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EFFICIENT CHEBYSHEV ECONOMIZATION FOR ELEMENTARY 

FUNCTIONS 
 

 

Esmat BEKIR 

 
Abstract. This paper presents economized power series for trigonometric and 

hyperbolic functions. It determines the smallest range over which a function need 

to be computed and scales the Chebyshev polynomials accordingly. Thus reduced 

degree polynomials (and hence reduced computations) can be obtained while 

maintaining the same accuracy as those unscaled higher degree polynomials. The 

paper presents the Chebyshev and the power series coefficients that enable double 

precision accuracy for the mathematical functions addressed herein. 

 

 

 
1. Introduction 

 

The Chebyshev polynomials possess useful properties that render them proper for 

economizing transcendental functions, specifically trigonometric and hyperbolic 

functions, [1]-[3]. Commonly these functions use truncated Taylor series expansion. 

In this truncation method, the more the number of the retained terms the higher the 

accuracy of the approximation. However, this method suffers from the uneven 

distribution of errors in the approximation. The closer the evaluated point to the 

origin of expansion the higher the accuracy and vice versa. This means that for a 

desired level of accuracy the points far from the origin will need substantially more 

terms than those close to the origin of expansion. This problem could be alleviated 

by using minimization methods such as the least square (LS) algorithm. In this case 

the function f(x) is approximated with a finite degree polynomial
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coefficients kc are selected such that  
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is minimum, where w(x) is an arbitrary weighting function. With no loss of 

generality the [-1,1] is the interval in which the function is approximated. The 

minimization in Eq. (1.1) yields 
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( ) ( ) ( ) , 0,1, , 1

N
k n n
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c w x x x dx w x f x x dx n N



  

      (1.2) 

From its construction, Eq. (1.2) is impractical to solve as it requires the 

computation of a full two dimensional matrix. The reason is that the function 

f(x) is approximated with the unorthogonal power series basis 2 1
(1, , , , ).

N
x x x

  

This could be avoided if the function is approximated instead with an 

orthogonal basis. That is, if the orthogonal basis is given by 0 1 2, , ,T T T , then 

the coefficients kc are determined by 

 

                             

1 1

2

1 1

( ) ( ) ( ) ( ) ( ) , 0,1, 2,k k kc w x T x dx w x f x T x dx k

 

     (1.3) 

 

Using an orthogonal basis, will cause the off diagonal terms be null; thus the 

coefficients become the projections of the function over the members of the basis. 

 

Our objective is to distribute the errors uniformly over the given interval. Chebyshev 

basis is considered to be the best choice. To demonstrate the reason for this choice 

consider the simple function 

                                               ( ) ,  is integer 1
n

f x x n    

 

which we desire to approximate with a polynomial pm of degree m (less than n). The 

interval over which the approximation will be carried is [-1, 1]. The error is then 

 

                                              ( ) ( ) ( ), 1 1me x f x p x x      

 

In general, the error is not uniform; therefore there will be a point in the interval at 

which the error is a maximum. It is desired that pm is selected such that this maximum 
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error is the least possible. It has been established, [4]-[6], that there is no polynomial

( )e x of the same degree and the same leading coefficient that has a smaller magnitude 

in [-1, 1] than the Chebyshev polynomial ( )nT x . Therefore if the error ( ) ( )ne x cT x  

then the desired approximation will be ( ) ( ) ( ) ( ) ( )m np x f x e x f x cT x    . The 

constant c is selected to annul the coefficient of n
x . In our example since the leading 

coefficient of f(x) is 1 and (as will be seen in the next section) the leading coefficient 

of Tn(x) is 2n-1, then c=2-n+1. To generalize, let the above function be 

 

                                          1 2
0 1 2( ) ...

n
nf x a a x a x a x      

 

Following the same steps and reasoning as above we present the above equation as 

 

                      1 2
0 1 2( ) ... ( ) ( )

n
n n n nf x a a x a x a x cT x a cT x        

 

Dropping the last term in the above equation, (after selecting c as before), will yield 

a lower degree polynomial with the least maximum error. After dropping the last 

term ( )n na cT x , we expand ( )nT x  into a power series to recover the approximated 

function. This example is cited to show that the lower powers had no effect on the 

minimization process. This process can be repeated to get a lower degree 

approximation as desired. Later we show the approximation process for an arbitrary 

function. But first let’s discuss some properties of the Chebyshev polynomials. 

