

Mojtaba MALEKI 1,* , Elham DASTRANJ 2 , Reza HEJAZI 2

¹ M.Sc. Student, Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Shahrood, Shahrood, Iran

² Academic Member, Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Shahrood, Shahrood, Iran

Received: 01.02.2015; Accepted: 05.05.2015

__

Abstract. In this paper, we study G-backward stochastic differential equations with continuous coefficients. We give existence and uniqueness results for G-backward stochastic differential equations, when the generator f is uniformly continuous in (y, z) , and the terminal value $\xi \in L_G^p(\mathcal{F})$ with $1 < p \leq 2$.

We consider the G-backward stochastic differential equations driven by a G-Brownian motion $(B_t)_{t\geq 0}$ in the following

form:
 $Y_t = \xi + \int_t^T f(s,Y_s,Z_s)ds + \int_t^T g(s,Y_s,Z_s)d\langle B\rangle_s - \int_t^T Z_sdB_s - (K_T - K_t)$ (1)

where Y, Z and K are unknown and the random function f, called the generator, and the random variable ξ , called terminal value, are given. Our main result of this paper is the existence and uniqueness of a solution (Y, Z, K) for (1) in the G-framework.

Keywords: G-expectation, G-Brownian motion, G-martingale, G-Backward stochastic differential equations, solution.

1. INTRODUCTION

 $\overline{}$, where $\overline{}$

Let $(\Omega, \mathfrak{F}, P)$ be a probability space carrying a 1-dimensional Brownian motion $(B_t)_{t>0}$, and $(\mathfrak{F}_t)_{t>0}$ be the filtration generated by $(B_t)_{t>0}$. It is well known that $(B_t)_{t>0} = \omega_t$ for $\omega \in \Omega$, is a standard Brownian motion under \overline{P} . A classical Backward Stochastic Differential Equation (BSDE) is an equation of the following type

$$
Y_t = \xi + \int_t^T g(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s,
$$
\n(1.1)

where g is a given function, called the generator of (1.1) and ξ is a given \mathfrak{F}_{T} -measurable random variable called the terminal condition. The solution of (1.1) consists of a pair of adapted processes (Y, Z) .

Note that the above classical BSDE is based on a probability space framework. Recently, there is one motivation to drive BSDEs and the corresponding time-consistent nonlinear expectations to develop ahead beyond the probability space framework. It is that the classical BSDE can only provide a probabilistic interpretation of a PDE for quasi linear but not for fully nonlinear cases.

^{*}Corresponding author. *Email address*: *mojtaba.maleki1367@gmail.com*

Special Issue: The Second National Conference on Applied Research in Science and Technology

http://dergi.cumhuriyet.edu.tr/cumuscij ©2015 Faculty of Science, Cumhuriyet University

In order to overcome the above shortcomings of classical BSDEs, Peng systemically established a time-consistent fully nonlinear expectation theory. The notion of time-consistent fully nonlinear expectations was first introduced in [2, Peng 2004] and [3, Peng 2005].

As a typical case, Peng (2006) introduced \bar{G} -expectation (see [4] and the references therein). Under G-expectation framework (G-framework), a new type of Brownian motion called G -Brownian motion was constructed and the corresponding stochastic calculus of Ito's type was established. The existence and uniqueness of solution of a SDE driven by \overline{G} -Brownian motion can be proved in a way parallel to that in the classical SDE theory. But the BSDE driven by G -Brownian motion $(B_t)_{t\geq 0}$ becomes a challenging problem.

Just as in the classical case, the G -martingale representation theorem is the key to solve a BSDE in this G -framework. For a dense family of G -martingales, Peng [5] obtained the following result: a G -martingale M has the form

$$
M_t = M_0 + \overline{M}_t + K_t,
$$

$$
\overline{M}_t := \int_0^t Z_s dB_s, \qquad K_t := \int_0^t \eta_s \langle B \rangle_s - \int_0^t 2G(\eta_s)ds.
$$

Here M is decomposed into two incompatible G-martingales. The first one \overline{M} is called the symmetric G-martingale. That is, $-\overline{M}$ is also a G-martingale. The second one K is quite unusual since it is a decreasing process.

