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Abstract. In this article, we introduce tests for examining the hypothesis of whether the observations in a Poisson
distribution with the same parameters fit with the observations of Poisson distribution with different parameters.
When Poisson parameter is small, and the sample volume is large, homogeneity tests like Conditional Chi-square test,
Likelihood ratio, and Nymen-Scott test are not efficient enough. Therefore, in this article, another test which is
efficient enough in these conditioned is introduced, named Anscombe test. At last, based on Mont Carlo simulation
we compare these tests in terms of performance and accuracy, and we illustrate use of them through a real example.
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1. INTRODUCTION

Distribution of several special events with low occurrence probability exists in dependent
Bernoli tests. Distributions related to number of fatal traffic accidents in a week, number of
particles radiated from the sun, number of calls received in an emergency police station in a
certain period of time, number of space rocks colliding into a pilot satellite, number of
radioactive particle rays, particle dispersion, and other instances are examples of Poisson
distribution. Different tests exist in this regard through which we can examine whether a sample
of observations with Poisson distribution can fit with equal occurrence rate. Since the
occurrence rate of Poisson random variable depends on the place and time span, a random
sample of Poisson random variable can have different Poisson distribution with different rates
because it was observed in different spans. Therefore, homogeneity tests are very important in
Poisson distribution. In this article, following Brown and Jao (2005) , four tests of “Conditional
Chi-square”, “Likelihood ratio”, “Nymmen-Scott test” and “Anscomb Transformation test” are
introduced. These tests have rather good efficiencies when \ is low /. Only if the / is low / a test
named after Anscombe (1948) and Bartlett (1947), called Anscombe Transformation test, is
used.

The article structure is as follows: in the second part, the aforementioned tests for Anscombe
distribution are described. In the third part, the mentioned tests are compared using Mont Carlo
simulation. Also, the method of using these tests is illustrated through a real example.

2. HOMOGENEITY TESTS IN POISSON DISTRIBUTION

Suppose /are independent random variables, as X; ,i =1,2,..,m / we want to test
Hy: L =A==,
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V.S
Hy: x ~P(A) (I, (-2 >0) (1)

We deal with a preliminary examination of different tests to answer this question.

1.1. Likelihood Ratio tests

Sup L(G;K)He(ao
Sup L(6;k)eeco
parameter space and ®p is parameter space under zero hypothesis. An oft-used feature of this

Likelihood ratio tests is conducted based on statistic A(x) = in which O is
test is limit distribution of Chi-square of A(x) logarithm. Suppose X1, ..., Xn, is a random sample
of family distribution with test density of supposition {f¢: pEDBC RK} , which verifies in
favorable conditions, and suppose hypothesis test of Hy: ¢p; = ¢i0 a=12,...,r ,r<k
against Hy: ¢; # ¢; for at least one r<k and i=1,2,...,r . Under zero hypothesis, when the

volume of the sample is big, statistic —2Ln A(x) has approximate distribution of y? with
r =dim® —dim®, degree of freedom (Mood at all, 1997). Because under hypothesis

Hy : A1 = -+ = Ay maximum likelihood is estimated 4; = x; ,i = 1,2, ...,n and under general

parameter  space A =x;,i=12,..,n | so  SupL(ly, .., Ay) = % ’
i=1\Xi):

Sup l(Aq, . An) = e(g% and as a result

Tir = —2LnA(x) =2%x; Ln (’% (2)

Also, when n = @ we haveT,p ~ x2_;. Therefore Ho hypothesis is rejected when

Tir > X;_(n_l).

2.2. Conditional Chi-square Test

Because under hypothesisHp . Ai =X and under general state A; =X; , so, the relative
difference between these statistics can be a criterion for testing hypothesis Ho . The famous Chi-
square is as follows:

Te = i, 82 = 02 (3)

— 4i=1 x

Which can be statistic for testing Ho hypothesis. Because under zero hypothesis, the
e = ) _1 1
X1, .- -, X distribution under the condition X is the polynomial (TIX,;, N ;) ; therefore, under

zero hypothesis the statistic Tcc has a asymptotic distribution y2Z_; . Hypothesis Hp is rejected
when T¢c > X;,(n_g . This test is also known as ‘Poisson Dispersion Test’ or ‘Variance Test’.

