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Abstract. Cloud computing, the long-held dream of computing as a utility, has the potential to transform a large part 

of the IT industry, making software even more attractive as a service and shaping the way in which hardware is designed 

and purchased. From the theoretical aspect, we mainly accomplish three research issues. Firstly, we solve the resource 

allocation problem in the user-level of cloud scheduling. We propose game theoretical algorithms for user bidding and 

auctioneer pricing.With Bayesian learning prediction, resource allocation can reach Nash equilibrium among non-

cooperative users even though common knowledge is insufficient. Secondly, we address the task scheduling problem 

in the system-level of cloud scheduling. We prove a new utilization bound to settle on-line schedulability test 

considering the sequential feature of MapReduce. We deduce the relationship between cluster utilization bound and 

the ratio of Map to Reduce. This new schedulable bound with segmentation uplifts classical bound which is most used 

in industry. 

Keywords: Cloud computing, Scheduling problems, Cloud evolution, Cloud service, Cloud characteristics. 

 

 

1. INTRODUCTION 

1.1  Research Background 

Cloud computing is everywhere. When we open any IT magazines, websites, radios or TV 

channels, ”cloud” will definitely catch our eye. Today’s most popular social networking, email, 

document sharing and online gaming sites, are hosted on a cloud. More than half of Microsoft 

developers are working on cloud products. Even the U.S government intends to initialize cloud-

based solutions as the default option for federal agencies of 2012. Cloud computing makes 

software more attractive as a service, and shapes the way in which IT hardware is purchased. 

Predictably, it will spark a revolution in the way organizations provide or consume information 

and computing. 

Datacenters, behaving as ”cloud providers”, are computing infrastructures which provide many 

kinds of agile and effective services to customers. A wide range of IT companies including 

Amazon, Cisco,Yahoo, Salesforce, Facebook, Microsoft and Google have their own datacenters 

and provide pay-as-you-go cloud services. Two different but related types of cloud service should 

be distinguished first. One is on-demand computing instance, and the other is on-demand 

computing capacity. Equipped with similar machines, datacenters can scale out by providing 

additional computing instances, or can support data- or compute-intensive applications via scaling 

capacity. 

Amazon’s EC2 and Eucalyptus are examples of the first category, which provides computing 

instances according to needs. The datacenters instantly creat virtualized instances and give the 

response. The virtualized instance might consist of processors running at different speeds and 

storage that spans different storage systems at different locations. Therefore, virtualization is an 
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essential characteristic of cloud computing, through which applications can be executed 

independently without regard for any particular configuration. 

Google and Yahoo belong to the second category. In these datacenters, the need of processing 

large amounts of raw data is primarily met with distributed and parallel computing, and the data 

can be moved from place to place and assigned changing attributes based on its lifecycle, 

requirements, and usefulness. One core technology is MapReduce, a style of parallel 

programming model supported by capacity-on-demand clouds. It can compute massive data in 

parallel on a cloud. 

1.2  Challenges And Motivations 

Cloud computing is still in its infancy, but it has presented new opportunities to users and 

developers who can benefit from economies of scales, commoditization of assets and 

conformance to programming standards. Its attributes such as scalability, elasticity, low barrier to 

entry and a utility type of delivery make this new paradigm quickly marketable. 

However, cloud computing is not a catholicon. The illusion of scalability is bounded by the 

limitations that cloud providers place on their clients. Resource limits are exposed at peak 

conditions of the utility itself. For example, bursting spring festival messages lead to outage for 

telecom operators, so they have to set limits on the number of short messages before New Year 

Eve. The same problem appears in cloud computing. These outages will happen on peak 

computing days such as the day when Internet Christmas sales traditionally begin. Additionally, 

Internet is one basis of the cloud, so an unavoidable issue is that network bottlenecks often occur 

when large data is transferred. In that case, the burden of resource management is still in the hands 

of users, but the users usually have limited management tools and permission to deal with these 

problems [1]. 

 

2.  CLOUD COMPUTING OVERVIEW 

2.1. Introduction 

This chapter begins with a general introduction of cloud computing, followed by the retrospect of 

cloud evolution history and comparison with several related technologies. Through analyzing 

system architecture, deployment model and service type, the characteristics of cloud computing 

are concluded from technical, functional and economical aspects. After that, current efforts both 

from commercial and research perspectives are presented in order to capture challenges and 

opportunities in this domain. 

2.1.1. Cloud Definitions 

Since 2007, the term Cloud has become one of the most buzz words in IT industry. Lots of 

researchers try to define cloud computing from different application aspects, but there is not a 

consensus definition on it. Among the many definitions, we choose three widely quoted as 

follows: 

• I. Foster [2]: “A large-scale distributed computing paradigmthat is driven by economies of 

scale, in which a pool of abstracted virtualized, dynamically-scalable, managed computing power, 

storage, platforms, and services are delivered on demand to external customers over Internet.” As 

an academic representative, Foster focuses on several technical features that differentiate cloud 

computing from other distributed computing paradigms. For example, computing entities are 

virtualized and delivered as services, and these services are dynamically driven by economies of 

scale. 
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• Gartner [3]: “A style of computing where scalable and elastic IT capabilities are provided as 

a service to multiple external customers using Internet technologies.” Garter is an IT consulting 

company, so it examines qualities of cloud clouding mostly from the point of view of industry. 

Functional characteristics are emphasized in this definition, such as whether cloud computing is 

scalable, elastic, service offering and Internet based. 

• NIST[4]: “Cloud computing is a model for enabling convenient, on-demand network access to 

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction.” Compared with other two definitions, U.S. National Institute of 

Standards and Technology provides a relatively more objective and specific definition, which not 

only defines cloud concept overall, but also specifies essential characteristics of cloud computing 

and delivery and deployment models. 

2.1.2. Deployment Models 

Clouds are deployed in different fashions, depending on the usage scopes. There are four primary 

cloud deployment models. 

• Public cloud is the standard cloud computing paradigm, in which a service provider makes 

resources, such as applications and storage, available to the general public over Internet. Service 

providers charge on a fine-grained utility computing basis. Examples of public clouds include 

Amazon Elastic Compute Cloud (EC2), IBM’s Blue Cloud, Sun Cloud, Google AppEngine and 

Windows Azure Services Platform. 

• Private cloud looks more like a marketing concept than the traditional mainstreamsense. It 

describes a proprietary computing architecture that provides services to a limited number of 

people on internal networks. Organizations needing accurate control over their data will prefer 

private cloud, so they can get all the scalability, metering, and agility benefits of a public cloud 

without ceding control, security, and recurring costs to a service provider. Both eBay and HP 

CloudStart yield private cloud deployments. 

• Hybrid cloud uses a combination of public cloud, private cloud and even local infrastructures, 

which is typical for most IT vendors. Hybrid strategy is proper placement of workloads depending 

upon cost and operational and compliance factors. Major vendors including HP, IBM, Oracle and 

VMware create appropriate plans to leverage a mixed environment, with the aim of delivering 

services to the business. Users can deploy an application hosted on a hybrid infrastructure, in 

which some nodes are running on real physical hardware and some are running on cloud server 

instances. 

2.2. Cloud Evolution 

Although the idea of cloud computing is not new, it has rapidly become a new trend in the 

information and communication technology domain and gained significant commercial success 

over past years. No one can deny that cloud computing will a play pivotal role in the next decade. 

Why cloud computing emerges now, not before? This section looks back on the development 

history of cloud computing. 

