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Abstract. Using Lax representation, hereditary operator related to the Harry-Dym ( HD ) hierarchy is constructed. 

Also Lie analysis and Lax pair are used to drive the conserved quantities for the HD hierarchy. Lie symmetry method 

is also applied to study Painlev´e test for the family of HD hierarchy. It is found that for this family the Painlev´e 

property can be at most sufficient for integrability, but not necessary. This fact has been proved earlier for just first 

member of this family.  
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1. INTRODUCTION  

 
One of the remarkable integrable equations is Harry-Dym (HD) equation 

                                                                                                                              (1.1) 

which has a large number of diverse applications of physical and mathematical disciplines. The 

integrality of (1.1) in soliton theory is a well known fact. Its cusp solutions followed by 

construction the Gel’fand-Levitan-Marchenko integral equation has successfully been found by 
Wadati et.al (1980) [2]. 

This equation has a strong link with Korteweg-de Vries (KdV) equation. For example, 

Ibragimov (1985) [4] and Hereman et.al (1989) [11] show how (1.1) is transformed to KdV 

equation where its applications were found in several physical problems including 

hydrodynamics, for example see Vosconcelos and Koclanoff (1991)[10]. 

Lax representation of an nonlinear integrable equation is the first step to find the general n-

soliton solutions via an standard procedure so-called Inverse Scattering Transform (IST) 

where an solution obtained at a nonzero time based on an initial solution. This method has 

successfully been employed to construct the soliton solutions of several integrable equations, 

e.g., nonlinear Schrodinger (NLS) equation Yang (2010) [1], and recently matrix complex 

modified Korteweg-de Vries equation by Ahmadi zeidabadi and Hoseini (2013) [3]. This 

linear formulation allows us to construct most general hierarchy related to the integrable 

equation. The procedure is also called as Ablowitz-Kaup-Newll-Segur (AKNS) hierarchy. 

Lax pair also provides the means to construct a recursive relation to find the conservation 

laws. Using a method due to Wadati et al [9], the recursion of the conserved quantities for 

NLS equation can easily be found without any knowledge of IST, i.e., see Yang (2010) [1]. It 

is well known fact that HD related Lax representation is associated with Sturm-Lioville 

operator. 
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Lie Analysis is a strong tools to construct the vector fields and therefore symmetries for 

the ordinary and partial differential equations (ODE, PDE)’s which are essential for checking 

the Painlev´e property, for more detail of the procedure we refer the reader to [7]. 

Painlev´e property deals with ODEs with no critical and movable singularities. In other 

words, an ODE satisfies the property if all its critical and movable singularities are absent. In 

some sense, it has been shown that this property came to be synonymous to integrability, for 

more details see 5. 

The connection between the Painlev´e property and when integrability is considered in 

terms of Lax representation (i.e. IST procedure) is known as AblowitzRamani-Segur (ARS) 

conjecture [13]. ARS conjecture states that integrability of an PDE is related to the Painlev´e 

property of its ODE reductions. At least for (1.1), it has been shown that this relation is 

necessary, but not sufficient. 

The paper is organized as: 2 describes the construction of the HD hierarchy based on the Lax 

pair formulation. In 3 we apply the important concepts of Lie symmetry analysis to find the 

symmetry groups for HD hierarchy. 4 deals with the reduction HD hierarchy to some ODE’s 

which are essential to study the Painlev´e property. As a conclusion, in 5 we show that the 

reduced ODE’s related to HD hierarchy do not satisfy in Painlev´e property 

 

2. LAX PAIR AND CONSERVATION LAWS 

 

The present section consists of construction of the HD hierarchy where its Lax representation 

is well known. The procedure is an standard method in soliton theory known as AKNS 

hierarchy. This hierarchy was firstly found for NLS and similar methods have been employed 

for other integrable systems i.e. see Yang (2010) [1]. One of the main results of the present 

section is to construct a strong symmetry and therefore a hereditary operator for HD family 

using the Lax pair structure. 