2. The Chebyshev Polynomials 

In closed form, the Chebyshev polynomials are given by the set of equations 

 

                                         1
( ) cos( cos ), 0,1, 2,nT x n x n


                (2.1) 

 

and with the transformation 

 

                                                            cosx               (2.2) 

 

they could be alternatively represented by 

 

                                               ( ) cos( ), 0,1, 2,nT n n    (2.3) 
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The Chebyshev polynomials can be generated recursively, shown in Appendix A, 

by 

                                            
0
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1 1
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 

                                  (2.4) 

 

Eq. (2.3)  shows that the magnitudes of the basis polynomials are  1 and are equal 

1 at the extreme points (x=1). Further, Chebyshev polynomials are orthogonal 

[2] 
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
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                                (2.5) 

where H(k) is defined in (A.11) and w(x) is the weighting function given by  

                                                      
2

1
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1

w x

x





    (2.6) 

The inverse relations of Eq. (2.1), proved in Appendix A, are given by 

                                     2
22 1

0

21
( ) , 0,1, 2,

2

n
n

kn
k

n
x H k T n

n k


 
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From Eq. (1.3), the projections of f(x) onto the Chebyshev basis results in 
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The above equation is not easily amenable to digital computations. Alternatively we 

consider f(x) to be an analytic function represented by 

                                                       

0

( )
n

n

n

f x a x





                 (2.10) 

and rather than projecting the entire function over the basis as mandated by Eq. (2.9), 

each of the polynomial terms is projected individually onto the Chebyshev 

polynomial through the use of Eqs. (2.7) and (2.8). Initially we shall consider the 

special cases of even and odd functions. 

Expanding an even function ( ) ( )f x f x   in terms of Chebyshev polynomials yields 

 

                         2
2 2 22 1

0 0 0

21
( ) ( )

2

n
n

n n kn
n n k

n
f x a x a H k T

n k

 


  

 
   

 
              (2.11) 

 

Reversing the summation order results in 

 

                                       2 2

0

( ) , ( ) is evenk k

k

f x c T f x





  (2.12) 

                                2 22 1

21
( ), 0,1, 2,

2
k nn

n k

n
c a H k k

n k






 
  

 
  (2.13) 

 

Likewise, an odd function ( ) ( )f x f x    in terms of Chebyshev polynomials is 

 

                      2 1
2 1 2 1 2 12

0 0 0

2 11
( )

2

n
n

n n kn
n n k

n
f x a x a T

n k

 


  

  

 
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             (2.14) 

 

Reversing the summation order results in 

 

                                     2 1 2 1

0

( ) , ( ) is oddk k

k

f x c T f x



 



                                  (2.15) 



ESMAT BEKIR 

 

 

 

38 

                                2 1 2 12

2 11
, 0,1, 2,
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 



 
  

 
                                (2.16) 

Unsymmetric function can be represented as a combination of Eqs. (2.13) and (2.16), 

albeit with double the amount of computations needed for a symmetric function. 

Implementing the economization procedure presumes that the range of the argument 

x of interest is between ±1. If this range is scaled by a factor of s, (range=±s), then 

Eqs. (2.11) –(2.16) would be modified as follows. 

 

                                        2 2
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                (2.17) 
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and 

                                   2 1 2 1

0
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                             (2.19) 
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 
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                (2.20) 

 

Smaller scales as observed from Eqs. (2.18) and (2.20) result in smaller coefficients 

and consequently faster coefficients decay and using of fewer expansion terms. 

Now we address three issues regarding numerical implementation: accuracy, 

accounting for the scales and carrying out the summation terms. Truncating the first 

N terms in Eqs. (2.17) and (2.19) as follows: 

 

                                                      
1

0

( )

N

k k

k

f sx c T





    (2.21) 

 

implies that the approximation error, δf, on the truncated function is (recall that  

1iT  ) 
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                                                          k

k N

f c





    (2.22) 

Because of the fast decay of the kc terms, the above error is dominated by Nc . Thus 

N is selected so 1Nc  is just less than the tolerable errors. Next we account for the 

scale by one of these two methods. The first is to modify the argument so that  

 

                                         
1

0

( ) , ,

N
k

k

k

z
f z b x x s z s

s





      (2.23) 

 

or by modifying the coefficients of Eq. (2.23) so that 

 

                                     

1

0

( ) ,

, 0,1,..., 1

N
k

k

k

k
k k

f x d x s x s

b
d k N

s





   