Due to the above \vec{G} -martingale representation theorem, a natural formulation of a BSDE driven by G-Brownian motion consists of a triple of processes (Y, Z, K) , satisfying (1).

We review some basic notions and results of $\mathsf{G}\text{-expectation}$ and the related spaces of random variables. The readers may refer to [4,5,6,7,8] for more details.

2. NONLINEAR EXPECTATIONS

Let Ω be a given set and let $\mathcal H$ be a linear space of real functions defined on Ω containing 1, namely H is a linear space such that $1 \in \mathcal{H}$ and that $X \in \mathcal{H}$ implies $|X| \in \mathcal{H}$. H is a space of random variables. We assume the functions on $\mathcal H$ are all bounded.

Definition 2.1 [8]. A nonlinear expectation \mathbb{E} is a functional $\mathcal{H} \to \mathbb{R}$ satisfying the following properties

- a) Monotonicity: if $X, Y \in \mathcal{H}$ and $X \geq Y$ then $\mathbb{E}[X] \geq \mathbb{E}[Y]$,
- b) Preservation of constants: $\mathbb{E}[c] = c$,
- c) Subadditivity: $\mathbb{E}[X] \mathbb{E}[Y] \leq \mathbb{E}[X Y]$, $\forall X, Y \in \mathcal{H}$,
- d) Positive homogeneity: $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$, $\forall \lambda \geq 0, X \in \mathcal{H}$.
- e) $\mathbb{E}[X + c] = \mathbb{E}[X] + c$

Let *n* is a positive integer, we denote by $lip(\mathbb{R}^n)$ the space of all bounded and Lipschitz real functions on \mathbb{R}^n . In this section we consider $\Omega = \mathbb{R}$ and $\mathcal{H} = lip(\mathbb{R})$.

In classical linear situation, a random variable X with standard normal distribution, i.e., $X \sim \mathcal{N}(0, 1)$, can be characterized by

$$
\mathcal{E}[\phi(X)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \phi(x) dx, \quad \forall \phi \in lip(\mathbb{R}).
$$

We know from Bachelier 1900 and Einstein 1950 that $\mathcal{E}[\phi(X)] = u(1,0)$ where $u = u(t,x)$ is the solution of the heat equation

$$
\partial_t u = \frac{1}{2} \partial_{xx}^2 u,
$$

with Cauchy condition $u(0, x) = \phi(x)$.

In this paper we set $G(a) = \frac{1}{2}(a^+ - \sigma_0^2 a^-)$, $a \in \mathbb{R}$ where $\sigma_0 \in [0,1]$ is fixed.

Definition 3.1 [6], $X \in \mathcal{H}$ with **G**-normal distribution (with mean at $x \in \mathbb{R}$ and variance $t > 0$) is characterized by its G-expectation defined by

$$
\mathbb{E}[\phi(x+\sqrt{t}X)] = P_G^1\phi(x+\sqrt{t}X) := u(t,x),
$$

Where $\phi \in lip(\mathbb{R})$ and $u = u(t, x)$ is a bounded continuous function on $[0, \infty) \times \mathbb{R}$ which is the solution of the following \boldsymbol{G} -heat equation:

$$
\partial_t u - G(\partial_{xx}^2 u) = 0, \quad u(0,x) = \phi(x).
$$

We denote

$$
P_G^t(\phi)(x) := P_G^1\left(\phi\big(x + \sqrt{t} \times \big)\right) = u(t, x), \quad (t, x) \in [0, \infty) \times \mathbb{R}
$$

3. 1–DIMENSIONAL G-BROWNIAN MOTION

In this section we use some notations and definitions of [6].