2.2.1. A Brief History 

Along with the maturity of objective conditions (software, hardware), plenty of existing 

technologies, results, and ideas can be realized, updated, merged and further developed. Amazon 

played a key role in the development of cloud computing by initially renting their datacenter to 

external customers for the use of personal computing. In 2006, they launched Amazon EC2 and 

S3 on a utility computing basis. After that, several major vendors released cloud solutions one 
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after another, including Google, IBM, Sun, HP, Microsoft, Forces.com, Yahoo and so on. Since 

2007, the number of trademarks covering cloud computing brands, goods and services has 

increased at an almost exponential rate. Cloud computing is also a much favored research topic. 

In 2007, Google, IBM and a number of universities announced a research project, Academic 

Cloud Computing Initiative (ACCI), aiming at addressing the challenges of large-scale distributed 

computing. Since 2008, several open source projects have gradually appeared. For example, 

Eucalyptus is the first API-compatible platform for deploying private clouds. OpenNebula 

deploys private and hybrid clouds and federates different modes of clouds. 

2.3. Cloud Service 

As an underlying delivery mechanism, cloud computing ability is provisioned as services, 

basically in three levels: software, platform and infrastructure [5]. 

2.3.1. Software As A Service 

Software as a Service (SaaS) is a software delivery model in which applications are accessed by 

a simple interface such as a web browser over Internet. The users are not concerned with the 

underlying cloud infrastructure including network, servers, operating systems, storage, platform, 

etc. This model also eliminates the needs to install and run the application on the local computers. 

The term of SaaS is popularized by Salesforce.com, which distributes business software on a 

subscription basis, rather than on a traditional on-premise basis. One of the best known is the 

solution for its Customer Relationship Management (CRM). Now SaaS has now become a 

common delivery model for most business applications, including accounting, collaboration and 

management. Applications such as social media, office software, and online games enrich the 

family of SaaS-based services, for instance, web Mail, Google Docs, Microsoft online, NetSuit, 

MMOG Games, Facebook, etc. 

2.3.2. Platform As A Service 

Platform as a Service (PaaS) offers a high-level integrated environment to build, test, deploy and 

host customer-created or acquired applications. Generally, developers accept some restrictions on 

the type of software that can write in exchange for built-in application scalability. Customers of 

PaaS do not manage the underlying infrastructure as SaaS users do, but control over the deployed 

applications and their hosting environment configurations. 

3. SCHEDULING PROBLEMS FOR CLOUD COMPUTING 

 

3.1 . Introduction 

This chapter outlines the scheduling problems arising from cloud computing. Concerned theories 

including former expressions of problems, algorithms, complexity and schematic methods are 

briefly introduced. Then scheduling hierarchy in cloud datacenter is presented, by splitting 

scheduling problem into user-level and system-level. The former focuses on resource provision 

issues between providers and customers, which are solved by economic models. The latter refers 

to meta-task execution, a sub-optimal solution of which is given by heuristics to speed up the 

process of finding a good enough answer. Moreover, real-time scheduling attracts our attention. 

Different from economic and heuristic strategies, priority scheduling algorithms and their 

implementation are discussed at the end of this chapter. 

 

 

3.2. Scheduling Problems 
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3.2.1. Problems, Algorithms And Complexity 

Scheduling problem [6] is the problem of matching elements from different sets, which is formally 

expressed as a triple (E, S, O), where 

• E is the set of examples, each of which is an instance of problem. 

• S is the set of feasible solutions for the example. 

• O is the object of the problem. 

Scheduling problem can be further classified into two categories depending on object O: 

optimization problem and decision problem. An optimization problem requires finding the best 

solution among all the feasible solutions in set S. Different from optimization, the aim of decision 

problem is relatively easy. For a specified feasible solution s ∈ S, problem needs a positive or 

negative answer to whether the object O is achieved. Clearly, optimization problem is harder than 

decision problem, because the specified solution only compares with one threshold solution in 

decision problem, instead of all feasible solutions in optimization problem. 

An algorithm is a collection of simple instructions for finding a solution to a problem. It contains 

three parts: input, method, output. Input is a set of parameters to be dealt with. Method includes 

describable, controllable, repeatable procedures to realize the aim using input parameters. Output 

is a result of the problem. Especially for scheduling, the algorithm is a method by which tasks are 

given access, matched, or allocated to processors. Generally speaking, no absolutely perfect 

scheduling algorithm exists, because scheduling objectives may conflict with one another. A good 

scheduler implements a suitable compromise, or applies combination of scheduling algorithms 

according to different applications. A problem can be solved in seconds, hours or even years 

depending on the algorithm applied. The efficiency of an algorithm is evaluated by the amount of 

time necessary to execute it. The running time of an algorithm is stated as a time complexity 

function relating the inputlength to the number of steps. 

There are several kinds of time complexity algorithms that will appear in the following chapters. 

• For a constant time algorithm O(1), the maximum amount of running time is bounded by a value 

that does not rely upon the size of the input. 

• For a linear time algorithm O(n), the maximum amount of running time increases linearly with 

the size of the input. 

• For a polynomial time algorithm O (nc) with a constant c, the maximum amount of running time 

is bounded by a polynomial expression in the size of the input. 

• For a exponential time algorithm O (2nc ) with a constant c, the maximum amount of running 

time is bounded by an exponential expression in the size of the input. 

If a problem has a polynomial time algorithm, the problem is tractable, feasible, efficient or fast 

enough to be executed on a computational machine. In computational complexity theory, a 

complexity class is a set of problems that has the same complexity based on a certain resource 

[7]. 

• Class P is the set of decision problems that are solvable in polynomial time on a deterministic 

Turing machine, which means that a problem of Class P can be decided quickly by a polynomial 

time algorithm. 

• Class NP is the set of decision problems that are solvable in polynomial time on a 

nondeterministic Turing machine, but a candidate solution of the problem of Class NP can be 
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verified by a polynomial time algorithm, which means that the problem can be verified quickly. 

Class NP-complete is the set of decision problems, to which all other NP problems can be 

polynomial transformable, and a NP-complete problem must be in class NP. Generally speaking, 

NP-complete problems are more difficult than NP problems. 

• Class NP-hard is the set of optimization problems, to which all NP problems can be polynomial 

transformable, but a NP-hard problem is not necessarily in class NP. Although most of NP-

complete problems are computationally difficult, some of them are solved with acceptable 

efficiency. There are some algorithms, the running time of which is not only bounded by the size 

of input of an example, but also by the maximum number of the examples. These algorithms have 

pseudopolynomial time complexity. For one problem, if its maximum number is not large, it can 

be solved quickly. Thus, one NP-complete problem with known pseudo-polynomial time 

algorithms is called weakly NP-complete, otherwise is called strongly NP-complete, if it can not 

be solved by a pseudopolynomial time algorithm unless P=NP [7]. 

3.2.2. Schematic Methods For Scheduling Problem 

Scheduling problems belong to a broad class of combinational optimization problems aiming at 

finding an optimal matching from a finite set of objects, so the set of feasible solutions is usually 

discrete rather than continuous. An easy problem refers to one with a small number of the 

examples, so it can be simply worked out by polynomial algorithms or enumerations. 

On the contrary a problem is in Class NP-complete if its purpose is making a decision, and is in 

Class NP-hard if its purpose is optimization. Because an optimization problem is not easier than 

a decision problem, we only list schematic methods for NP-hard problems. As shown in Figure 

3.1, enumeration, heuristic and approximation are three possible solutions, their corresponding 

algorithms complement each other to give a relatively good answer to a NP-hard problem. 

 

Figure 3.1. Schematic view. 