  


             (2.24) 

 

Finally, the numerical process for the summation can be carried out by converting    

in Eq. (2.21) into a power series which yields the power series given by Eq. (2.23)or 

Eq. (2.24). Alternatively, Eq. (2.21) could be evaluated by the Clenshaw 

recurrence [7] as follows. Substituting from Eq. (2.4) in the last term of Eq. (2.21) 

yields 

 

          
0 0 2 2 1 2 3

0 0 3 1 3 2 1 2

( ) ... (2 )

... ( ) ( 2 )

N N N N N

N N N N N N

f sx c T c T c xT T

c T c c T c x c T

    

     

    

     
 (2.25) 

 

Let 

                                                
1 1

2 2 12

N N

N N N

c

c x



 

 

  



 
 

 

Again, using Eq. (2.4) in the last term in Eq. (2.25) gives 

 

0 0 3 1 3 2 2

0 0 4 2 4 3 2 1 3

( ) ... ( )

... ( ) ( 2 )

N N N N N

N N N N N N N

f sx c T c T T

c T c T c x T

 
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    

      

    

      
 (2.26) 
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Using the recursion  

                   1 1

1 2

0

2 , 2, 3, ,1

N

N N

k k k k

c

c x k N N




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 

 





     

        (2.27) 

equation (2.27) reduces to 

                                                    0 1 2( )f sx c x                                       (2.28) 

3.   Trigonometric Functions Economization 

The Chebyshev series coefficients for the sine and cosine are given in terms of the 

Bessel function [3]. Herein these coefficients are given explicitly. 

3.1.  Sine function 

The Taylor series expansion of the sine function is given by 

                                                 2 1

0

( 1)
sin( )

(2 1)!

n
n

n

x x
n










  (3.1) 

Scaling the argument to have a range of ±s, modifies the above equation to 

                                               2 1

0

( 1)
sin( ) ( )

(2 1)!

n
n

n

sx sx
n










  (3.2) 

Substituting from Eq. (3.2) into Eq. (2.20), the Chebyshev coefficients for the scaled 

sine function are given by 

                                                2 1 2 1

0

sin( ) , 1 1k k

k

sx c T x



 



                                (3.3) 

             

 
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2 1

2 1

2 1 ( 1)
2 2

(2 1)!

( 2) ( 1)
2 , 0,1, 2,

( ) !( 1)!

n
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k
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n n

n k

n
c s

n k n

s
k

n k n k








 



  
  

  


 
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                      (3.4) 
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Periodicity of the sine implies that range of ±π/2 will cover all the possible values. 

However, scaling the argument to a range of ±π/4 allows us to economize it with 

fewer terms to get the desired accuracy. The rest of the range (from π/4 to π/2) is 

recovered using the identity sin( ) cos( / 2 - )x x and computing the economized 

cosine function. With s= π/4, the Chebyshev coefficients for the sine function are 

                                    
 

2 1 2 1

0

2 1

2 1

sin( ) , 1 1
4

/ 8 ( 1)
2 , 0,1, 2,

( )!( 1)!

k k

k

n n

k

n k

x c T x

c k
n k n k







 









   


 

  





 (3.5) 

Table 1 lists the Chebyshev coefficients for the sine function. Listed also are its 

power series coefficients for degrees up to 13 (the max for a double precision 

processor). 

3.2.  Cosine function 

The Taylor series expansion of the scaled cosine function is given by 

                                                     2

0

( 1)
cos( ) ( )

(2 )!

n
n

n

sx sx
n






  (3.6) 

Substituting from Eq. (3.6) into Eq. (2.18), the Chebyshev coefficients for the scaled 

cosine function, s= π/4, are given by 

                                          2 2

0

cos( ) , 1 1k k

k

sx c T x





                                       (3.7) 

                                    
 

2
2

2

2 ( 1)
2 ( 2) ( )

(2 )!

/ 8 ( 1)
2 ( ), 0,1, 2,

( )!( )!

n
n

k

n k

n n

n k

n
c s H k

n k n

H k k
n k n k











  
  

 


 

 





                          (3.8) 

A little disadvantage with the above economization is that the computed cosine at 0 

is not exactly 1. This can be overcome by forcing the cosine function to be 1 for:  
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2

16 8 8
2.10 2.10 2.10

2

x
x

  
                                           (3.9) 

The Chebyshev coefficients for the cosine function are listed in Table 2. Listed also 

are the power series coefficients of the cosine function for degrees 0,2…12. On a 

double precision digital processor, the polynomial degree is limited to 12. 

