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Abstract. A mathematical method in pure mathematics (differential geometry) for finding solutions of differential 

equations is considered. The method is based on constructing a Lie algebra associated to a given system of differential 

equation, called Lie algebra of the symmetries of the given system. This Lie algebra is a vector space which maps a given 

solution, such as a constant solution, to another solution, it is a significant tool for finding new solution for system of 

differential equation specially partial differential equations. Then we will apply it to some differential equations in fluid 

mechanics and physics. 
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1. INTRODUCTION 

System of differential equations, specially partial differential equations have a vast 

applications in study all of engineering sciences, physics, biology, applied and pure mathematics 

and etc., in other words differential equations discuss how a phenomenon has been done [[1],[3]]. 
When we have a system of differential equations the last and important aim is to finding the 

solutions of the given system. If the system is ordinary i.e., we have one variable, there are many 

methods for finding solutions, such as Riccati equation, complete equation, homogeneous 

equation and etc., but a lot of problem appeared when the given system is partial kind. Usually in 

this situation there is no any rule for finding the solutions explicitly. This paper introduces a 

method, an algorithmic method, to solve the system by an initial solution such as boundary 

solutions [[5]]. As we said, this method is based on pure mathematics, thus it needs a lots of 

mathematical and geometric foundations. Here we use a clear explanation to describe it with out 

of any details [[6],[7],[8]]. The main object is vector fields which is constructed in differential 

geometry and has many applications in physics and engineering sciences. In this paper we work 

on a special kind of vector fields called symmetry of differential equations that give us a large set 

of solutions of a given system of differential equations. But we should know that the symmetries 

of differential equations do not limited to this kind of symmetries; which is called point symmetry. 

We have almost contact symmetry, mirror symmetry, potential symmetry, classical symmetry, 

generalized symmetry and…, but point symmetries is more applicable than the others. The 

symmetry set of a system of differential equations is the largest set of transformations acting on 

the independent and dependent variables of the system with the property that it transform 

solutions of the system to other solutions. The main goal of this paper is to introduce a useful, 

systematic, computational method that will explicitly determine the symmetry of given system of 

differential equations. Applications in some mechanical important partial differential equation are 

presented in the sequel [[2](Bluman J.W., Kumei S, 1989)]. 
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2. PROBLEM FORMULATION 

First we begin by a definition of a system of differential equations. An n-th order of a system 

of m-differential equations with with p-independent variables and q-dependent variable 

 can be written in the form of 

   ,,,1,0, mux n  
                  (1)

 

where  nu denote the derivatives of u respect to x up to order n . For example consider the equation 

for the conduction of heat in a one-dimensional rod uxxut  As the definition above this equation 

will be written such as   .0,,,,;,,  xxtttxtxxtx uuuuuuuutx  

Suppose 
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is a vector field corresponds to the equation (1), where i ’s and j ’s are some differentiable 

function of independent and dependent variables.The n-th prolongation of this vector field is a 

vector field  
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where ),,( 1 kjjJ  is a multi indices and nkpjk  1,1  [6]. The differential term J
j ,called 

coefficients of the prolongation, are obtained by the formula  
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For example for the one-dimensional heat transfer equation the operators (5) are:  
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The first step for finding symmetries of differential equations is to calculate the prolongation 

of the vector field (2). Consider a vector field 
u
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defined on plane. If u is a function 
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of x we have 
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where x  and xx are coefficients of the prolongation obtained from (4). These coefficients are 
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According to a theorem in mathematics [6], vector field (2) is a symmetry of the system (1) if  

    .,,1,0,)( m
n
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After expanding this equations and eliminating any dependencies among the derivatives of the 
iu  caused by the system itself (since (9) need only hold on solutions of the system), we can then 

equate the coefficients of the remaining unconstrained partial derivatives of to zero. This will 

result in a large number of elementary partial differential equations for the coefficients functions 
i , j of the vector field (2), called the defining equations or determining equations for the 

symmetry set of the given system. The general transformations of the solutions itself can then be 

found by exponentiating the given vector fields. The process will become clearer in the sequel. 