 

3.2.3. Enumeration Method 

For an optimization problem, its optimal solution can be selected if all the possible solutions are 

enumerated and compared one by one. Exact enumerative algorithms have the exponential time 

complexity in the worst case. However, for some NP-hard problems in weak sense, when the 

number in one instance is relatively small, it can be solved by a pseudopolynomial algorithm, the 

time complexity of which is bounded by a polynomial expression of the input size and the 

maximum number of the problem. Moreover, there is another kind of enumeration, called implicit 

enumeration, which evaluates all possible solutions without explicitly listing all of them. Dynamic 

programming is a practicable implicit enumeration method to solve combinational optimization 

problems. It divides a problem into a number of stages, and at each stage a decision is required, 
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impacting on the decisions to be made at later stages. The number of stored decisions is 

exponential to the number of subproblems, so the worst complexity function of dynamic 

programming algorithms is exponential. 

3.2.4. Heuristic Method 

Exhaustive enumeration is not feasible for scheduling problems, because only a few special cases 

of NP-hard problems have exactly-solvable algorithms in polynomial time. For the sake of 

practice, we tend to find suboptimal solutions that are good enough to balance accuracy and time. 

Heuristic is a suboptimal algorithm to find reasonably good solutions reasonably fast. It iteratively 

improves a candidate solution with regard to a given measure of quality, but does not guarantee 

the best solution. To be more precise, approximation rate rH(e) is introduced to evaluate the 

accuracy of heuristic algorithms [6]. 

rH(e) =H(e) OPT(e)  (3.1) 

where H(e) is the value of the solution constructed by heuristic H for instance e, and OPT(e) is 

the value of the optimal solution for e. If there is an integer K, all the instances satisfy OPT(e) ≥ 

K, this asymptotic ratio rH can be used to measure the quality of approximation algorithm. The 

closer rH approaches one, the better the performance is achieved by heuristics. With greedy rules, 

several common algorithms are shown as follows. 

• Next Fit heuristic: The simplest algorithm for bin-packing problem. Each object is assigned to 

the current bin if it fits, otherwise, it is assigned to a new bin. Approximation rate is rNF ≤ 2. 

• First Fit heuristic: Each object is assigned to the lowest initialized indexed bin if it fits. A new 

bin is created only if the new object can not fit any initialized bin. Approximation 

rate is rFF ≤ 7/4. 

• Best Fit heuristic: Each object is assigned to the smallest residual bin if it fits. A new bin is 

created only if the new object can not fit any initialized bin. Approximation rate is rBF ≤ 7/4. 

• Next/First/Best Fit Descending heuristic: Objects are first sorted in descending order, and then 

are  ssigned by corresponding heuristics. Approximation rate is rxFD ≤ 3/2. 

3.2.5. Relaxation Method 

Another feasible method to solve NP-hard problems is relaxing some constraints imposed on the 

original problem. In the new relaxed problem, the solution might be easy to obtain and have a 

good approximation to that in the original problem. The common relaxation includes: 

• Suppose the elements in one instance are all natural numbers, rather than real numbers. 

• Suppose the value of one special element remains unchanged, rather than varied. 

• Suppose the value of two interrelated elements equal, rather than one being bounded by the 

other. 

• Suppose the value of one element is unit, rather than arbitrary. 

• Suppose the type of one element is certain, rather than arbitrary. 

More relaxation can be applied without the limit of above presentation. 
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3.3. Scheduling Hierarchy In Cloud Datacenter 

In last section, we introduced related theory about scheduling problems and their schematic 

methods. From this section, we specify scheduling problems in cloud environments. As a key 

characteristic of resource management, service scheduling makes cloud computing different from 

other computing paradigms. Centralized scheduler in cluster system aims at enhancing the overall 

system performance, while distributed scheduler in grid system aims at enhancing the 

performance of specific end-users. Compared with them, scheduling in cloud computing is much 

more complicated. On one hand, centralized scheduler is necessary, because every cloud provider, 

which promises to provide services to users without reference to the hosted infrastructure, has an 

individual datacenter. On the other hand, distributed scheduler is also indispensable, because 

commercial property determines that cloud computing should deal with the QoS requirements of 

customers distributed worldwide. An important issue of this chapter is to decompose scheduling 

problems related to cloud computing. Since cloud service is actually a virtual product on a supply 

chain, the service scheduling can be classified into two basic catagories: user-level and system-

level. The hierarchy is shown in Figure 3.2. The user-level scheduling deals with the problem 

raised by service provision between providers and customers. It mainly refers to economic 

concerns such as equilibrium of supply and demand, competition among consumers and cost 

minimization under elastic consumer preference. The system-level scheduling handles resource 

management within a datacenter. From the point of view of customers, a datacenter is an 

integration system, which provides uniform services. Actually, the datacenter consists of many 

physical machines, homogeneous or heterogeneous. After receiving numerous tasks from 

different users, assigning tasks to physical machines significantly impacts the performance of 

datacenter. Besides improving the system utilization, some specific requirements should be 

considered, such as the real-time satisfaction, resource sharing, fault tolerance, etc. 
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Figure 3.2. Scheduling hierarchy 

 

3.4. Economic Models For Resource-Provision Scheduling 

In the past three years, explosion of supply-side cloud service provision has accelerated, cloud 

solutions become mainstream productions of IT industry. At the same time, these cloud services 

gradually mature to become more appropriate and attractive to all types of enterprises. The growth 

of both sides of supply and demand makes the scheduling problems more complex, sophisticated, 

and even vital in cloud environment. A bad scheduling scheme not only undermines CPU 

utilization, turnaround time and cumulative throughput, but may also result in terrible 

consequences, for example providers lose money and even go out of business. Economic models 

are more suitable for cloud-based scheduling than traditional multiprocessor models, especially 

for regulating the supply and demand of cloud resources. In economics, market-based and 

auction-based schedulers handle two main interests. Market-based schedulers are applied when a 

large number of naive users can not directly control service price in commodity trade. Mainstream 

cloud providers apply market-based pricing schemes in reality. The concrete schemes vary from 

provider to provider. As the most successful IaaS provider, Amazon EC2 supports commodity 

and posted pricing models for the convenience of users. Another alternative is auction-based 

scheduler, which is adapted to situations where a small number of strategic users seeking to attain 

a specific service compete with each other. In auctions, users are able to commit the auction price. 

Amazon spot instance is an example of auction-based model. Instance price adjusts from time to 

time, depending on the supply and demand.  As a result, users should estimate the future price 

and make its proposal in an auction before placing a spot instance request. 
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3.4.1. Market-Based Strategies 

In cloud service provision, both service providers and users express their requirements through 

SLAs contracts. Providers need mechanisms that support price specification and increase system 

utilization, while consumers need schemes that guarantee their objectives are reached. A market-

based scheduler aims at regulating the supply and demand for resources. To be specific, the 

market strategies emphasize the schemes for establishing a service price depending on their 

customers’ requirements. In previous literature, a broker behaving on the behalf of one end-user 

interacts with service providers to determine a proper price that keeps supply and demand in 

equilibrium [8]. 

 

3.4.1.1. Strategy types 

3.4.1.1.1. Commodity model 

As a common model in our daily life, service providers specify their service price and charge 

users according to the amount of resource they consume. Any user is free to choose a proper 

provider, but has no right to change the service price directly. The amount of their purchase can 

cause the price to derive from supply and demand. The process of scheduling is executed by 

brokers. On the behalf of users, each broker identifies several providers to inquire the prices, and 

then selects one provider which can meet its objective. The consumption of service is recorded 

and payment is made as agreed. 