3.3.  Tangent function 

The tangent is computed directly via the tangent expansion as given here or 

indirectly via the cotangent expansion along with trigonometric identity. From [9], 

Sec. 4.3.67 

                          
 

4 4 2 2
2 12 2

0

( 1) 2 (1 2 )
tan

2 2 !

n n n
nn

n

B
x x

n

   




 



  (3.10) 

Substituting from Eq. (3.10) into Eq. (2.20), the Chebyshev coefficients for the 

scaled tangent function are given by 

               
 

2 1 2 1

0

4 4 2 2
2 1 2 2

2 1

2 2
2 1 2 2

tan( ) ; 1 1

2 1 ( 1) 2 (1 2 )
2 ( 2)

2 2 !

( 1) (1 2 )
4 (2 ) , 0,1, 2,

( 1)( ) !( 1)!

n

k k

k

n n n
n n

k

n k

n n
n n

n k

sx c T x

n B
c s

n k n

B
s k

n n k n k

 



   
 





  
 



   

   
  

  

 
 

   







                   (3.11) 

In Eq. (3.11) and in the sequel, the sequence Bn denotes the Bernoulli numbers. With 

a scale factor s= π/4 one can use Eq. (3.11) to compute the tangent for any value in 

the interval [-π/4, π/4]. From the trigonometric identity tan(π/2-x)=1/tan(x) one can 

compute the function in the rest of the range [π/4,π/2]. With this scaling, the 

coefficients in Eq. (3.11) are extremely slow to converge. Alternatively, by selecting 

s= π/8 one can have an economized function that achieves the maximum double 

precision accuracy of 10-16 with a polynomial of degree 19. In this case we can use 

the trigonometric identity tan( 4 ) (1- tan ) /(1 tan )x x x     to compute the function 

for an argument in the interval [π/8, π/4]. A more economized polynomial is given 

by the cotangent approach as described bellow. 
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3.4.  Cotangent function 

Here we economize ( ) cotf x x x . From [9], Sec. 4.3.70, the Taylor series expansion 

of the cotangent function is given by  

                            
2

22

0

( 1) 2
( )

2 !

n n
nn

n

B
f x x

n






               (3.12) 

As in the tangent function, we use the scale factor s= π/8.  Substituting from Eq. 

(3.12)  into Eq. (2.18), the scaled cotangent function coefficients are given by 

                                      2 2

0

( ) , 1 1

n

k k

k

f sx c T x



                                             (3.13) 

 

2
2 2

2

2
2

2 ( 1) 2
2 ( 2) ( )

(2 )!

( 1)
2 ( ), 0,1, 2,

( ) !( ) !

n n
n n

k

n k

n n
n

n k

n B
c s H k

n k n

s B
H k k

n k n k









 
  

 


 

 





                                (3.14) 

The tangent function is determined by 

                         tan
( )

x
x

f x
                                                  (3.15) 

The maximum error on the tangent function is determined by variation of Eq. (3.15) 

                                                  
2

tan
( )

x f
x

f x


                                                        (3.16) 

The maximum value is attained at 8x s   for which ( ) 8 cot( 8)f s   and 

        
2

2

tan ( 8)
tan .4369

8( )

s f
s f f

f s


  


                         (3.17) 

Chebyshev coefficients for the cotangent function are listed in Table 3. Listed also 

are the power series coefficients of the cotangent function for degrees 2,4…12. 

Using the cotangent approach we obtain the maximum double precision accuracy 

with an even polynomial of degree 12 rather than the odd polynomial of degree 19 

with the tangent approach. 
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3.5.  Arctangent function 

The Chebyshev coefficients for this function have been derived in [5,8]. Herein we 

shall obtain these coefficients through a rather elegant approach, [10]. Let 

                              2 2
( 1 ) ( 1 )u k x i x v k x i x                                        (3.18) 

Substituting for 

                              cosx                                                     (3.19) 

in Eq. (3.18)  gives 

                         i i
u ke v ke

 
                                           (3.20) 

which implies that 

1
( ) 2 cos 2 cos cos 2 ( )

n n n in in n n n
nu v k e e k n k n x k T x

   
       (3.21) 