 

3. FLOW OF A VECTOR FIELD 

Suppose ),,( 1 pxxx   be a coordinate on the space M. A general form of a vector field on 

this space can be written as  
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The flow of this vector field is a curve, a differentiable vector function respect to 

parameter , which obtained by solving the following system of ordinary differential equations 

with an initial value, 
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It is clear that this curve represents the parametric equation of a circle centered at 

origin in a plane. In other words vector field 
u

x
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 is a rotating vector field. Now 

consider the ordinary differential equations .
u

xu  A simple calculations shows that the 

circle 222 cux  is the solution of this equation. It means if we move on the flow of the vector 

field 
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u
xu   thus X is a 

symmetry of this equation, and its flow is the transformation that transforms the solutions of this 

equation to another solutions [6,8]. In the next sections we will apply these results to some 

differential equations in fluid mechanics. 

 

3. EULER EQUATIONS 

As a first illustration of the basic method of computing symmetry sets, we consider 

the system of Euler equations for the motion of an inviscid, incompressible ideal fluid 

in three dimensional domain [6]. Here there are four independent variables, ),,(x zyx  

being spatial coordinates and t the time, together with four dependent variables, the velocity field 

),,(x zyx and the pressure p. (The density  is normalized to be 1.) In vector notation, the system 

has the form 
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in which the components of the nonlinear terms u,u   are
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notation.  
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where i ’s and j ’s are some differentiable function of ut,x, and p . Applying the first 

prolongation (13) to the Euler equations (12), (because the system is of order one.) we 

find the following system of the determining equations  
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which must be satisfied whenever u and p  satisfy (12). Here ,, 21
xt  etc. are the 
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coefficients of the first order derivatives ,,
xt vu 


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 etc. appearing in ,)1(X typical expression for 

these functions follow from the prolongation formula (3), so 
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Solve this system leads us to the coefficients of the vector field (13):  
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in which  ,,, and   are functions of ,t and 54321 ,,,, ccccc are arbitrary constants. Finally 

the divergence-free condition (17) imposes the further restriction that ,0tt so

.76 ctc  We have thus shown that the symmetry set of the Euler equations in three dimension 
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The corresponding flows of symmetries of the Euler equations are then:  

1. Transformation to an arbitrarily moving coordinate system: 
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three vector fields. 

3. The translation 
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where  e is a multiplicative parameter. 
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Note that in our change to a moving coordinate system μT , we must adjust the pressure 

according to the inherently assumed acceleration ttμ . The final transformation θT results from 

the fact that the pressure p is only defined up to the addition of an arbitrary function of t . This 

complete the list of symmetries and solutions of Euler equations.  

Thus with an initial solution of the system (12) such as constant solutions )c,c,(cu 321 and

4cp   we have some following new solutions: 
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4. SOURCELESS HEAT TRANSFER EQUATION 

Consider the sourceless heat transfer equation which is represented in the form of: 
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where a is a constant. In this equation u is a function of  ,tr, so that the symmetry of the equation 

(30) is a vector filed of the form  
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and we must find the coefficients of this vector field to obtain the symmetries. Because of the 

order of this equation, we should prolong (31) up to order two and by a same process as Euler 
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Solutions of the system (11) give us the flow of the vector fields (33) – (38) as follows: 
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If is ),( trfu  a solution of the equation (30), so are: 
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 Suppose cu  is a constant solution of (30), then some interesting solutions obtained from this 

simple one respect to 54 T,T and 6T are: 
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5. NEWTONIAN INCOMPRESSIBLE FLUID’S EQUATIONS FLOW IN TURBULENT 

BOUNDARY LAYARS 

In physics and fluid mechanics, a boundary layer is that layer of fluid in the immediate vicinity 

of a bounding surface. In the Earth's atmosphere, the planetary boundary layer is the air layer near 

the ground affected by diurnal heat, moisture or momentum transfer to or from the surface. On an 

aircraft wing the boundary layer is the part of the flow close to the wing. The boundary layer 

effect occurs at the field region in which all changes occur in the flow pattern. The boundary layer 

distorts surrounding non-viscous flow. It is a phenomenon of viscous forces. This effect is related 

to the Reynolds number (In fluid mechanics and heat transfer, the Reynold's number is a 

dimensionless number that gives a measure of the ratio of inertial forces to viscous 

and, consequently, it quantifies the relative importance of these two types of forces for given flow 

conditions). Laminar boundary layers come in various forms and can be loosely classified 

according to their structure and the circumstances under which they are created. The thin shear 

layer which develops on an oscillating body is an example of a Stokes boundary layer, whilst the 