Let $\Omega = C_0(\mathbb{R}^+)$ be the space of all \mathbb{R} -valued continuous paths $(\omega_t)_{t \in \mathbb{R}^+}$ with $\omega_0 = 0$. For any ω^1 , $\omega^2 \in \Omega$ we define

$$
\rho(\omega^1,\omega^2)=\sum_{i=1}^{\infty}2^{-i}\left[\left(\max_{t\in[0,i]}|\omega_t^1-\omega_t^2|\right)\wedge1\right].
$$

We set, for each $t \in [0, \infty)$

$$
\begin{array}{l} W_t:=\{\omega_{\wedge \mathbf{t}}:\ \omega\in\Omega\},\\ \\ \mathcal{F}_t:=\mathcal{B}_t(W)=\mathcal{B}(W_t),\\ \\ \mathcal{F}_{t^+}:=\mathcal{B}_{t^+}(W)=\bigcap_{s>t}\mathcal{B}_s(W),\\ \\ \mathcal{F}=\bigvee_{s>t}\mathcal{F}_s=\sigma\big(\bigcup_{s>t}\mathcal{F}_s\big). \end{array}
$$

Then (Ω, \mathcal{F}) is the canonical space with the natural filtration. This space is used throughout the rest of this paper.

For each fixed $T \ge 0$, we consider the following space of random variables

$$
l_{ip}^{0}(\mathcal{F}_{t}) := \{ X(\omega) = \phi(\omega_{t_{1}}, \ldots, \omega_{t_{m}}), \forall m \ge 1, \qquad t_{1}, \ldots, t_{m} \in [0, T], \forall \phi \in lip(\mathbb{R}^{m}) \}.
$$

Obviously, it holds $l_{ip}^0(\mathcal{F}_t) \subseteq l_{ip}^0(\mathcal{F}_T)$, for any $t \leq T < \infty$. We further define

$$
l_{ip}^0(\mathcal{F})\coloneqq \mathsf{U}^\infty_{n=1}l_{ip}^0(\mathcal{F}_n)
$$

We will consider the canonical space and set $B_t(\omega) = \omega_t$, $t \in [0, \infty)$, for $\omega \in \Omega$.

Definition 3.1 [6]. The canonical process \vec{B} is called a \vec{G} -Brownian motion under a nonlinear expectation E defined on $l_{ip}^{0}(\mathcal{F})$ if for each $T > 0$, $m = 1, 2, ...$, and for each $\phi \in lip(\mathbb{R}^m)$, $0 \leq t_1 \leq \cdots \leq t_m \leq T$, we have

$$
\mathbb{E}[\phi(B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_m} - B_{t_{m-1}})] = \phi_m,
$$

where $\phi_m \in \mathbb{R}$ is obtained via the following procedure:

$$
\phi_1(x_1, \dots, x_{m-1}) = P_G^{tm - t_{m-1}}(\phi(x_1, \dots, x_{m-1}, ...)),
$$

$$
\phi_2(x_1, \dots, x_{m-2}) = P_G^{tm - t - t_{m-2}}(\phi_1(x_1, \dots, x_{m-2}, ...)),
$$

...

$$
\phi_{m-1}(x_1) = P_G^{t_2-t_1}(\phi_{m-2}(x_1,.)),
$$

$$
\phi_m = P_G^{t_1}(\phi_{m-1}(.))
$$

The related conditional expectation of $X = (B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_m} - B_{t_{m-1}})$ under \mathcal{F}_{t_i} is defined by

$$
\begin{aligned} \mathbb{E}\left[X|\mathcal{F}_{t_j}\right] & = \mathbb{E}\Big[\phi\big(B_{t_1},B_{t_2}-B_{t_1},\ldots,B_{t_m}-B_{t_{m-1}}\big)|\mathcal{F}_{t_j}\Big] \\ & = \phi_{m-j}\left(B_{t_1},\ldots,B_{t_j}-B_{t_{j-1}}\right) \end{aligned}
$$

It is proved in [10] that $\mathbb{E}[\cdot]$ consistently defines a nonlinear expectation on the vector lattice $l_{ip}^{0}(\mathcal{F}_{T})$ as well as on $l_{ip}^{0}(\mathcal{F})$ satisfying (a)–(e) in Definition 2.1. It follows that $\mathbb{E}[|X|]$ where $X \in l_{ip}^{0}(\mathcal{F}_{T})$ (resp. $l_{ip}^{0}(\mathcal{F})$) forms a norm and that $l_{ip}^{0}(\mathcal{F}_{T})$ (resp. $l_{ip}^{0}(\mathcal{F})$) can be continuously extended to a Banach space, denoted by $L^1_{\mathcal{C}}(\mathcal{F}_T)$ (resp. $L^1_{\mathcal{C}}(\mathcal{F})$).

