < 0$ and $c > 0$, then $G_p(a, b; c; z)$ is in $T(p)$ or $\mathcal{A}(p)$ if and only if $c > max\{a, b\}$.

Proof. (i) Since

$$
G(a, b; c; z) = zp + \sum_{n=1}^{\infty} \left(\frac{p}{n+p}\right) \frac{(a)_n (b)_n}{(c)_n (1)_n} z^{n+p},
$$

According to the Lemma (2.3), we must show that

(**Error! No text of specified style in document.**-30)

We see that

 $\sum_{n=1}^{\infty} (n+p) \left(\frac{p}{n+p}\right) \frac{(a)_n (b)_n}{(c)_n (1)_n} \leq p.$

$$
\sum_{n=1}^{\infty} (n+p) \left(\frac{p}{n+p}\right) \frac{(a)_n(b)_n}{(c)_n(1)_n} = p \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} = p \left(\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n} - 1\right)
$$
 \n(Error! No
specified style
document.-31)

The last expression is bounded above by p if and only if condition (3.1) holds. ■

(ii) Since

$$
G(a,b;c;z) = zp - \frac{|ab|}{c} \sum_{n=p+1}^{\infty} \frac{p}{n} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} z^n,
$$

According to the Lemma (3.2), we must show that

$$
\sum_{n=p+1}^{\infty} \frac{(a+1)_{n-p-1}(b+1)_{n-p-1}}{(c+1)_{n-p-1}(1)_{n-p}} \le \frac{c}{|ab|},
$$

or, equivalently,

$$
\sum_{n=0}^{\infty} \frac{(a+1)_n (b+1)_n}{(c+1)_n (1)_{n+1}} = \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n (1)_n} \le \frac{c}{|ab|}
$$

But this is equivalent to

$$
\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c)\Gamma(c-b)} - 1 \ge -1,
$$

which is true if and only if $\epsilon > max\{a, b\}$. This complets the proof of Theorem 3.1(ii). \blacksquare

Since
$$
\frac{z}{p} G'_{p} = h_{p}, \frac{z}{p} G''_{p} = h'_{p} - \frac{1}{p} G'_{p}
$$
, and so $1 + \frac{z G''_{p}}{G_{p}} = \frac{z h'_{p}}{h_{p}}$.
\n $G_{p}(\mathbf{a}, \mathbf{b}; \mathbf{c}; \mathbf{z}) \in \mathcal{K}(p, \beta) (\mathcal{U} \mathcal{C} \mathcal{V}_{p}(\beta)) \Longleftrightarrow \frac{z}{p} G'_{p}(\mathbf{a}, \mathbf{b}; \mathbf{c}; \mathbf{z}) = h_{p}(\mathbf{a}, \mathbf{b}; \mathbf{c}; \mathbf{z}) \in \mathcal{S}^{*}(p, \beta) (\mathcal{U} \mathcal{S}_{p}(\beta)).$

Thus any p-valent starlike about h_p leads to a p-valent convex about G_p . Hence we obtain the following analogues to theorems (2.4) and (2.6).

Theorem 3.2

(i) If $a, b > 0$ and $c > a + b + 1$, then $G_p(a, b; c; z)$ to be in $\mathcal{UCV}_p(\beta)$ if

$$
\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\Big\{1+\frac{ab}{(p-\beta)c-a-b-1}\Big\}\leq 2.
$$

(ii) if $a, b > -1$, $ab < 0$ and $c > a + b + 2$, then $G_p(a, b; c; z)$ is in $C(p, \beta)$ $\Big(\mathcal{C}_p(\beta)\Big)$ if and only if

$$
c \ge a + b + 1 - \frac{ab}{p - \beta}.
$$

REFERENCES

[1] Goodman, A.W. (1991), "On uniformly starlike functions, "J. Math. Anal. Appl., 155, 364–370.

[2] Al-kharsani H.A. and Al-Hajiry, S.S. (2006), "Subordination results for the family of uniformly convex p-valent functions," J. Inequal. Pure and Appl. Math., 7(1), Art. 20. [online: http: //jipam.vu.edu.au/article.php?

[3] Silverman, H. (1975), "Univalent functions with negative coefficients," Proc. Amer. Math. Soc. 51, pp. 109-116.

[4] Owa, S. (1985), "On certain classes of p-valent functions with negative coefficients," Bull. Belg. Math. Soc. Simon stevin, 59, pp. 385-402.

[5] Al-kharsani H.A. and Al-Hajiry, S.S. (2008), "a note on certain inequalities for p-valent functions," Journal of inequalities in pure and applied mathmatics, vol 9(2008), Issue 3, Article 90, 6pp.

[6] El-ashwah, R.M., Aouf, M.K. and Moustafa, A. O.(2010), "Starlike and convexity properties for p-valent hypergeometric functions, " Acta Math. Univ. Comenianae, Vol. LXXIX, 1, pp. 55-64.

[7] Chen M.-P., Multivalent functions with negative coe cients in the unit disc, Tamkang J. Math. 17(3) (1986), 127{137.