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Abstract. In this paper, we study G-backward stochastic differential equations with continuous coefficients. We give
existence and uniqueness results for G-backward stochastic differential equations, when the generator f is uniformly
continuous in (y,z), and the terminal value £ € LE(F) with 1 < p = 2.

We consider the G-backward stochastic differential equations driven by a G-Brownian motion {E; ;= in the following
Ve =&+ [, f(s Y5 Z)ds + [, g(s.Ys, Z50d(B, — [; Z,dB, — (Kp —Ky) (1)

where Y. Z and K are unknown and the random function £, called the generator, and the random variable £, called
terminal value, are given. Our main result of this paper is the existence and uniqueness of a solution (¥, Z, K for (1) in
the G-framework.

Keywords: G-expectation, G-Brownian motion, G-martingale, G-Backward stochastic differential equations, LF
solution.

1. INTRODUCTION

Let (0, %, P) be a probability space carrying a 1-dimensional Brownian motion (B, )., and
(F+)e=0 be the filtration generated by (B );=g. It is well known that (B;):=q = @, for w € 2, is
a standard Brownian motion under P. A classical Backward Stochastic Differential Equation
(BSDE) is an equation of the following type

1 1
Yr = E + .J; 3(51 Ysts}dS_ _.rr stﬂg, (11)

where g is a given function, called the generator of (1.1) and & is a given fr-measurable random
variable called the terminal condition. The solution of (1.1) consists of a pair of adapted
processes (Y, Z).

Note that the above classical BSDE is based on a probability space framework. Recently,
there is one motivation to drive BSDEs and the corresponding time-consistent nonlinear
expectations to develop ahead beyond the probability space framework. It is that the classical
BSDE can only provide a probabilistic interpretation of a PDE for quasi linear but not for fully
nonlinear cases.
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In order to overcome the above shortcomings of classical BSDEs, Peng systemically
established a time-consistent fully nonlinear expectation theory. The notion of time-consistent
fully nonlinear expectations was first introduced in [2, Peng 2004] and [3, Peng 2005].

As a typical case, Peng (2006) introduced G-expectation (see [4] and the references therein).
Under G -expectation framework (G-framework), a new type of Brownian motion called & -

Brownian motion was constructed and the corresponding stochastic calculus of Ito’s type was
established. The existence and uniqueness of solution of a SDE driven by &-Brownian motion

can be proved in a way parallel to that in the classical SDE theory. But the BSDE driven by G-
Brownian motion (B, ).=p becomes a challenging problem.

Just as in the classical case, the r-martingale representation theorem is the key to solve a
BSDE in this G -framework. For a dense family of & -martingales, Peng [5] obtained the
following result: a G-martingale M has the form

Mr:MD-l_Hr-l_Hrj

r 3 E

M= f Z.dB,, K= j N (B}, —f 2G(n.)ds.
o o o

Here M is decomposed into two incompatible G-martingales. The first one M is called the
symmetric G-martingale. That is, —M is also a G-martingale. The second one K is quite unusual
since it is a decreasing process.

Due to the above G-martingale representation theorem, a natural formulation of a BSDE
driven by &-Brownian motion consists of a triple of processes (Y, Z, K), satisfying (1).

We review some basic notions and results of G-expectation and the related spaces of random
variables. The readers may refer to [4,5,6,7,8] for more details.

2. NONLINEAR EXPECTATIONS

Let £2be a given set and let H be a linear space of real functions defined on £2 containing 1,
namely F is a linear space such that 1 € H and that X € H implies |X| € }. H is a space of
random variables. We assume the functions on H are all bounded.
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Definition 2.1 [8]. A nonlinear expectation E is a functional H — R satisfying the following
properties

a) Monotonicity: if X,¥ € H and X = ¥ then E[X] = E[V ],
b) Preservation of constants: E[c] = ¢,

¢) Subadditivity: E[X]—E[V]=E[X —-Y], VXY €,
d) Positive homogeneity: E[AX] = AE[X], VA=0X EH,
e) E[X+c] = E[X]+c.

Let n is a positive integer, we denote by lip{IR™) the space of all bounded and Lipschitz real
functions on IE™. In this section we consider 12 = K and H = lip(R).

In classical linear situation, a random variable X with standard normal distribution, i.e.,
X~ (0,1}, can be characterized by

oo

Elp ()] = ;_j_ e o0)dx, Ve €lip(R).

V2

We know from Bachelier 1900 and Einstein 1950 that £[¢(X)] = w(1, 0) where u = u(t,x) is
the solution of the heat equation

1 -~
deu = 3 O,

with Cauchy condition u(0,x) = ¢(x).

In this paper we set G{a) = %(a"’ —gia”),a € R where gy € [0,1] is fixed.