 

 2.1 HD hierarchy and hereditary operator 

It is well known that the expressing a PDE in the Lax pair is a sufficient condition for 

integrability, i.e., IST method can be applied to find the most general soliton solutions. The 

IST has been successfully applied for several integrable system of equations. As one of the 

remarkable results of extracting the soliton solutions via IST, the conservation quantities 

including the fluxes and density can be constructed. The most general solitary wave solutions 

for HD equation (1.1) have been studied via IST successfully by Wadati et.al (1980) [2]. Here 

we summarize some facts and more results which can be used to construct the conservation 

laws. As the first step the HD equation should be considered as the compatibility condition for 

a pair of the first-order PDE’s. The Lax matrix representation for HD is     

                                                                                                               (2.1) 

where the zero curvature , is the same as the HD equation (1.1). The 

explicit forms of the matrices M and N are 

                                   ,                           

(2.2) 
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where λ is the (complex) spectral parameter. Analogous to AKNS hierarchy to NLS, one can 

construct new integrable higher-order hierarchies for HD equation. These equations can also 

be solved via IST, knowing the Lax pair. 

For this purpose we consider the Lax pair (2.1) in more general from 

                                     ,                                                (2.3) 

where the functions in N are functions of u and its x-derivatives. Applying the compatibility 
condition yields 

                                                    (2.4) 

where D0 is a constant and the evolution equation is 

                                                                                                      (2.5) 

As the general form (2.5) is independent of the constant D0 then we can simply set D0 = 0. 

Expanding the function B in the λ power series 

                                                                                                              (2.6) 

Determines 

                                                                                                                     (2.7) 

where the coefficients Bj satisfy the recursive relation 

                                                                                 (2.8) 

and B1 = 1. As for instance     

                                                                                                                            (2.9) 

                                                                                            (2.10)  

are constructed for n = 1 and n = 2. Note that the choice 

                                                                                                 (2.11) 

yields the same hierarchy (2.7) and (2.8). 

Interestingly enough, combining (2.7) and (2.8) gives the strong symmetry 

                                 (2.12) 

where the operator D is normal derivative respect to the independent variable x, and 

                                                    ,                                                (2.13) 

where the asymptotic condition u(±∞) = 1 has been utilized. Indeed Φ is a hereditary operator. 

For more details and the proof refer to [6], where the operator (2.12) has been constructed by 

the Lie-Bu¨ckland symmetry approach. 
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More general form of (2.5) is found when the spectral parameter is considered as 0 a 

function of the temporal variable t ( ) i.e. 

                                                                                (2.14) 

By a similar procedure and 

                                                                                                (2.15) 

where the recursive formulation for κj(t) can easily be yielded. 

         For (2.10) the linearized operator of  is defined by 

                         (2.16) 

which is the Gateaux derivation of K at u in the direction  i.e. 

                                               .                                                   (2.17)                

  

2.2. Conservation Laws 

  

Analogous to the novel method due to Wadati to construct an infinite number of conserved 

quantities for an integrable equation, we will extract the conservation laws for the HD family 

(2.7) from its Lax pair, requiring to solve a Ricatti equation. 

      Denoting Y = (y1,y2)
T and µ = y1/y2, Lax pair (2.1) and (2.3) are simplified to 

                                                               

 

Cross-differentiating with respect t and x, respectively, yields 

                                                                                                               (2.20) 

On the other hand, the first equation of Lax pair gives the Riccati equation 

                                                                   .                                                     

(2.21) 

Substituting Laurant series 

                                                                 ,                                              (2.22) 

in (2.20)-(2.21) and zero asymptotic conditions, the conservation law is determined as 
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                       (2.23) 

                                                                                                                                             (2.24) 

And 

                                                     (2.25) 

which gives a recursion for µj. By inspection, it is not difficult to show from (2.25) that the 

asymptotic conditions at infinities for µj except for µ−1 are zero. For µ−1 the second terms 

(2.23)-(2.24) are constants and therefore vanished. Thus right hand sides of (2.23)-(2.24) are 

zero which means that µj are indeed densities. 

 

3. LIE ALGEBRA AND PAINLEV´E ANALYSIS 

 

Recently, several authors studied Lie algebra analysis and its applications for PDEs 

including HD equation (1.1). It is a well known fact that (1.1) does not possess the Painlev´e 

property, which indicates that the Painlev´e property can be at most sufficient for integrability, 

but not necessary. This is so-called ARS conjecture. Here in this section we will show that the 

same phenomena occurs for HD hierarchy (2.7). To start with, we use the Lie algebra to find 

the reduced ODEs for (2.7). We refer the reader to see the complete discussion in reference [7] 

and the references therein. 