2.3. Nymen-Scott test
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Nymen-Scott statistic is another statistic which is constructed based on relative difference
between X; and X as follows:

Tve =[S E 1) @

Nymen and Scott showed that under hypothesis Hop ,TNSZ has a normal asymptotic
distribution . Therefore, Ho is rejected if Tee > xfgin—1 -

2.4. Anscomb Transformation Test

In 1948, Anscomb, based on a permanent transformation of second degree for random
variables having Poisson distribution, proposed a test for homogeneity hypothesis in Poisson
distribution. Suppose X1, ..., Xn are independent random variables, as x; ~ P(4;) i=1, 2... n;

setY; = [x; + % then under hypothesis Ho: 44 = *+ = 4, we have:
1 1
In which A=24; == A4, .So,if A— 0 we have
2(Y; —v(4:)) — N(0,1) (6)

Therefore, under Hy hypothesis, we have:
Ta=4Y;-Y)> —x*,_, (7

Also, under H1 hypothesis, the Ta statistic inclines to non-central in_l distribution, whose

non-central parameter is 8 = 4 Y (v(4;)5)? with U = %Z?zl v(4;). We reject Hy hypothesis if

. / 1. / 3
T, > ch,n—l . Brown et al (2001) suggest that we use transformation |X; + " instead of |Xx; + z

because we have:

EA(\/Xi_-F%)=\/z+O(%) (8)

3. RESULTS OF SIMULATION

In this part, using Mont Carlo simulation, we compare the aforementioned tests. To do so, at
Type 1 level of error o= .05 and by means of repeating sampling, we empirically calculate
power amounts of the mentioned tests by statisticsTLr, Tce, Tns, Ta, which is summarized in the
table below.

In this part, empirical results under zero hypothesis resulted fromTy, Tys, Tce, Tir — statistics
are presented. The results of calculated Type I empirical error with 100000 repetition for
different sample sizes(n = 5,12,20), is summarized in table below:
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Table 1. Tape I error.

n | A | statistic a=0.1 a= 0.05 o=0.01| a=0.005
ESE=0.003 | ESE=0.002 | ESE=0.001 | ESE=0.001

20 5 T 0.1107 0.0585 0.0132 0.0070
20 5| T, 0.1359 | 00724 | 00173 |  0.0089
20 5 Tee 0.0977 0.0977 0.0103 0.0059
20| 5 Txs 0.1039 0.1039 0.0220 0.0148
12 12 T 0.1050 0.0540 0.0122 0.0065
12 12 Tir 0.1102 0.0563 0.0120 0.0062
12 12 Tee 0.1007 0.0505 0.0104 0.0054
12 12 Tas 0.1082 0.0670 0.0260 0.0170
51 25 T 0.1008 0.0510 0.0103 0.0053

51 25 Tir 0.1027 0.0517 0.0101 0.0051

51 25 Tee 0.0994 0.0490 0.0095 0.0046

51 25 Tys 0.1059 0.0696 0.0312 0.0231

The following functions can we calculate each of four tests forn =15, 12, 20

Table 2. Power function for n=20.

statistic | g=.1| 0 =.05 | 0 =.01 | 0 =.005
Tns 23 13 .036 .02
Ap == Ay =10 Tec 23 13 .04 .024
23 13 .04 .024
Tir
Tns 4 .29 11 .07
M1 = =1=8 Tec 4 28 11 .07
4 28 11 .07
Tir
M==A,=6 Ts 43 3 132 .082
Ag=-=14=9 Tns 43 28 11 .07
4 3 11 .073
s =--=2 T
15 20 e 4 3 11 073
Tir
Table 3. Power function for n=12.
Ai statistic | g=.1 | ¢=.05| a=.01 | a =.005
A= =A;=5 Ts .66 .54 3 23
Ay = =21,=10 | Tys 78 .65 3 23
T .65 52 .29 22
cc
.65 52 .29 22
Tir
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M==1=1 |T, 2 12 03 02
Ay == Ay = Tys 19 11 028 015
T . 12 03 019
cc
2 12 03 019
TLR
M==A,=1 |T, 995 | .99 95 93
A= =Ag=5 |Tys 99 99 95 99
ez ao=9 |T 98 95 86 81
? 12 ce 98 95 86 81
TLR

Table 4. Power function for n=5.

Ai Statistic | ¢=.1| 0=.05 | a=.01 | a =.005
A =21,=20 Ty 21 127 0374 | .022
Tws .19 11 .028 015
Az= - =25=25| T, 12 125 .035 021
12 125 .035 021
TLR
M=2A=5 Ty 52 39 .18 13
Tws 57 4 .18 13
A== =8 Tec 49 .36 17 12
4 36 17 12
TLR
A =21, =15 Ty 15 084 022 012
A=A, =16 Tws .14 076 017 .009
As = 19 Tec 15 .084 022 012
15 .084 022 012
TLR

As you can see, in the case of the Poisson parameter to increase the sample size is small, the
test may be higher Anscomb
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