Definition 3.2 [6]. The expectation $\mathbb{E}[.] : L_G^1(\mathcal{F}) \to \mathbb{R}$ introduced through above procedure is called \vec{G} -expectation. The corresponding canonical process \vec{B} is called a \vec{G} -Brownian motion under \mathbb{E} [.].

For a given $p > 1$, we also denote $L_{G}^{p}(\mathcal{F}) = \{X \in L_{G}^{1}(\mathcal{F}), |X|^{p} \in L_{G}^{1}(\mathcal{F})\}$. $L_{G}^{p}(\mathcal{F})$ is also a Banach space under the norm $|| X ||_p := (\mathbb{E}[|X|^p])^{1/p}$.

4. ITO INTEGRAL FOR G-BROWNIAN MOTION

Definition 4.1 [8]. Let $M_G^{p,0}(0,T)$ be the collection of processes in the following form: for a given partition $\pi_T = \{t_0, \ldots, t_N\}$ of $[0, T]$,

$$
\mu_t(\omega) = \sum_{j=0}^{N-1} \xi_j(\omega) I_{[t_j, t_{j+1}]}(t),
$$

where $T \in \mathbb{R}^+$, $p \ge 1$ and $\xi_j \in L_G^p(\mathcal{F}_{t_j})$, are given.

Definition 4.2 [6]. For an $\eta \in M_G^{1,0}(0,T)$ with $\eta_t(\omega) = \sum_{i=0}^{N-1} \xi_i(\omega) \mathbb{I}_{[t_{i},t_{i+1}]}(t)$, the related Bochner integral is

$$
\int_0^T \eta_t(\omega) dt = \sum_{j=0}^{N-1} \xi_j(\omega) (t_{j+1} - t_j)
$$

Let $\| \eta \|_{H_G^p} = \left[\mathbb{E} \left[\left(\int_0^T |\eta_s|^2 ds \right)^{p/2} \right] \right]^{1/p}$, $\| \eta \|_{M_G^p} = \left[\mathbb{E} \left[\int_0^T |\eta_s|^p ds \right] \right]^{1/p}$ and denote by $H_G^p(0,T)$,
 $M_G^p(0,T)$ the

completions of $M_G^{p,0}(0,T)$ under the norms $\|\eta\|_{H_G^p} \|\eta\|_{M_G^p}$ respectively.

Let $S_G^{p,0}(0,T) = \{h(t, B_{t_1 \wedge t}, \ldots, B_{t_n \wedge t}): t_1, \ldots, t_n \in [0,T], h \in lip(\mathbb{R}^{n+1})\}\.$ For $p \ge 1$ and $\eta \in S_G^{p,0}(0,T)$, set $\|\eta\|_{S_G^p} = \left[\mathbb{E}\left[\sup_{t \in [0,T]} |\eta_t|^p\right]\right]^{1/p}$ Denote by $S_G^p(0,T)$ the completion of $S_G^{p,0}(0,T)$ under the norm $|| \eta ||_{S_F^p}$.

We call $L_c^p(\mathcal{F}_T)$, $M_c^p(0,T)$, $H_c^p(0,T)$ and $S_c^p(0,T)$ the spaces of the G-framework.

Definition 4.3 [1]. A process $\{M_t\}$ with values in $L_G^1(\mathcal{F}_T)$ is called a G-martingale if $\mathbb{E}[M_t|\mathcal{F}_s] = M_s$ for any $s \leq t$.