3.4.1.2. Posted price model 

The posted price strategy makes some special offers to increase the market share or to motivate 

customers to use the service during the off-peak period. The posted price, as a kind of 

advertisement, has time or usage limitations that are not suitable for all users. Therefore, the 

scheduling process should be modified in this strategy. 

Service providers give the regular price, the cheap offers and the associated conditions of usage. 

Brokers observe the posted price, and compare whether it can meet the requirement of users. If 

not, brokers apply commodity strategy as usual. Otherwise, brokers only inquire the provider for 

availability of posted services, supplementing extra regular service when associated conditions 

are not satisfied. 

3.4.1.3. Bargaining model 

In bargaining strategy, price is not given by provider unilaterally, but by both sides of the 

transaction through bargaining. A prerequisite for bargaining is that the objective functions for 

providers and brokers must have an intersection, so that they can negotiate with each other as long 

as their objectives are both met. In this scenario, a broker does not compare all the prices for the 

same service, but connects with one of the providers directly. The price offered by the provider 

might be higher than customer expectation, so the broker starts with a very low price, which has 

the upside potential. The bargaining ends when a mutually agreeable price is reached or when one 

side is not willing to negotiate any further. In the latter case, broker will connect with other 

providers and then start bargaining again. Bargaining strategy has an obvious shortcoming, that 

is, the overhead on communication is very high. The time delay might lead to lower utilization of 

resources for the provider or shorten deadline of service for the customers. In reality, the number 

of negotiations can not be infinite, and the bargaining time is always limited. 

3.4.1.4. Principles for strategy design 
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Several market principles should be considered in the process of determining the service price 

[9]. 

Equilibrium price refers to a price under which the amount of services bought by buyers is equal 

to the amount of services produced by sellers. This price tends to be stable unless demand or 

supply change. 

Pareto efficiency describes a situation where no agent can get a better allocation than the initial 

one without reducing other individual allocations. In other words, resource can not be reallocated 

in a way that makes everyone better off. 

Individual rationality can make price fluctuate around the equilibrium price, which is 

determined by the process of supply and demand. A higher price provides incentive to produce 

more resource, so the amount of scarce resource can gradually reach saturation then surplus, and 

vice-versa. Individual rationality can adjust prices to reach equilibrium instantaneously. 

Stability examines whether a scheduling mechanism can be manipulated. Individual agent may 

not reveal private information truthfully. A stable mechanism allows agents to obtain the best 

allocation if they submit their truthful information. 

Communication efficiency evaluates the communication overhead to capture a desirable global 

solution. Message passing adds communication overhead on transaction, so additional time is 

spent on allocation, rather than on computation. A good scheduling mechanism finds out a near-

optimum solution efficiently. 

3.4.2. Auction Strategies 

Unlike in market-based models, an auction-based scheduler is a rule maker, rather than a price 

maker. The rules include how the users bid for services, how the sale price is determined, who 

the winning bidder is, how the resource is allocated, whether there are limits on time or proposal 

price, etc. In auction-based schedulers, price is decided according to the given rules, which 

benefits consumers by expressing their real requirement strategically, rather than waiting for price 

ad-justment in a passive manner. Auction-based schedulers are distinguished from each other by 

several characteristics. 

3.4.2.1. Strategy types 

3.4.2.1.1. Number of participants 

According to different numbers of bidders, auctions are classified into demand auction, supply 

auction and double auction. English auction is an example of demand auction, in which n buyers 

bid for one service. This type of auction is the most common form of auction in use today. Dutch 

auction focuses on demand of suppliers, where m sellers offer the same service for one buyer. 

Double auction is needed under the condition that the number of buyers and sellers is more than 

one. In double auction, sellers and buyers both offer bids. The amount of trade is decided by the 

quantity at which the marginal buy bid is higher than the marginal sell bid. With the growing 

number of participants, double auction converges to the market equilibrium. 

 

 

3.4.2.2. Information transparency 

Participants in an auction may or may not know the actions of other participants. Both English 

and Dutch auctions are open auctions, that is, the participants repeatedly bid for the service with 
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the complete information about previous bids of other bidders. Apart from these, there is another 

type of auction, in which participants post sealed bids and the bidder with highest bid wins. In 

close auction, bidders can only submit one bid each and no one knows the other bids. 

Consequently, blind bidders cannot adjust their bids accordingly. Close auction is commonly used 

for modeling resource provision in multi-agent system, considering the simplicity and 

effectiveness of the sealed bids.  

3.4.2.3. Combinatorial auction 

A combinatorial auction is a type of smart market in which participants can place bids on 

combinations of items, rather than just individual items. Combinatorial auction is appropriate for 

computational resource auction, where a common procedure accepts bids for a package of items 

such as CPU cycles, memory, storage, and bandwidth. Combinatorial auctions are processed by 

bidders repeatedly modifying their proposals until no one increases its bid any more. In each 

round, auctioneer publishes a tentative outcome to help bidders decide whether increase their bids 

or not. The tentative outcome is the one that can bring auctioneer the best revenue given the bids. 

However, finding an allocation of items to maximize the auctioneer’s revenue is NP-complete. A 

challenge of combinatorial auctions  comes from how to efficiently determine the allocation once 

the bids have been submitted to the auctioneer. 

3.4.2.4. Proportion shared auction 

In proportion shared auctions, no winner exists, but all bidders share the whole resource with a 

percentage based on their bids. This type of auction guarantees a maximized utility and ensures 

fairness among users in resource allocation, which suits limited resource such as time slot, power 

and spectrum bandwidth [10]. Shares represent relative resource rights that depend on the total 

number of shares contending for a resource. Client allocations degrade gracefully in overload 

situations, and clients proportionally benefit from extra resources when some allocations are 

underutilized. 

3.4.2.5. Principles for strategy design 

3.4.2.5.1. Game theoretical equilibrium 

The auction models applied in cloud service and other computational resource provisioning are 

listed above, but not limited to these primary types. Generally, auction-based scheduler 

emphasizes the equilibrium among users rather than supply-demand balance between provider 

and user. The effectiveness of auction can be analyzed with the help of game theory. Game theory 

studies multi-person decision making problems. Any player involved in a game makes the best 

decision, taking into account decisions of the others. A game theoretical equilibrium is a solution, 

in which no player gains by only changing his own strategy unilaterally. However, this 

equilibrium does not necessarily mean the best cumulative payoff for all players. 

3.4.2.6. Incentive compatibility 

In any auction, participants might hide their true preferences. Incentive compatible auction is one 

in which participants have incentive to reveal their real private information. One bidder can 

maximize his payoff only if the information is submitted truthfully. One method to realize 

incentive compatibility is designing a reasonable price payed by auction winner. A good example 

of incentive compatible auction is Vickery auction. In this sealed price auction, the highest bidder 

wins, but pays the second highest bid rather than his own. Under this charging rule, biding lower 

or higher than his true valuation will never increase the best possible outcome. 

3.4.3. Economic Schedulers 
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Economic schedulers have been applied to solve resource management in various computing 

paradigms, such as cluster, distributed databases, grids, parallel systems, Peer-to-Peer, and cloud 

computing [11]. Existing middleware applying economic schedulers, not limited to cloud 

platforms, are introduced. By doing this, we can examine the applicability and suitability of these 

economic schedulers for supporting cloud resource allocation in practice. This in turn helps us 

identify possible strengths of these middleware that may be leveraged for cloud environment. 

Cluster-on-demand [12] is a service-oriented architecture for networked utility computing. It 

creates independent virtual clusters for different groups. These virtual clusters are assigned and 

managed by a cluster broker, supporting tendering and contract-net economic model. The user 

submits its requirements to all cluster brokers. Every broker proposes a specific contract with the 

estimated execution time and cost. If the number of brokers proposing contacts is more than one, 

users then select only one of them as the resource provider. Earning is afforded by users to cluster 

broker as costs for adhering to the conditions of the contract. 

