

G-Brownian motion and Its Applications

Atena EBRAHIMBEYGI^{1,*}, Elham DASTRANJ²

¹ M.Sc. Student, Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Shahrood, Shahrood, Iran

² Academic Member, Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Shahrood, Shahrood, Iran

Received: 01.02.2015; Accepted: 05.05.2015

Abstract. The concept of G-Brownian motion and G-Ito integral has been introduced by Peng. Also Ito isometry lemma is proved for Ito integral and Brownian motion. In this paper we first investigate the Ito isometry lemma for G-Brownian motion and G-Ito Integral. Then after studying of $M_G^{2,0}$ -class functions [4], we introduce Stratonovich integral for G-Brownian motion,say G- Stratonovich integral. Then we present a special construction for G-Stratonovich integral.

Keywords: G-expectation, G-Brownianmotion, Characterization, Ito integral, G-Stratonovich.

1. INTRODUCTION

The concept of G-Brownian motion is a very important concept in financial mathematics. With G-Brownian motion, G-Ito integral for $M_{G^{2,0}}$ calassfunction has been introduced in [2,3,4,5]. In this paper we introduce G-Stratonovich integral for $M_{G^{2,0}}$ -Class functions. In the sequel we present a characterization for G-Stratonovich in integral which we define.

2. NONLINEAR EXPECTATIONS

Let Ω be a given set and let \mathcal{H} be a linear space of real functions defined on Ω containing 1, namely \mathcal{H} is a linear space such that $1 \in \mathcal{H}$ and that $X \in \mathcal{H}$ implies $|X| \in \mathcal{H}$. \mathcal{H} is a space of random variables. We assume the functions on \mathcal{H} are all bounded.

Definition 2.1. [4] A non linear expectation \mathbb{E} is a functional $\mathcal{H} \to \mathbb{R}$ satisfying the following properties

- a) Monotonicity: if $X, Y \in \mathcal{H}$ and $X \ge Y$ then $\mathbb{E}[X] \ge \mathbb{E}[Y]$,
- b) Preservation of constants: $\mathbb{E}[c] = c$,
- c) Subadditivity $\mathbb{E}[X] \mathbb{E}[Y] = \mathbb{E}[X Y], \forall X, Y \in \mathcal{H}$,
- d) Positive homogeneity: $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X], \forall \lambda \ge 0, X \in \mathcal{H}.$
- e) $\mathbb{E}[X+c] = \mathbb{E}[X] + c$.

Special Issue: The Second National Conference on Applied Research in Science and Technology

http://dergi.cumhuriyet.edu.tr/cumuscij ©2015 Faculty of Science, Cumhuriyet University

^{*}Corresponding author. Email address: atena ebrahimi42@gmail.com

3. G-NORMAL DISTRIBUTIONS

For a given positive integer n, we will denote by (x, y) the scalar product of $x, y \in \mathbb{R}^n$ and by $|x| = (x, x)^{1/2}$ the Euclidean norm of x. We denote by $lip(\mathbb{R}^n)$ the space of all bounded and Lipschitz real functions $on\mathbb{R}^n$. We introduce the notion of nonlinear distribution– G–normal distribution. A G–normal distribution is a nonlinear expectation defined on $lip(\mathbb{R}^d)$ (here \mathbb{R}^d is considered as Ω and $lip\mathbb{R}^d$) as \mathcal{H}):

$$P_1^G(\emptyset) = u(1,0) \colon \emptyset \in Lip(\mathbb{R}^d) \to \mathbb{R}$$

where u = u(t, x) is a bounded continuous function on $[0,\infty) \times \mathbb{R}^d$ which is the viscosity solution of the following nonlinear parabolic partial differential equation (PDE)

$$\frac{du}{dt} - G(D^2 u) = 0, \ u(0, x) = \emptyset(x) \ , \ (t, x) \in [0, \infty) \times \mathbb{R}^d,$$
(1)

here $D^2 u$ is the Hessian matrix of u, i.e., $D^2 u = (\partial_{x^i x^j}^2, u)_{i,j=1}^d$ and

$$G(A) = G_{\tau}(A) = \frac{1}{2} \sup \operatorname{tr}[\gamma \gamma^{T} A], A = (A_{ij})_{i,j=1}^{d} \in \mathbb{S}_{d},$$
(2)

 \mathbb{S}_d denotes the space of d × d symmetric matrices. τ is a given non empty, bounded and closed subset of $\mathbb{R}^{d \times d}$, the space of all $d \times d$ matrices.

3.1. Dimensional G-Brownian motion under G-expectation

In this section we use some definitions and notions of [2,4].