Definition 4.4 [6]. For each $\eta \in M_G^{2,0}(0,T)$ with the form $\eta_t(\omega) = \sum_{j=0}^{N-1} \xi_j(\omega) I_{[t_j,t_{j+1}]}(t)$, we define

$$
\mathbf{I}(\eta) = \int_0^T \eta(s) dB_s := \sum_{j=0}^{N-1} \xi_j \left(B_{t_{j+1}} - B_{t_j} \right)
$$

Lemma 4.5 [8]. The mapping $I: M_G^{2,0}(0,T) \to L_G^2(\mathcal{F}_T)$ is a linear continuous mapping and thus can be continuously extended to **I**: $M_G^2(0, T) \rightarrow L_G^2(\mathcal{F}_T)$.

In fact we have

$$
\mathbb{E}\left[\int_0^T \eta(s) dB_s\right] = 0,\tag{4.1}
$$

$$
\mathbb{E}\left[\left(\int_0^T \eta(s) dB_s\right)^2\right] \le \int_0^T \mathbb{E}\left[\left(\eta(s)\right)^2\right] ds. \tag{4.2}
$$

Definition 4.6 [8]. We define, for a fixed $\eta \in M_G^2(0, T)$, the stochastic integral

$\int_0^T \eta(s) dB_s := \mathbf{I}(\eta)$

It is clear that (4.1), (4.2) still hold for $\eta \in M_G^2(0,T)$.

5. EXISTENCE OF THE SOLUTIONS

For simplicity, we consider the G-expectation space $(\Omega, L_G^1(\mathcal{F}_T), \mathbb{E})$. We consider the following type of \overline{G} -BSDEs for simplicity

$$
Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dB_s - (K_T - K_t),
$$
\n(5.1)

where $f(t, \omega, \nu, z) : [0, T] \times \Omega \times \mathbb{R}^2 \to \mathbb{R}$.

In this section, we shall use the following assumptions:

There exists some $p > 1$ such that

- (H1) for any y, z, $f(., ., y, z) \in M_c^p(0, T)$,
- (H2) $|f(t, \omega, y, z) f(t, \omega, y', z')| \le L(|y y'| + |z z'|)$ for some $L > 0$.
- (H3) $|f(t, \omega, y, z)| \leq K(1 + |y| + |z|)$, where K is a positive constant,
- (H4) $\forall (t, \omega) \in [0, T] \times \Omega$, $f(t, \gamma, z)$ is continuous in (γ, z) .

For simplicity, we denote by $\mathfrak{Z}_G^q(0,T)$ the collection of processes (Y, Z, K) such that $Y \in S_G^q(0,T)$, $K \in H_G^q(0,T)$ is a decreasing G-martingale with $K_0 = 0$ and $K_T \in L_G^p(\mathcal{F}_T)$.

Definition 5.1 [1]. Let $\xi \in L_c^p(\mathcal{F}_T)$ and f satisfy (H1) and (H2) for some $p > 1$. A triplet of processes (Y, Z, K) is called a solution of Eq. (5.1) if for some $1 \le q \le p$ the following properties hold:

- (a) $(Y, Z, K) \in \mathfrak{Z}_{c}^{q}(0, T)$.
- (b) $Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds \int_t^T Z_s dB_s (K_T K_t)$

Theorem 5.2. [1] Assume that $\xi \in L_c^p(\mathcal{F}_T)$ and (H1) and (H2) are satisfied by f for some $p > 1$. Then Eq. (5.1) has a unique solution (Y, Z, K) . Moreover, for any $1 \le q \le p$ we have $Y \in S_G^q(0,T), Z \in H_G^q(0,T)$ and $K_T \in L_G^q(\mathcal{F}_T)$.

Let $p \in (1,2]$ is a given constant in the rest of this paper. In the following theorem we provide the existence of L^p solution for $p = 2$.

Theorem 5.3. If $\xi \in L_c^2(\mathcal{F}_T)$ and (H1), (H3) and (H4) are satisfied by f, then (5.1) has a solution $(Y, Z, K) \in S_G^2(0, T) \times H_G^2(0, T) \times L_G^2(\mathcal{F}_T)$.

6. UNIQUENESS OF THE SOLUTIONS

Now we turn to the uniqueness of the solution of Equation (5.1) when f is uniformly continuous with respect to (y, z) .