Definition 3.1 [6]. X € H with &-normal distribution (with mean at x € R and variance
t = 0) is characterized by its G-expectation defined by

E[¢(x +tX)] = Broo(x+tx) =ult, x),

Where ¢ € lip(R) and u = u(t,x) is a bounded continuous function on [0, =) x & which is the
solution of the following &r-heat equation:

du—G@A2u) =0 ul0x) =a¢x)
We denote

P =P (p(x+Ex.))=ult ), (&x)el0,=)xR

3. 1-DIMENSIONAL &-BROWNIAN MOTION
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In this section we use some notations and definitions of [6].

Let @ = Co(R¥) be the space of all R-valued continuous paths (w,).g+With wy = 0. For any
wt, w? € Q we define

a0
12y —i 1_ 2
plo’0?) le [(ren,ilmf mrl)ﬁ.i].
z:

We set, for each t € [0,)
W, ={w,.: o €qQ}

F, =B, (W) = B(W,),

Fer = B (W) =[] B.W),

=t

F =N Fo = F{US}ETS}-

Then (€, F ) is the canonical space with the natural filtration. This space is used throughout the
rest of this paper.

For each fixed T > 0, we consider the following space of random variables
15(F) = {X(w) = ¢p(wey s ey ) ¥YM =1, ty, et €[0,TLV € lip(R™) ],
Obviously, it holds Efp(ﬁ} c EE?,(:FT}, forany t = T = o, We further define
0 — 0
10 (F) = U, 10,(F,).
We will consider the canonical space and set B, (w) = w,,t € [0, =), forw € Q.

Definition 3.1 [6]. The canonical process E is called a G—Brownian motion under a nonlinear
expectation E defined on EEP(SF} if foreachT = 0,m = 1,2,..,and for each ¢ € lip(R™),

0=t < =<t,=T, wehave

E[¢(Bt1J Et‘z - Bf-_’ v Bfm - Btm—‘-}] = qu’
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where ¢,,, € R is obtained via the following procedure:
%(le"'Jxm—l} = Pgm_rm_‘_{‘p(xb"'Jxm—l-"}}J

‘:"'."2 (le"'Jxm—E} = Pgm_‘__rm_z{qbl(xb"'-'xm—b'}},

¢m—1(x13' = P;rf*_{d}m_:(xi“}l
Dm = By (dm-1()).

The related conditional expectation of X = (Br,_J B,, — B;,, ... B:
defined by

— By,,_,) under F¢, is

m

E[%|%,;|= E[¢(B., B, — Be, o Bopy — Beyp )| T ]

= @y (Bey s Be; = By,

It is proved in [10] that E[.] consistently defines a nonlinear expectation on the vector lattice
15,(Fr) as well as on 12 (F) satisfying (a)—(e) in Definition 2.1. It follows that E[|X|] where

¥ €15, (Fr) (resp. 15, (F)) forms a norm and that 12, (F) (resp. I3, (F)) can be continuously
extended to a Banach space, denoted by Li(Fr) (resp. L (F)).

Definition 3.2 [6]. The expectation E[.] : LL(F) — R introduced through above procedure is

called &r-expectation. The corresponding canonical process B is called a G—Brownian motion
under E[.1.

For a given p =1, we also denote LZ(F) = {X € L;(F),|X|P € Lg(F)). LL(F)is also a
Banach space under the norm | X I,:= (E[|X|?])Y/>.

4.1TO INTEGRAL FOR &-BROWNIAN MOTION

Definition 4.1 [8]. Let Mz’ﬂ'(ﬂ, T} be the collection of processes in the following form: for a
given partition Ty = {tg,..., tx} of [0, T],

ﬂr(m} = Ej;;:_[}i f}'(m}l[rj,rj.,.._:l (t}v
whereT ER* p=1and&; € L7 («'sz-), are given.

Definition 4.2 [6]. For an % € Mz°(0,T) with 7,(w) = Ef:_gif}-(m}l[rﬁrj,,._j(t}, the related
Bochner integral is
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J: ne(w)dt = Ef:_ulfj(m}{tﬁl - t}'}-

R T 1/p - 1/p
LetllﬂIIHE=[]E[U:|?]I5.|‘JSJ ” 1 Tz = [E[ju |1r}3|""d5:|] and denote by HZ (0,T),

MZ(0,T) the

completions of ME*“(GJ T} under the norms |l 7 |l HE» Il IIMrG: respectively.

Let SEJD(GJ T] = {h(t_. Br-_r.r;---:Brnr.r}: tl.l ey tn = [ﬂ.l T]_. h e Eip(mn-l-l} } For p E 1 and

]1fﬂ

n€55°(0,T), set iy Is2= [E[Supre[ﬁ,r]er] Denote by S&(0,T) the completion of

52°(0,T) under the norm Il Is2.

We call L%.(F7), MZ(0,T), HZ(0,T) and 5 (0, T) the spaces of the G-framework.

Definition 4.3 [1]. A process {M,} with values in LL(F7) is called a G -martingale if
E[M,|F.] = M. forany s = t.