Let $\Omega = C_0(\mathbb{R}^+)$ be the space of all \mathbb{R} -valued continuous paths $(\omega_t)_{t \in \mathbb{R}^+}$ with $\omega_0 = 0$. For any

 $\omega^1, \omega^2 \in \Omega$ we define

$$\rho(\omega^1, \omega^2) = \sum_{i=1}^{\omega} 2^{-i} \left[\left(\max_{t \in [0, i]} |\omega_t^1 - \omega_t^2| \right) \wedge 1 \right].$$

We set, for each $t \in [0, \infty)$

$$\begin{split} &W_t := \{ \omega_{, \wedge t} : \ \omega \in \Omega \}, \\ &\mathcal{F}_t := \mathcal{B}_t(W) = \mathcal{B}(W_t), \\ &\mathcal{F}_t := \mathcal{B}_{t^+}(W) = \bigcap_{s > t} \mathcal{B}_s(W), \end{split}$$

 $\mathcal{F} \coloneqq \bigvee_{s>t} \mathcal{F}_s.$

Then (Ω, \mathcal{F}) is the canonical space with the natural filtration. This space is used throughout the rest of this paper.

For each fixed $T \ge 0$, we consider the following space of random variables

$$l_{ip}^{0}(\mathcal{F}_{t}) \coloneqq \left\{ X(\omega) = \phi\left(\omega_{t_{1}}, \dots, \omega_{t_{m}}\right), \forall m \geq 1, \qquad t_{1}, \dots, t_{m} \in [0, T], \forall \nexists \phi \in lip(\mathbb{R}^{m}) \right\}.$$

Obviously, it holds $l_{ip}^{0}(\mathcal{F}_{t}) \subseteq l_{ip}^{0}(\mathcal{F}_{T})$, for any $t \leq T < \infty$. We further define,

$$l_{ip}^{0}(\mathcal{F}) \coloneqq \bigcap_{n=1}^{\infty} l_{ip}^{0}(\mathcal{F}_{n}).$$

We will consider the canonical space and set $B_t(\omega) = \omega_t, t \in [0, \infty)$, for $\omega \in \Omega$.

Definition 3.1. The canonical process *GB* is called a (d-dimensional) G-Brownian motion under a nonlinear *expectation* E *defined on* $L^{0}_{ip}(\mathcal{H})$ *if*

(i) For each $s, t \ge 0$ and $\psi \in lip(\mathbb{R}^d)$, GB_t and $GB_{t+s} - GB_s$ are identically distributed:

$$\mathbb{E}[\boldsymbol{\psi}(GB_{t+s} - GB_s)] = \mathbb{E}[\boldsymbol{\psi}(GB_t)] = P_t^G(\boldsymbol{\psi}).$$

(ii)For each $m = 1, 2, ..., 0 \le t_1 < \cdots < t_m < \infty$, the increment $GB_{t_m} - GB_{t_{m-1}}$ is "backwardly" independent from $GB_{t_1}, ..., GB_{t_{m-1}}$ in the following sense: for each $\emptyset \in lip(\mathbb{R}^{d \times m})$,

$$\begin{split} & \mathbb{E}[\emptyset(GB_{t_1}, \dots, GB_{t_{m-1}}, GB_{t_m})] = \mathbb{E}[\emptyset_1(GB_{t_1}, \dots, GB_{t_{m-1}}, GB_{t_m})] \\ & \text{where } \emptyset_1(x^1, \dots, x^{m-1}) = \mathbb{E}[\emptyset(x^1, \dots, x^{m-1}, GB_{t_m} - GB_{t_{m-1}} + x^{m-1})], x^1, \dots, x^{m-1} \in \mathbb{R}^d. \end{split}$$

The related conditional expectation of $\mathcal{O}(GB_{t_1}, \dots, GB_{t_m})$ under \mathcal{H}_{t_s} is defined by

$$\mathbb{E}\left[\phi\left(GB_{t_1},\ldots,GB_{t_k},\ldots,GB_{t_m}\right)|\mathcal{H}_{t_k}\right] = \phi_{m-k}(GB_{t_1},\ldots,GB_{t_k}),$$

where

Definition 3.2.

$$M_{G}^{p,o}(0,T) = \{\eta; \eta_{t}(\omega) = \sum_{j=1}^{n-1} \xi_{j} I_{[t_{j}, t_{j-1})}(t), \forall n > 0, o \le t_{0} \le \dots \le t_{n}, \xi_{i}(\omega) \in L_{G}(\mathcal{F}_{t_{i}}), i = 0, \dots, n-1\}[4].$$