Blasius boundary layer refers to the well-known similarity solution for the steady boundary layer 

attached to a flat plate held in an oncoming unidirectional flow. When a fluid rotates, viscous 

forces may be balanced by the Coriolis effect, rather than convective inertia, leading to the 

formation of an Ekman layer. Thermal boundary layers also exist in heat transfer. Multiple types 

of boundary layers can coexist near a surface simultaneously. The deduction of the boundary layer 

equations was perhaps one of the most important advances in fluid dynamics. Using an order of 

magnitude analysis, the well-known governing Navier-Stokes equations of viscous fluid flow can 

be greatly simplify within the boundary layer. Notably, the characteristic of the partial differential 

equations becomes parabolic, rather than the elliptical form of the full Navier-Stokes 

equations. This greatly simplifies the solution of the equations. By making the boundary layer 

approximation, the flow is divided into an inviscid portion (which is easy to solve by a number 

of methods) and the boundary layer, which is governed by an easier to solve partial differential 

equations. Flow and heat transfer of an incompressible viscous fluid over a stretching sheet appear 

in several manufacturing processes of industry such as the extrusion of polymers, the cooling of 
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metallic plates, the aerodynamic extrusion of plastic sheets, etc. In the glass 

industry, blowing, floating or spinning of fibres are processes, which involve the flow due to a 

stretching surface. Mahapatra and Gupta studied the steady two-dimensional stagnation-point 

flow of an incompressible viscous fluid over a flat deformable sheet when the sheet is stretched 

in its own plane with a velocity proportional to the distance from the stagnation-point. They 

concluded that, for a fluid of small kinematic viscosity, a boundary layer is formed when the 

stretching velocity is less than the free stream velocity and an inverted boundary layer is formed 

when the stretching velocity exceeds the free stream velocity. Temperature distribution in the 

boundary layer is determined when the surface is held at constant temperature giving the so called 

surface heat flux. In their analysis, they used the finite-differences scheme along with theThomas 

algorithm to solve the resulting system of ordinary differential equations. The treatment of 

turbulent boundary layers is far more difficult due to the time-dependent variation of the flow 

properties. One of the most widely used techniques in which turbulent flows are tackled is to 

apply Reynolds decomposition. Here the instantaneous flow properties are decomposed into a 

mean and fluctuating component. Applying this technique to the boundary layer equations gives 

the full turbulent boundary layer equations 
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where  is the density, p is the pressure,  is the kinematic viscosity of the fluid at a point and u

and v are average of the velocity components in Reynold decomposition. Here u   and v  are the 

velocity fluctations such that; uuu  and vvv  .By using the scale analysis (a powerful tool 

used in the mathematical sciences forthe simplification of equations with many terms), it can be 

shown that the system (39) reduce to the classical form 
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The term vu  in the system (40) called Reynolds shear stress, a tensor that conventionally written 

.R ij vu                  (41) 

The divergence of this stress is the force density on the fluid due to the turbulent 

fluctuations. Using Navier�Stokes equations for a fluid whose stress versus rate of strain curve is 

linear and passes through the origin (Newtonian fluid) the tensor(41) reduces to ,R ij
j

i

x

u




  where 

 is the fluid viscosity, thus the last term inthe second equation of (40) is
y

u


 . According to 

the system (40) the general form of the symmetry for this system is 
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After prolonging this vector field up to order two determining equations obtained as follows: 
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For finding the solutions we should fine flows of these vector fields; 
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where . e If ),(u),,(u yxfvu  and ),( yxgp  be solutions of the system, so the transformations 

of the solutions are 
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6. CONCLUSION 

The illustrated method is due to a conception in pure mathematics based on the 

transformations that transforms given solutions to another solutions which is a powerful tools for 

differential equations and has a lot of applications in applicable sciences. Some times when the 

variables are more that three or four we need to use some calculating soft wares such as Maple 

and Mathematica. It is useful to say that this method has not limited and could be applied to any 

kind of differential equations. 
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