Definition 4.4 [6]. For each 7 € M2="(0,T) with the form 1 (w) = Ej:’:gi & }-(M]I[rﬁrj,,._) (t), we
define

I(T]'} = J"urn (S}st = Ej;':}lfj (Br_l:+._ - BrJ)

Lemma 4.5 [8]. The mapping I: Mz° (0, T) = LZ(F1) is a linear continuous mapping and thus
can be continuously extended to I: MZ(0, T) — LZ(F ).

In fact we have

E [J'ﬂr'.r}(s}dﬁ‘s] —0, 4.1)

E [(furn(s}dﬁ‘s)z] = [E [{n(s}}z]ds. 4.2)

Definition 4.6 [8]. We define, for a fixed n € MZ(0, T), the stochastic integral
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[y n(s)dB, = 1(n).

It is clear that (4.1), (4.2) still hold for # € MZ(0, T).

5. EXISTENCE OF THE SOLUTIONS

For simplicity, we consider the G-expectation space (12, L~ (F 1), E). We consider the following
type of &-BSDEs for simplicity

1 1
Y,=¢+ [ f(sY,Z)ds— [, Z.dB,— (Kr — K,), (5.1)
where f(t,w,v,z): [0,T]xNxR* > R.

In this section, we shall use the following assumptions:

There exists some p = 1 such that

(H1) foranyy,z, f(.,.,»,z) € ME(0,T),

(H2) |f (t,w,v,2) — f(t,w vz = L{ly —¥'| + |z — z') forsome L = 0,
(H3) | f (t,e,y,2)| = K(1+ |y| + |z]), where K is a positive constant,

(H4) W(t,w) €[0,T] %2, f(t,v,2) is continuous in (v,z).

For simplicity, we denote by 34(0,T) the collection of processes (¥,Z,K) such that
Y €52(0,T), K € HX(0,T) is a decreasing G-martingale with K, = 0 and K1 € L7.(Fr).

Definition 5.1 [1]. Let£ € L?,;(Tr} and f satisfy (H1) and (H2) for some p = 1. A triplet of
processes (¥, Z,K) is called a solution of Eq. (5.1) if for some 1 <X g = p the following
properties hold:

@) (¥,Z,K) € 32(0,),
b) Y, =&+ [, f(s,¥,,2)ds— [, Z.dB, - (Kr — K.).

Theorem 5.2. [1] Assume that £ € L?,;(Tr} and (H1) and (H2) are satisfied by f for some
p = 1. Then Eq. (5.1) has a unique solution (¥, Z, K). Moreover, for any 1 < g < p we have
Y€S2(0,T), Ze HZ(0,T) and K1 € LL(Fr).

Let p € (1,2] is a given constant in the rest of this paper. In the following theorem we
provide the existence of L7 solution for p = 2.

Theorem 5.3. If £ € Lz (Fr) and (H1), (H3) and (H4) are satisfied by f, then (5.1) has a
solution (Y,Z,K) € 52(0,T) x HZ (0, T) x L% (Fr).

2240



Solutions of G-Backward Stochastic Differential Equations with Continuous Coefficients

6. UNIQUENESS OF THE SOLUTIONS

Now we turn to the uniqueness of the solution of Equation (5.1) when f is uniformly continuous
with respect to (v, z).

In this section we consider the following hypothesis on the generator
f:[0,=]x QxR =R

(H5) f is uniformly continuous in ¥ uniformly with respect to (t,,z), i.e., there exist a
continuous non-decreasing function ¥: ¥ — R* | satisfying

v(0) =0,

0<ylx) =A(x+ 1), ¥x =0,

where 4 is a positive constant,

o (0] tdx = =,

Such that

F&y,2 - ey, 2| =¢(ly-y1), veyy.z as,

(H6) f is uniformly continuous in z uniformly with respect to (t, e, v), that is, there exists a
continuous function @: B — R satisfying

@(0) =0,
0<@lx)=Blx+1), W¥x=>0,
where B is a positive constant,

Such that

Ift v -ty z) =e(lz—2]), Vvtyzz, as,
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(H7) The function z = f(t,v, z) is Lipschitz continuous uniformly with respect to (t, e, V).

Theorem 6.1. Let & € L (Fr). Suppose {f(t, 0,0)}cer0r7 € HE (Fr), If (H5)-(H7) are satisfied
by f , then the G -BSDE associated with (f,&) has a unique solution
(YV,Z,K) € S2(0,T) x HZ(0,T) x LL (Fp).

Theorem 6.2. Suppose (H1), (H3) and (H6) are satisfied by f:[0,=]x Q@ x R?* = R, if
teli(F) , G -BSDE associated  (f,&) has a  unique  solution
(YV,Z,K) € S2(0,T) x HZ(0,T) x LL (Fp).

Theorem 6.3. Let 2 € L7 (Fr). If (H1), (H3), (H5) and (H6) are satisfied by f, there exists a
unique solution (Y, Z,K) € SZ(0,T) x HZ (0, T) x L, (Fr) which solves eq. (5.1).
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