Definition 3.3. [1] In the sequel we assume (Ω, F, P) is a fixed probability space. $f(t,\omega):[0,\infty) \times \Omega \rightarrow \mathbb{R}$ is belongs to $P_2 = P_2(S,T)$ Class functions set if and only if we have,

- (i) $(t, \omega) \rightarrow f(t, \omega)$ is $\mathcal{B} \times \mathcal{F}$ -measurable, where \mathcal{B} denotes the Borel σ field on $[0, \infty)$.
- (ii) For $t \in [0,\infty)$, f(t,.) is \mathcal{F}_t -adapted.
- (iii) $E[\int_{s}^{T} f^{2}(t, \omega) dt < \infty, \forall T \ge 0.$

Remark 3.1. (The It δ isometry)[1] let $\phi(t, \omega) \in P_2$ be bounded and elementary function,

Then we have

 $\mathbf{E}[(\int_{5}^{T} \emptyset(t,\omega) \, dB_{t})^{2}] = \mathbf{E}[\int_{5}^{T} \emptyset(t,\omega)^{2} dt],$

where $\int_{S}^{t} \phi(t, \omega) dB_{t}$ is Itô intgral [1].

Remark 3.2. The isometry lemma for G-Brownian motion is not necessary holded i.e.

There is $\eta \in M_G^2(0,T)$ such that,

 $E\left[\left(\int_{S}^{T}\eta(S) \ dGB\right)^{2}\right] \neq E\int_{S}^{T}\eta(S)^{2} \ dGB$

4. G-STRATONOVICH (STRATONOVICH INTEGRAL FOR G-BROWNIAN MOTION)

Definition 4.1. For $T \in \mathbb{R}_+$, a partition ρ of [0, T] is a finite ordered subset $\rho = \{t_1, \dots, t_n\}$ such that $0 = t_0 < t_1 < \dots < t_n = T$.

$$\mu(\rho) = \max\{|t_{j+1} - t_i|, i = 0, 1, \dots, N-1\}$$

We use $\mathcal{P}_T^n = \{t_0^n < t_1^n < \cdots < t_N^n\}$ to denote a sequence of partitions of [0, T] such that $\lim_{N \to \infty} \mu(\rho_T^n) = 0$.

For each $f \in M_{c}^{2,0}(0,T)$

We denote G-Stratonovich integral as following

$$\int_0^T f(t,\omega) d(GB) = \lim_{n \to \infty} \sum_{i=1}^n f(t^*,\omega) (GB)_{t_i} - (GB)_{t_{i-1}})$$

Where $t^* = \frac{t_j - t_{j-1}}{2}$.

In the fallowing theorem we present a characterization for G-Stratonovich integral.

Theorem 4.1. In the above definition if we choose t^* randomly with the Uniform distribution then the random sequence tends to G-Stratonovich integral when n tends to ∞ .

Proof. If we choose t_i^* 's randomly with the Uniform distribution and show the resulting integral with

$$\mathbb{U}^* \int_0^T f(t, \omega) d(GB),$$

then it's not difficult to show that

$$\mathbb{E}(\mathbb{U}^* \int_0^T f(t,\omega) d(GB) \int_0^T f(t,\omega) d(GB) | t_i^* s),$$

tends to zero, where E is defined in definition 3.1.

5. CONCLUSION

For G- Brownian motion, Stratonovich integral which we call it G-Stratonovich integral is definable. Also we presented a random characterization for G-Stratonovich integral.

ACKNOWLEDGMENT

EBRAHIMBEYGI, DASTRANJ

The research of authors was supported financially by University of Shahrood. So we should thank the University of Shahrood for its financially support.

REFERENCES

- [1] Oksendal,B.(2003). Stochastic differential equations (pp20-26). Springer Berlin Heidelberg.
- [2] Peng, S. (2006) G-Expectation, G-Brownian Motion and Related Stochastic Calculus of It^o's type, preprint (pdf-file available in arXiv:math.PR/0601035v1 3Jan 2006), to appear in *Proceedings of the 2005, Abel Symposium*.
- [3] Peng, S. (2005), Dynamically consistent nonlinear evaluations and expectations, preprint (pdf-file available in arXiv:math. PR/0501415 v1 24 Jan2005).
- [4] Peng, S. (2004) Nonlinear expectation, nonlinear evaluations and risk measurs, in K. Back T. R. Bielecki, C. Hipp, S. Peng, W. Schachermayer, *Stochastic Methods in Finance Lectures*, 143–217, LNM 1856, Springer-Verlag.
- [5] Peng, S. (2004) Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims, *Acta Mathematicae Applicatae Sinica*, English Series 20(2), 1–24.