 

3.1. Symmetry groups for HD Hierarchy 

 

Symmetry Lie analysis can be performed to find the vector fields and therefor the 

corresponding one-parameter group related to the general HD equation (2.7). To facilitate a 

clear understanding of the analysis we demonstrate the procedure for the first-order HD (2.9), 

whenever its needed. 

We begin with the following proposition which can be proved by induction initiated from 

                                                                                                (3.1) 

Proposition:The recursive operator Bj, defined by (2.8) is homogenous of order 2(j−1) respect 

to u and x, that is; 

a) Bj(αu(x,t)) = α2(j−1)Bj(u(x,t)), 

b) Bj(u(αx,t)) = α2(j−1)Bj(u(x,t)), α ∈ R. 

b) shows that the derivative maximum-order respect to the space variable x in (2.7) is 

2n+1, and hence the vector field related to symmetries of HD hierarchy (2.7) is 
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                                                                      (3.2) 

where the functions ξ,τ and  are determined so that pr(2n+1)v[4(x,u(2n+1))] = 0 , where 

4(x,u(2n+1)) is the single PDE defined by (2.7). Consequently, the corresponding one-parameter 

group ) will be a symmetry group of the HD equation (2.7). Here the vector field is 

defined on X × U = R2 × R. Applying pr(2n+1)v to 

(2.7), the infinitesimal criterion is explicitly determined. For (2.9), this criterion is 

                                                                                                      (3.3) 

where the coefficients  and are 

                                                              (3.4) 

Substituting the general formulae (3.4) into (3.3), replacing ut by (2.7) whenever it occurs, 

and equating the confinements of the various monomials in the first and higher order partial 

derivatives of u, we find the equations for the symmetry group in a general form to be 

,     (3.5) 

where the constants ci are arbitrary and then the linearly independent vector fields for (2.7) as 

                                                            (3.6)  

Moreover, the extra vector field  is also obtainable among (3.6), which 

is not applicable in Lie analysis here. The one-parameter groups Gi generated 

by the vi, determined via exp( ) are 

                                                                           

(3.7) 

Therefor more extended solutions of (2.7) will be in the forms 

                                                                     (3.8) 

if u = f(x,t) is a solution of (2.7), where  is any real number. Importantly, although the 

extended solution (3.8) has been constructed by inspection, above proposition can be easily 

used to show that it is a solution of (2.7) for any natural number n. 

The most convenient way to display the structure of a given Lie algebra is to write it in 

tabular form. The commutator table for (3.6) will be 4×4 table, whose (i,j)- th entry expresses 

the Lie bracket [vi,vj]. Note that the table is always skew-symmetric since [vi,vj] = −[vj,vi]; in 

particular, the diagonal entries are all zero; 
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Table 1. The commutator table for (3.6). 

[ , ] v1 v2 v3 v4 

v1 0 0 −(2n + 1)v1 0 

v2 0 0 0 v2 

v3 (2n + 1)v1 0 0 0 

v4 0 −v2 0 0 

Thus, for example, 

[v1,v3] = {v1(−(2n + 1)t)∂t + v1(u)∂u}−{v3(1)∂t} = −(2n + 1)v1. 

Note that due to the obstacle of the integral in hereditary Φ in (2.12), the general form for 

vector fields for HD can not explicitly determined, as found for KdV equation in [8] 

These solutions for (2.9) are the time- and space-invariant u(1) and u(2) and 

, 

The groups G4 and G3 demonstrate the time- and space-invariance of the equation, The 

well-known scaling symmetry turns up in G2, and G1 represents a kind of Galilean boost. The 

most general one-parameter group of symmetries is obtained by considering a general linear 

combination c1v1 + ··· + c4v4 of the given vector fields; we can represent an arbitrary group 

transformation g as the composition of transformations in the various one- parameter 

subgroups G1,...,G4. In particular, if g is near the identity, it can be represented uniquely in the 

form 

. 