Mosix [13] is a distributed operating system for high performance cluster computing that employs 

an opportunity cost approach to minimize the overall execution cost of the cluster. It applies 

commodity model to compute a single marginal cost based on the processor and memory usages 

of the process. The cluster node with the minimal value of marginal cost is then assigned the 

process. 

Stanford Peers [14]is a peer-to-peer data trading framework, in which both auction and bartering 

models are applied. A local site wishing to replicate its collection holds an auction to solicit bids 

from remote sites by first announcing its request for storage space. Each interested remote site 

then returns a bid, and the site with the lowest bid for maximum benefit is selected by the local 

site. Besides that, a bartering system supports a cooperative trading environment for producer and 

consumer participants, so that sites exchange free storage spaces to benefit both themselves and 

others. Each site minimizes the cost of trading, which is the amount of disk storage space that it 

has to provide to the remote site for the requested data exchange. 

D’Agents [15] is a mobile-agent system for distributed computing. It implements proportion 

shared auction where agents compete for shared resources. If there is more than one bidder, 

resources are allocated proportionally. Costs are defined as rates, such as credits per minute to 

reflect the maximum amount that a user wants to pay for the resource. 

Nimrod-G [16] is a tool for automated modeling and execution of parameter sweep applications 

on Grids. Through broker, the grid users obtain service prices from different resources. Deadline 

and budget are main constraints specified by the user for running his application. The allocation 

mechanisms are based on market-based models. Prices of resources thus vary between different 

executing applications depending on their QoS constraints. A competitive trading environment 

exists, because users have to compete with one another in order to maximize their own personal 

benefits. 

Faucets [17] is a resource scheduler of computational grid, and its objective is supporting efficient 

resource allocation for parallel jobs executed on a changing number of allocated processors during 

runtime on demand. Tendering model is used in Faucets. A QoS contract is agreed before job 

execution, including payoff at soft deadline, a decreased payoff at hard deadline and penalty after 

hard deadline. Faucets aims to maximize the profit of resource provider and resource utilization. 

MarketNet [18] is a market-based protection technology for distributed information systems. 

Posted price model is incorporated. Currency accounts for information usage. MarketNet system 

advertises resource request by offering prices on a bulletin board. Through observing currency 

flow, potential intrusion attacks into the information systems are controlled, and the damages are 

kept to the minimum. 
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Cloudbus [19] is a toolkit providing market-based resource management strategies to mediate 

access to distributed physical and virtual resources. A 3rd party cloud broker is built on an 

architecture that provides a general framework for any other cloud platforms. A number of 

economic models with commodity, tendering and auction strategies are available for 

customerdriven service management and computational risk management. The broker supports 

various application models such as parameter sweep, workflow, parallel and bag of tasks. It has 

plug-in support for integration with other middleware technologies such as Globus, Aneka, 

Unicore, etc. 

OpenPEX [20] is a resource provisioning system with an advanced reservation approach for 

allocating virtual resources. A user can reserve any number of instances of virtual machine that 

have to be started at a specific time and have to last for a specific duration. A bilateral negotiation 

protocol is incorporated in OpenPEX, allowing users and providers to exchange their offers and 

counter-offers, so more sophisticated bartering or double auction models are helpful to improve 

revenue of cloud users. 

EERM [21] is a resource broker that enables bidirectional communication between business and 

resource layers to promote good decision-making in resource management. EERM contains sub-

components for performing pricing, accounting, billing, job scheduling, monitoring and 

dispatching. It uses kinds of market-based mechanisms for allocating network resources. To 

increase the revenue, overbooking strategy is implemented to mitigate the effects of cancellations 

and no-shows. A summary of economic schedulers is concluded in Table 3.1. 

 
Table 3.1. Economic schedulers 

 

 

3.5. Heuristic Models For Task-Execution Scheduling 

In cloud computing, a typical datacenter consists of commodity machines connected by highspeed 

links. This environment is well suited for the computation of large, diverse group of tasks. Tasks 

belonging to different users are no longer distinguished one fromanother. Scheduling problem in 

such a context turns out to be matching multi tasks to multi machines. As mentioned in the former 

section, the optimal matching is an optimization problem, generally with NP-complete 

complexity. Heuristic is often applied as a suboptimal algorithm to obtain relatively good 

solutions. This section intensively researches two types of strategies, static and dynamic 

heuristics. Static heuristic is suitable for the situation where the complete set of tasks is known 

prior to execution, while dynamic heuristic performs the scheduling when a task arrives. Before 

further explanation, several preliminary terms should be defined. 

• ti: task i 
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• mj : machine j 

• ci: the time when task ti comes 

• aj : the time when machine mj is available 

• eij : the execution time for ti is executed on mj 

• cij : the time when the execution of ti is finished on mj , cij = aj + eij 

• makespan: the maximum value of cij , which means the whole execution time. The aim 

of heuristics is to minimize makespan, that is to say, scheduling should finish execution 

of metatask as soon as possible. 

3.5.1 Static strategies 

Static strategies are performed under two assumptions. The first is that tasks arrive simultaneously 

ci = 0. The second is that machine available time aj is updated after each task is scheduled. 

OLB (Opportunistic Load Balancing) schedules every task, in arbitrary order, to next available 

machine. Its implementation is quite easy, because it does not need extra calculation. The goal of 

OLB is simply keeping all machines as busy as possible. 

MET (Minimum Execution Time) schedules every task, in arbitrary order, to the machine which 

has the minimum execution time for this task. MET is also very simple, giving the best machine 

to each task, but it ignores the availability of machines. MET jeopardizes the load balance across 

machines. 

MCT (Minimum Completion Time) schedules every task, in arbitrary order, to the machine which 

has the minimum completion time for this task. However, in this heuristic, not all tasks can be 

given the minimum execution time. 

Min-min begins with the set T of all unscheduled tasks. Then, the matrix for minimum 

completion time for each task in set T is calculated. Task with overall minimum completion time 

is scheduled to its corresponding machine. Next, the scheduled task is removed from T. The 

process repeats until all tasks are scheduled. 

Min-max is similar to Min-min heuristic. Min-max also begins with the set T of all unscheduled 

tasks, and then calculates the matrix for minimum completion time for each task in set T. Different 

from min-min, task with overall maximum completion time is selected and scheduled to its 

corresponding machine. Next, the scheduled task is removed from T. The process repeats until all 

tasks are scheduled. 

GA (Genetic Algorithm) is a heuristic to search for a near-optimal solution in large solution 

spaces [50]. The first step is randomly initializing a population of chromosomes (possible 

scheduling) for a given task. Each chromosome has a fitness value (makespan) that results from 

the scheduling of tasks to machines within that chromosome. After the generation of the initial 

population, all chromosomes in the population are evaluated based on their fitness value, with a 

smaller makespan being a better mapping. Selection scheme probabilistically duplicates some 

chromosomes and deletes others, where better mappings have a higher probability of being 

duplicated in the next generation. The population size is constant in all generations. Next, the 

crossover operation selects a random pair of chromosomes and chooses a random point in the first 

chromosome. Crossover exchanges machine assignments between corresponding tasks. Mutation 

operation is performed after crossover. Mutation randomly selects a chromosome, then randomly 
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selects a task within the chromosome, and randomly reassigns it to a new machine. After 

evaluating the new population, another iteration of GA starts, including selection, crossover, 

mutation and evaluation. Only when stopping criteria are met, the iteration will stop. 