The Taylor series expansion of the arctangent function is 

                                               1 3 5 71 1 1
tan

3 5 7
u u u u u


                

from which we get 

    1 1 3 3 5 5 7 71 1 1
tan tan ( ) ( ) ( ) ( )

3 5 7
u v u v u v u v u v

 
           

Substituting from Eq. (3.21)  in the above equation 

          

3 5 7
1 1

1 3 5 7

2 1

2 1

0

2 2 2
tan tan 2 ( ) ( ) ( ) ( )

3 5 7

( 1)
2 ( )

2 1

n n

n

n

k k k
u v kT x T x T x T x

k
T x

n

 







     







                (3.22) 

Also substituting in the trigonometric identity 

                                     1 1 1
tan tan tan

1

u v
u v

uv

  
 


  

for u and v from Eq. (3.18)  in the LHS and from Eq. (3.22)  in the RHS yields 
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2 1

1
2 12

0

( 1)2
tan 2 ( )

2 11

n n

n

n

kk
x T x

nk












  (3.23) 

Setting the parameter k to 

                                                          tan( 2)k   

implies that 

                                                        
2

2
tan

1

k

k



 

which upon substituting in Eq. (3.23) yields 

                  
2 1

1
2 1

0

( 1) tan ( / 2)
tan (tan ) 2 ( ), 1 1

2 1

n n

n

n

x T x x
n












   


               (3.24) 

In Eq. (3.24)  tan becomes a scale that naturally sets the domain of the economized 

function to  ±. Selecting 

                                                                8         (3.25) 

enables Eq. (3.24)  to compute the arctangent function for arguments in the range 

±tan(π/8) (tan(π/8)=√2 –1). To compute the arctangent for values in the interval 

[tan(π/8), tan(π/4)] we follow this procedure. Using 

 

                                                               1
tan x 

  

with the trigonometric identity gives 

                                                   
1 tan 1

tan( )
4 1 tan 1

x

x

 




 
  

 
 

which implies that 

                                                    1 1 1
tan tan

4 1

x
x

x


  

  


 

For values greater than tan(π/4), we use the identity tan 1 tan( 2 )x x  . The 

Chebyshev coefficients for the arctangent function are listed in Table 4. Listed also 

are the power series coefficients of the arctangent function for various degrees 

1,3…21. On a double precision machine, the polynomial degree is limited to 21. 
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3.6.  Arcsine and arccosine functions 

We first discuss the direct way of economizing the arcsine function. From Eq. (2.1)  

we determine the Chebyshev expansion coefficients from the identity 

 

                   

1

1

2
1

( )
sin

2
1

k
k

T x
c x dx

x

 






                                   (3.26) 

 

Substituting for 1
cos x 

  in the above integral and performing the integration 

yields 

 

                                      2 1 2

4

(2 1)
kc

k
 


                                           (3.27) 

 

It is evident that these coefficients do not diminish rapidly. For k=50, c2k+1=O(10-4), 

which is an unacceptable error for such large sum of expansion terms. 

 

A more economic approach is to compute the arcsine and arccosine via the 

arctangent function. For the arccosine we use the transformation z=(1-x)/(1+x). 

Substituting for cosx   in this transformation gives 

 

                                        

2

22

22

2

2 sin1 1 cos
tan

1 1 cos 2 cos

x
z

x











 
   

 
  

 

which implies that 

                 1 1 1
cos 2 tan

1

x
x

x
   
 


                                       (3.28) 

 

from which the arcsine function is computed using the trigonometric identity 

 

                                 1 1 1 1
sin 2 cos 2 tan

2 1

x
x x

x


   

   


                      (3.29) 
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4. Hyperbolic Functions Economization 

The hyperbolic functions are of infinite range; thus they must be adapted to 

practically large finite range computations without sacrificing the desired accuracy. 

Herein we develop the economization for the hyperbolic sine, cosine, tangent and 

cotangent. Their scales are specified when we discuss the economized exponent 

function which will play a central role in the computations of these functions. 