4. SIMILARITY REDUCTIONS OF THE HD EQUATION 

 

In this section we use the method of characteristics to determine the invariants and reduced 

ODEs corresponding to each subalgebra given in (3.6). 

Similarity reduction corresponding to the symmetry generator v4 − v3, for an example, is 

obtained by solving the characteristic equations 

 

Integration of these ordinary differential equations yields 

, 

and satisfies the ordinary differential equation 

                                                                                                   (4.1) 
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Where 

                                                                                             (4.2) 

We summarize the results of similarity reductions related to the vector fields in (3.6) in the 

following table; 

5. PAINLEV´E ANALYSIS AND ARS CONJECTURE 

 

An ODE is called to possess Painlev´e property if all its critical (which are multivalued) and 

movable (i.e. depend on initial condition) are absent. It has been shown [12] that the 

construction of the solution of the Painlev´e equations (with Painlev´e property) can be very 

complicated, but can importantly be done. In other words, they can be integrated; they are 

integrable in the sense that can be solved in closed form. The connection between the property 

and other integrability contexts, including algebraic integrability and linearisability 

(construction a system of linear 

Table 2. The similarity reductions for (3.6). 

Generator Point transformations Invariant 

 solution 

Similarity reduction 

v1 :   F 0 = 0 

v2 :   F3(FBn)000 = 0 

v3 : ˜ no invariant solution  

v4 : ˜ no invariant solution  

 F(ξ)   ξF 0 + (2n + 1)F3(FBn)000 = 0 

 

equation from a given system via local transformations) has been studied by several authors. 

Is there any connection between an integrable in terms of IST technique PDE and 

Painlev´e property? Recently, Ablowitz, Ramani and Segur [13] conjectured that ODE 

obtained by an exact reduction of an integrable equation may satisfy in Painlev´e property, and 

vice versa. For several integrable equations it has been shown that the ARS conjecture holds 

in both directions. But several authors explained that the Painlev´e property can be at most 

sufficient for integrability. They refer to the HD equation (1.1) as a familiar example in this 

context. We shall apply a similar procedure for the HD hierarchy (2.7) in next subsection, 

using the leading-order analysis. 

5.1. The leading-order analysis 

 

The ARS algorithm proceeds in three steps, dealing with the dominant behaviors, the 

resonances and the compatibility conditions at resonances, respectively [13]. In the leading-

order analysis, it is sufficient to substitute 

                                                    ,                                                                   (5.1) 
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where β is a constant, in (4.2) to determine the leading exponent α. It can be substituted by 

g(ζ) = (ζ − ζ0) for convenience, where ζ0 is a pole. In the resulting polynomial system, equating 

every two or more possible lowest exponents of g(ζ) in each equation gives a linear system for 

α. The proposition in 3.1 or a direct induction illustrates that 

                                                                   (5.2) 

where Aj+1 is a function of α and β. Now, applying the same procedure for (4.1) and equating the 

exponents results 

                                                                   ,                                                                 (5.3) 

which is a positive non-integer number. The traditional Painlev´e test requires that all the α’s 

are integers and that at least one is negative. Therefore the equation (2.7) does not pass the 

Painlev´e test. Meanwhile, the package PDEPtest in Mathematica Baldwin and Hereman 

(2006) [15] has been used to confirm the above results. However, a suitable change of 

variables in (4.1), we can use the “weak” Painlev´e test[13]. 

Furthermore, it is also noted that Clarkson and Kruskal [13] proposed a direct method to 

find some new similarity reductions which can not be tracked by the standard Lie group 

method. But here in this paper, the reduction needed for Painlev´e analysis has been found 

through the regular prolongation theory based on the Lie algebra. 

6.   CONCLUSION 

 

The Harry-Dym (HD) hierarchy is studied from the Lax pair and Lie symmetry analysis 

view points. The hereditary operator as a generator to construct the most general form of HD 

hierarchy is also found. Based on the prolongation theory, the vector field related to 

symmetries of HD hierarchy is defined on R2×R and determined via standard procedure. These 

vector fields are used to find the similarity reductions which are essential for Painlev´e 

analysis. 

The main results of the present paper is to show that the Ablowitz-Ramani-Segur (ARS) 

conjecture is at most sufficient for integrability for HD hierarchy. This fact previously has 

been shown for just first member of the family. 
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