In this section we consider the following hypothesis on the generator $f: [0, \infty] \times \Omega \times \mathbb{R}^2 \to \mathbb{R}$

(H5) f is uniformly continuous in y uniformly with respect to (t, ω, z) , i.e., there exist a continuous non-decreasing function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$, satisfying

$$
\psi(0)=0,
$$

$$
0 < \psi(x) \le A(x+1), \ \forall x > 0,
$$

where \vec{A} is a positive constant,

$$
\int_0^\infty [\psi(x)]^{-1} dx = \infty
$$

Such that

$$
|f(t, y, z) - f(t, y', z)| \leq \psi(|y - y'|), \quad \forall t, y, y', z, \text{ a.s.},
$$

(H6) f is uniformly continuous in z uniformly with respect to (t, ω, y) , that is, there exists a continuous function $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$, satisfying

$$
\varphi(0)=0,
$$

$$
0 < \varphi(x) \leq B(x+1), \quad \forall x > 0,
$$

where \boldsymbol{B} is a positive constant,

Such that

$$
|f(t, y, z) - f(t, y, z')| \leq \varphi(|z - z'|), \quad \forall t, y, z, z', \text{ a.s.},
$$

(H7) The function $z \to f(t, y, z)$ is Lipschitz continuous uniformly with respect to (t, ω, y) .

Theorem 6.1. Let $\xi \in L_c^2(\mathcal{F}_T)$. Suppose $\{f(t, 0, 0)\}_{t \in [0,T]} \in H_c^2(\mathcal{F}_T)$, If (H5)-(H7) are satisfied by f, then the G -BSDE associated with (f, ξ) has a unique solution $(\mathbf{Y}, \mathbf{Z}, \mathbf{K}) \in \text{S}^2_\mathbf{G}(\mathbf{0}, \mathbf{T}) \times \text{H}^2_\mathbf{G}(\mathbf{0}, \mathbf{T}) \times \text{L}^2_\mathbf{G}(\mathcal{F}_\mathbf{T})$

Theorem 6.2. Suppose (H1), (H3) and (H6) are satisfied by $f: [0, \infty] \times \Omega \times \mathbb{R}^2 \to \mathbb{R}$, if \cdot \cdot G -BSDE associated (f, ξ) has a unique solution $\xi \in L^2_{\mathcal{C}}(\mathcal{F}_{\mathbf{T}})$ $(Y, Z, K) \in S_G^2(0, T) \times H_G^2(0, T) \times L_G^2(\mathcal{F}_T)$

Theorem 6.3. Let $\xi \in L_c^p(\mathcal{F}_T)$. If (H1), (H3), (H5) and (H6) are satisfied by f, there exists a unique solution $(Y, Z, K) \in S_G^p(0, T) \times H_G^p(0, T) \times L_G^p(\mathcal{F}_T)$ which solves eq. (5.1).

ACKNOWLEDGMENT

The research of authors was supported financially by University of Shahrood. So we should thank the University of Shahrood for its financially support.

REFERENCES

- [1] Hu, M., Ji, S., Peng, S., & Song, Y. (2014). Backward stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 124(1), 759- 784.
- [2] S. Peng, Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Math. Appl. Sin. 20 (2) (2004) 1–24.
- [3] S. Peng, Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. B 26 (2) (2005) 159–184.
- [4] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, 2010. arXiv:1002.4546v1 [math.PR].
- [5] S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty, 2007. arXiv:0711.2834v1 [math.PR].
- [6] S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type, in: Stochastic Analysis and Applications, in: Abel Symp., vol. 2, Springer, Berlin, 2007, pp. 541–567.
- [7] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under Gexpectation, Stochastic Process. Appl. 118 (12) (2008) 2223–2253.
- [8] S. Peng, A new central limit theorem under sublinear expectations, 2008. arXiv:0803.2656v1 [math.PR].
- [9] Oksendal, B.(2003). Stochastic differential equations (pp20-26).Springer Berlin Heidelberg.
- [10] Cheridito, P., Soner, H.M., Touzi, N. and Victoir, N., Second order backward stochastic differential equations and fully non-linear parabolic PDEs, Preprint (pdf-file available in arXiv: math.PR/0509295 v1 14 Sep 2005).