SA (Simulated Annealing) uses a procedure that probabilistically allows poorer solutions to be 

accepted to obtain a better search of the solution space. This probability is based on a system 

temperature that decreases for each iteration, which implies that a poorer solution is difficulty to 

be accepted. The initial system temperature is the makespan of the initial scheduling, which is 

mutated in the same manner as the GA. The new makespan is evaluated at the end of each 

iteration. A worse makespan might be accepted based on a probability, so the SA finds poorer 

solutions than Min-min and GA. 

Tabu search keeps track of the regions of the solution space which have already been searched 

so as not to repeat a search near these areas. A scheduling solution uses the same representation 

as a chromosome in the GA approach. To manipulate the current solution and to move through 

the solution space, a short hop is performed. The intuitive purpose of a short hop is to find the 

nearest local minimum solution within the solution space. When the short hop procedure ends, 

the final scheduling from the local solution space search is added to the tabu list. Next, a new 

random scheduling is generated, to perform a long hop to enter a new unsearched region of the 

solution space. After each successful long hop, the short hop procedure is repeated. After the 

stopping criterion is satisfied, the best scheduling from the tabu list is the final answer. 

A∗ is a tree-based search heuristic beginning at a root node that is a null solution. As the tree 

grows, nodes represent partial scheduling (a subset of tasks is assigned to machines), and leaves 

represent final scheduling (all tasks are assigned to machines). The partial solution of a child node 

has one more task scheduled than the parent node. Each parent node can be replaced by its 

children. To keep execution time of the heuristic tractable, there is a pruning process to limit the 

maximum number of active nodes in the tree at any one time. If the tree is not pruned, this method 

is equivalent to an exhaustive search. This process continues until a leaf (complete scheduling) is 

reached. The listed heuristics above are fit for different scheduling scenarios. The variation of 

scenarios is caused by the task heterogeneity, machine heterogeneity and machine inconsistence. 

The machines are consistent if machine mi executes any task faster than machine mj , it executes 

all tasks faster than mj . These heuristics are evaluated by simulation in article [50]. For consistent 

machines, GA performs the best, while MET performs the worst. For inconsistent machines, GA 

and A∗ give the best solution, and OLB gives the worst. Generally, GA, A∗ and min-min can be 

used as a promising heuristic with short average makespan. 

3.5.2. Dynamic strategies 

Dynamic heuristics are necessary when task set or machine set is not fixed. For example, not all 

tasks arrive simultaneously, or some machines go offline at intervals. The dynamic heuristics can 

be used in two fashions, on-line mode and batch mode. In the former mode, a task is scheduled 

to a machine as soon as it arrives. In the latter mode, tasks are firstly collected into a set that is 

examined for scheduling at prescheduled times. 

3.5.2.1. On-line mode 

In on-line heuristics, each task is scheduled only once, the scheduling result can not be changed. 

On-line heuristic is suitable for the cases in which arrival rate is low [22]. 

OLB dynamic heuristic assigns a task to the machine that becomes ready next regardless of the 

execution time of the task on that machine. 
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MET dynamic heuristic assigns each task to the machine that performs that task’s computation 

in the least amount of execution time regardless of machine available time. 

MCT dynamic heuristic assigns each task to the machine, which results in task’s earliest 

completion time. MCT heuristic is used as a benchmark for the on-line mode [22]. 

SA (Switching Algorithm) uses theMCT andMET heuristics in a cyclic fashion depending on the 

load distribution across the machines. MET can choose the best machine for tasks but might 

assign too many tasks to same machines, while MCT can balance the load, but might not assign 

tasks machines that have their minimum executing time. If the tasks are arriving in a random mix, 

it is possible to use the MET at the expense of load balance up to a given threshold and then use 

the MCT to smooth the load across the machines. 

KPB (K-Percent Best) heuristic considers only a subset of machines while scheduling a task. The 

subset is formed by picking the k best machines based on the execution times for the task. A good 

value of k schedules a task to a machine only within a subset formed from computationally 

superior machines. The purpose is to avoid putting the current task onto a machine which might 

be more suitable for some yet-to-arrive tasks, so it leads to a shorter makespan as compared to the 

MCT. For all the on-line mode heuristics, KPB outperforms others in most scenarios [22]. The 

results ofMCT are good, only slightly worse than KPB, owing to the lack of prediction for task 

heterogeneity. 

3.5.2.2. Batch mode 

In batch mode, tasks are scheduled only at some predefined moments. This enables batch 

heuristics to know about the actual execution times of a larger number of tasks. 

Min-min firstly updates the set of arrival tasks and the set of available machines, calculating the 

corresponding expected completion time for all ready tasks. Next, the task with the minimum 

earliest completion time is scheduled and then removed from the task set. Machine available time 

is updated, and the procedure continues until all tasks are scheduled. 

Max-min heuristic differs from the Min-min heuristic where the task with the maximum earliest 

completion time is determined and then assigned to the corresponding machine. The Max-min 

performs better than the Min-min heuristic if the number of shorter tasks is larger than that of 

longer tasks. 

Sufferage heuristic assigns a machine to a task that would suffer most if that particular machine 

was not assigned to it. In every scheduling event, a sufferage value is calculated, which is the 

difference between the first and the second earliest completion time. For task tk, if the best 

machine mj with the earliest completion time is available, tk is assigned to mj . Otherwise, the 

heuristic compares the sufferage value of tk and ti, the task already assigned to mj . If the sufferage 

value of tk is bigger, ti is unassigned and added back to the task set. Each task in set is considered 

only once. Generally, Sufferage gives the smallest makespan among batch mode heuristics [22]. 

The batch mode performs better than the on-line mode with high task arrival rate. 

3.5.3. Heuristic Schedulers 

One advantage of cloud computing is that tasks which might be difficult, time consuming, or 

expensive for an individual user can be efficiently accomplished in datacenter. Datacenter in 

clouds supports functional separation between the processing power and data storage, both of 

which locate in large number of remote devices. Hence, scheduling becomes more complicated 

and challenging than ever before. Since scheduler is only a basic component for the whole 

infrastructure, no general scheduler can fit for all cloud architectures. In this section, we mainly 

discuss schedulers used for data-intensive distributed applications. 
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3.5.3.1. Hadoop 

MapReduce is a popular computation framework for processing large-scaled data in mainstream 

public and private clouds, and it is considered as an indispensable cornerstone for cloud 

implementation. Hadoop is the most widespread MapReduce implementation for educational or 

production uses. It enables applications to work with thousands of nodes and petabytes of data. A 

multi-node Hadoop cluster contains two layers. The bottom is Hadoop Distributed File System 

(HDFS), which provides data location awareness for effective scheduling of work. Above the file 

systems is the MapReduce engine, which includes one job tracker and several task trackers. Every 

tracker inhabits an individual node. Clients submit MapReduce jobs to job tracker, then job 

tracker pushes work out to available Task Tracker nodes in the cluster [23]. Hadoop is designed 

for large batch jobs. The default scheduler uses FIFO heuristic to schedule jobs from a work 

queue. Alternative job schedulers are fair scheduler, capacity scheduler and delay scheduler. 

FIFO scheduler [23] applies first in first out heuristic. When a new job is submitted, scheduler 

puts it in the queue according to its arrival time. The earliest job on the waiting list is always 

executed first. The advantages are that the implementation is quite easy and that the overhead is 

minimal. However, throughput of FIFO scheduler is low, since tasks with long execution time 

can seize the machines. 

Fair scheduler [24] assigns equal share of resources to all jobs. When new jobs are submitted, 

tasks slots that free up are shared, so that each job gets roughly the same amount of CPU time. 

Fair scheduler supports job priorities as weights to determine the fraction of total compute time 

that each job should get. It also allows a cluster to be shared among a number of users. Each user 

is given a separate pool by default, so that everyone gets the same share of the cluster no matter 

how many jobs are submitted. Within each pool, fair sharing is used to share capacity between 

the running jobs. In addition, guaranteed minimum share is allowed. When a pool contains jobs, 

it gets at least its minimum share, but when the pool does not need its full guaranteed share, the 

excess is split among other running jobs. 

Capacity scheduler [25] allocates cluster capacity to multiple queues, each of which contains a 

fraction of capacity. Each job is submitted to a queue, all jobs submitted to the same queue will 

have access to the capacity allocated to the queue. Queues enforce limits on the percentage of 

resources allocated to a user at any given time, so no user monopolizes the resource. Queues 

optionally support job priorities. Within a queue, jobs with high priority will have access to 

resources preferentially. However, once a job is running, it will not be preempted for a higher 

priority job. 

Delay scheduler [26] addresses conflict between scheduling fairness and data locality. It 

temporarily relaxes fairness to improve locality by asking jobs to wait for a scheduling 

opportunity on a node with local data. When the job that should be scheduled next according to 

fairness cannot launch a local task, it waits for a short length of time, letting other jobs launch 

tasks instead. However, if a job has been skipped long enough, it is allowed to launch non-local 

tasks to avoid starvation. Delay scheduler is effective if most tasks are short compared to jobs and 

if there are many slots per node. 

3.5.3.2. Dryad 

Dryad [27] is a distributed execution engine for general data parallel applications, and it seems to 

be Microsoft’s programming framework, providing similar functionality as Hadoop. Dryad 

applies directed acyclic graph (DAG) to model applications. 

Quincy [28] scheduler tackles the conflict between locality and scheduling in Dryad framework. 

It represents the scheduling problem as an optimization problem. Min-cost flow makes a 
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scheduling decision, matching tasks and nodes. The basic idea is killing some of the running tasks 

and then launching new tasks to place the cluster in the configuration returned by the flow solver. 

3.5.3.3. Others 

To sum up the heuristic schedulers for cloud computing, scheduling in clouds are all about 

resource allocation, rather than job delegation in HPC or grid computing. However, the traditional 

meta-schedulers can be evolved to adapt cloud architectures and implementations, considering 

the development of virtualization technologies. Next, we take several representatives for example 

as follows 

Oracle Grid Engine [29] is an open source batch-queuing system. It is responsible for scheduling 

remote execution of large numbers of standalone, parallel or interactive user jobs and managing 

the allocation of distributed resources. Now it is integrated by Hadoop and Amazon EC2, and 

works as a virtual machine scheduler for Nimbus in cloud computing environment. 

Maui Cluster Scheduler [30] is an open source job scheduler for clusters and supercomputers, 

which is capable of supporting an array of scheduling policies, dynamic priorities, extensive 

reservations, and fair share capabilities. Now it has developed new features including virtual 

private clusters, basic trigger support, graphical administration tools, and a Web-based user portal 

in Moab. 

Condor [31] is an open source high-throughput computing software framework to manage 

workload on a dedicated cluster of computers. Condor-G is developed, provisioning virtual 

machines on EC2 through the VM Universe. It also supports launching Hadoop MapReduce jobs 

in Condor’s parallel universe. 

gLite [32] is a middleware stack for grid computing initially used in scientific experiments. It 

provides a framework for building grid applications, tapping into the power of distributed 

computing and storage resources across the Internet, which can be compared to corresponding 

cloud services such as Amazon EC2 and S3. Since technologies such as REST, HTTP, hardware 

virtualization and BitTorrent displaced existing accesses to grid resources, gLite federates both 

resources from academic organizations as well as commercial providers to keep being pervasive 

and cost effective. 

3.6. Real-Time Scheduling For Cloud Computing 

There are emerging classes of applications that can benefit from increasing timing guarantee of 

cloud services. These mission critical applications typically have deadline requirements, and any 

delay is considered as failure for the whole deployment. For instance, traffic control centers 

periodically collect the state of roads by sensor devices. Database updates recent information 

before next data reports are submitted. If anyone consults the control center about traffic 

problems, a real-time decision should be responded to help operators choose appropriate control 

actions. Besides, current service level agreements can not provide cloud users real-time control 

over the timing behavior of the applications, so more flexible, transparent and trust-worthy service 

agreement between cloud providers and users is needed in future. Given the above analysis, the 

ability to satisfy timing constraints of such real-time applications plays a significant role in cloud 

environment. However, the existing cloud schedulers are not perfectly suitable for real-time tasks, 

because they lack strict requirement of hard deadlines. A real-time scheduler must ensure that 

processes meet deadlines, regardless of system load or makespan. Priority is applied to the 

scheduling of these periodic tasks with deadlines. Every task in priority scheduling is given a 

priority through some policy, so that scheduler assigns tasks to resources according to priorities. 

Based on the policy for assigning priority, real-time scheduling is classified into two types: fixed 

priority strategy and dynamic priority strategy. 
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3.6.1. Fixed Priority Strategies 

A real-time task τi contains a series of instances. Fixed priority scheduling is that all instances of 

one task have the same priority. The most influential algorithm for priority assignment is Rate 

Monotonic (RM) algorithm proposed by Liu [33]. In RM algorithm, the priority of one task 

depends on its releasing rate. The higher the rate is, the higher the priority is. Period Ti is the 

length of time between two successive instances, and computation time Ci is the time spent on 

task execution. Since the releasing rate is inverse to its period, Ti is usually the direct criterion to 

determine task priority. Schedulbility test is to determine whether temporal constraints of tasks 

can be met at runtime. Exact tests are ideal but intractable, because the complexity of exact tests 

is NP-hard for non-trivial computational models [34]. Sufficient tests are less complex but more 

pessimistic. Schedulbility analysis is suitable for the systems whose tasks are known a priori. 

Sufficient test can be executed by checking whether a sufficient utilization-based condition is 

met. For example, Liu [33] proved that a set of n periodic tasks using RM algorithm is schedulable 

if    The bound is tight in the sense that there are some task sets 

unschedulable with the utilization that is arbitrarily higher than n(21/n − 1). Actually, many task 

sets with utilization higher than this bound can be scheduled. Lehoczky [35] proved that the 

average schedulable utilization, for large randomly chosen task sets, reaches 0.88, much higher 

than 0.69 of Liu’s result. The desire for more precise and tractable schedulability test pushes 

researchers to search high utilization bounds under special assumptions, such as appropriate 

choice of task periods. Exact test permits higher utilization levels to be guaranteed. One approach 

to solve this problem is that determining the worst-case response time of a task Ri. Once the 

longest time between arrival of a task and its subsequent instantiations is known, the test can be 

checked by comparing the deadline Di and the worst-case response time Ri. The complexity of 

the test comes from the Ri calculation by recursive equations. . This 

equation can be solved iteratively, because only a subset of the task release times in the interval 

between zero and Ti needs to be examined, observed by Harter, Joseph and Audsley 

independently [36,37,38]. 

One relaxation of Liu’s model is that task deadline does not exactly equal its period. Therefore, 

RM algorithm is not optimal for priority assignment. Instead, Leung proposed Deadline 

Monotonic (DM) algorithm as the optimal policy for such systems, assigning higher priorities to 

tasks with shorter deadlines than those with longer deadlines [39]. Under this assumption, 

Lehoczky [40] proposed two sufficient schedulability tests by restricting Di = kTi, where k is a 

constant across all tasks. Tindell [41] extended exact test for tasks with arbitrary deadlines. A 

further relaxation is permitting tasks to have unequal offsets. Since the worst-case situation occurs 

when all tasks share a common release time, utilization bound for sufficient test and response 

time for exact test in Liu’s model might be too pessimistic. General offsets still remain a problem 

to efficiently analyze. Under the assumption of specified offsets, RM and DM are no longer 

optimal, but Audsley [42] showed the optimal priority assignment can be achieved by examining 

a polynomial number of priority ordering over the task set. Liu’s model and its further extensions 

are suitable for single processor scheduling. In distributed systems, multiple processors can be 

scheduled in two approaches, partitioned and global. The former is that each task is assigned to 

one processor, which executes all incantations of the task. The latter is that tasks complete for the 

use of all processors. Partition and global 

schemes are incomparable in effectiveness, since the required number of processors is not the 

same [34]. 

For partitioned policy, the first challenge is to find the optimal partitioning of tasks among 

processors, which is a NP-complete problem. Therefore, heuristics are used to find good 

suboptimal static allocations. The main advantage of heuristic approaches is that they are much 
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faster than optimal algorithms while they deliver fairly good allocations. Dhall [43] proved that 

RMNext-Fit guarantees schedulability of task sets with utilization bound ofm/(1+21/3). Oh [44] 

showed that RM First-Fit schedules periodic tasks with total uitilizaiton bounded by m(21/2−1). 

Later, Lopez [45] lifted a tight bound of (m+1)(21/(m+1)−1) for RM First-Fit scheduling. 

Andersson [46] showed that system utilization can not be higher than (m + 1)/2 

for any combination of processor partitioning and any priority assignment. For global policy, the 

greatest concern is to find an upper bound λ on the individual utilization for RM global 

scheduling. The small λ presents high system utilization bound. Andersson [46] proved that 

system utilization bound is m2/(3m−1) with λ = m/(3m−2). Baruah [47] showed that for λ = 1/3 

system utilization of at least m/3 can be guaranteed. With arbitrary large λ, Barker [48] showed 

that the system utilization bound is (m/2)(1 − λ) + λ. 

3.6.2. Dynamic Priority Strategies 

Dynamic priority assignment is more efficient than the fixed manner, since it can fully utilized 

the processor for the most pressing tasks. The priorities change with time, varying from one 

request to another or even during the same request. The most used algorithms are Earliest 

Deadline First (EDF) and Least laxity First (LLF) [49]. EDF assigns priorities to tasks inversely 

proportional to the absolute deadlines of the actives jobs. Liu [33] proved that n periodic tasks 

can be scheduled using EDF algorithm if and only if 

. LLF assigns the processor to the active task with the smallest laxity. LLF has a 

large number of context switches due to laxity changes at runtime. Even though both EDF and 

LLF are optimal algorithms, EDF is more popular in real-time research because of smaller 

overhead than LLF. Under EDF, schedulability test can be done by processor demand analysis. 

Processor demand in an interval [t1, t2] is the amount of processing time g(t1, t2) requested by 

those tasks that must be completed in [t1, t2]. The tasks can be scheduled if and only if any interval 

of time the total processor demands g(t1, t2) is less than the available time [t1, t2]. Baruah [50] 

proved that a set of periodic tasks with the same offset can be scheduled if and only if U < 1 

and   The sufficient test of EDF is of O(n) complexity if 

deadline equals period. Otherwise, exact test can be finished in pseudo-polynomial time 

complexity, when deadline is no longer than period [34]. The research on real-time scheduling is 

not limited to the issues discussed above. For practicable usage, assumptions can be released, so 

that researches are extended in a number of ways. 

• Not all the tasks have periodic release. Aperiodic server is introduced to permit aperiodic tasks 

to be accommodated in the periodic models. 

• Tasks have resource or precedence relationships. Tasks can be linked by a linear precedence 

constraint, and communicating via shared resources is allowed to realize task interaction. 

• Computation time of tasks varies widely. Some reduced-but-acceptable level of service should 

be provided when workload exceeds normal expectations. 

• Soft real-time applications exist. Control mechanisms can optimize the performance of the 

systems, and analytic methods are developed to predict the system performance. 

3.6.3. Real-Time Schedulers 

A scheduler is called dynamic if it makes scheduling decisions at run time, selecting one out of 

the current set of ready tasks. A scheduler is called static (pre-run-time) if it makes scheduling 

decisions at compile time. A static scheduler generates a dispatching table for the run-time 
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dispatcher off-line. Generally, real-time schedulers are embedded in corresponding kernels with 

respect to their scheduling approaches. MARS kernel [51] targets on hard real-time systems for 

peak load conditions. Fixed scheduling approach is adopted. Schedule is completely calculated 

offline and is given to the nodes as part of system initialization. All inter-process communications 

and resource requests are included in the schedule. Nodes may change schedules simultaneously 

to another pre-calculated schedule. Arts kernel [52] aims at providing a predictable, analyzable, 

and reliable distributed computing system. It uses the RM/EDF/LLF algorithms to analyze and 

guarantee hard real-time processes offline. Non-periodic hard real-time processes are scheduled 

using execution time reserved by a deferrable server. All other processes are scheduled 

dynamically using a valuefunction scheme. With the augmentation of real-time services, real-time 

kernel are widely required in cloud computing. However, many kernels are not very capable of 

satisfying real-time systems requirements, particularly in the multicore context. One solution is 

applying loadable real-time scheduler as plug-ins into operation systems regardless of kernel 

configurations. As a result, variant scheduling algorithms are easily installed. A good example is 

RESCH for Linux kernel, which implements four scheduler plugins with partitioned, semi-

partitioned, and global scheduling algorithms [53]. When schedulers step into cloud environment, 

virtualization is an especially powerful tool. Virtual machines can schedule real-time applications 

[54], because they allow for a platformindependent software development and provide isolation 

among applications. For example, Xen provides simplest EDF scheduler to enforce temporal 

isolation among the different VMs. OpenVMS, a multi-user multiprocessing virtual memory-

based operating system, is also designed for real-time applications. 

 

4. CONCLUSIONS 

In this chapter, we firstly review the scheduling problems in a general fashion. Then we describe 

the cloud service scheduling hierarchy. The upper layer deals with scheduling problems raised by 

economic concerns, such as equilibrium in service providers and consumers, the competition 

among consumers needing the same service. Market-based and auction models are effective tools, 

both of which are explained with details and design principles. After that several middleware 

leveraging these economic models for cloud environment are presented. The lower layer refers to 

metadata scheduling inside of datacenter. Tasks belonging to different users are no longer 

distinguished from each other. Scheduling problem is to match multi tasks to multi machines, 

which can be solved by heuristics. Heuristics are classified into two types. Static heuristic is 

suitable for the situation where the complete set of tasks is known prior to execution, while 

dynamic heuristic performs the scheduling when tasks arrive. In cloud-related frameworks such 

as Hadoop and Dryad, batch-mode dynamic heuristics are most used, and more practical 

schedulers are developed for special usage. Other meta-schedulers in HPC or grid computing are 

evolved to adapt cloud architectures and implementations. For commercial purpose, cloud 

services heavily emphasize time guarantee. The ability to satisfy timing constraints of such real-

time applications plays a significant role in cloud environment. We then examine the particular 

scheduling algorithms for real-time tasks, that is, priority-based strategies. These strategies, 

already used in traditional real-time kernels, are not very capable of satisfying cloud systems 

requirements. New technologies, such as loadable real-time plug-ins and virtual machines, are 

introduced as promising solutions for real-time cloud schedulers. 
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