 

4.1.  Hyperbolic sine function 

The Taylor series expansion for a scaled hyperbolic sine is given by 

 

                2 1

0

1
sinh( ) ( )

(2 1)!

n

n

sx sx
n









                                       (4.1) 

Similarity between sin and sinh functions implies, using Eqs. (3.3)  and (3.4)  that 

                         2 1 2 1

0

sinh( ) , 1 1

n

k k

k

sx c T x 



                                (4.2) 

     
2 1

2 1

( 2)
2 , 0,1, 2,

( ) !( 1)!

n

k

n k

s
c k

n k n k

 





 
  

                          (4.3) 

4.2. Hyperbolic cosine function 

The Taylor series expansion for a scaled hyperbolic cosine is given by 

 

                2

0

1
cosh( ) ( )

(2 )!

n

n

sx sx
n





                                          (4.4) 

 

Similarity between the cos and cosh functions implies, using Eqs. (3.7)  and (3.8)  

that 

             2 2

0

cosh( ) , 1 1k k

k

sx c T x





                                      (4.5) 
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2

2

( 2)
2 ( ), 0,1, 2,

( ) !( ) !

n

k

n k

s
c H k k

n k n k





 
 

                         (4.6) 

4.3. Hyperbolic Tangent Economization 

The Taylor series expansion for the hyperbolic tangent is given by 

 

           
 

4 4 2 2
2 12 2

0

2 (1 2 )
tanh

2 2 !

n n
nn

n

B
x x

n

   








                           (4.7) 

Similarity between the tan and tanh functions implies, using Eqs. (3.10)  and (3.11)  

that 

 

           2 1 2 1

0

tanh( ) , 1 1

n

k k

k

sx c T x 



                                    (4.8) 

 
2 1 2 2

2 2
2 1

(2 ) (1 2 )
4 , 0,1, 2,

( 1) ( )!( 1)!

n n
n

k

n k

s B
c k

n n k n k

   







 

   
                (4.9) 

 

4.4.  Hyperbolic cotangent function 

The Taylor series expansion for hyperbolic cotangent ( ) cothf x x x , see [9], is 

 

                         
2

22

0

2
( )

(2 )!

n
nn

n

B
f x x

n





                                           (4.10) 

 

Similarity between the cot and coth functions implies, using Eqs. (3.13)  and (3.14) 

that 

             2 2

0

( ) , 1 1

n

k k

k

f sx c T x



                                         (4.11) 

   
2

2
2 2 ( ), 0,1, 2,

( )!( )!

n
n

k

n k

s B
c H k k

n k n k





 
 

                         (4.12) 
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4.5.  Exponent function 

To perform the exponent computation on a digital computer we first note that 

 

     ln 2
2 2log log 2

ln 2

x

x xx
e x e e                               (4.13) 

hence, if n and z are the nearest integer and remainder of x/ln2 respectively, i.e. 

 

       nint / ln 2 / ln 2n x z x n                                    (4.14) 

then 

                               / ln 2 ln 2 ln 2
2 2 2 2 2 .5 .5

x x n z n z n x n
e e e z


                   

which shows that computing the exponent of any number is reduced to computing it 

for a corresponding value in the interval [-0.5ln2, 0.5ln2]. Thus the proper scale for 

computing the exponent function is s=0.5ln2. We now discuss three methods for 

economizing the exponent function. 

4.5.1. Sum of sinh and cosh approach 

Using the scales of the sinh and cosh, the exponent function can be expressed as 

 

              
1

[sinh( ) cosh( )]
2

sx
e sx sx                                         (4.15) 

However, lack of symmetry in this approach will result in a large degree polynomial. 

4.5.2. Hyperbolic tangent 

The exponent function is transformed into a symmetric function as follows. Let 

 

           
/ 2 / 2

/ 2 / 2

1 tanh( / 2)1 1
tanh( / 2)

1 1 tanh( / 2)1

x x x
x x

x x x

xz e e e
e z x e

z xe e e





  
      

  
. 

Hence 

                  
1 tanh( / 2)

1 tanh( / 2)

x x
e

x

 







                                          (4.16) 
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Using   =s/2=ln2/4  in Eqs. (4.8)  and (4.9)  x
e
  can be computed for any real 

number. 

4.5.3. Hyperbolic cotangent approach 

The above scale   =s/2=ln2/4  can be used to compute ( ) cothf x x x   , from 

which we can compute the exponent function as follows: From Eq. (4.16)  we get 

 

                       
coth( / 2) 1 ( / 2) coth( / 2) / 2

coth( / 2) 1 ( / 2) coth( / 2) / 2

x x x x x
e

x x x x

    

   

 
 

 
                   (4.17) 

The Chebyshev coefficients for the hyperbolic cotangent function are listed in Table 

5. Listed also are the power series coefficients of the function for degrees 2, 4…10. 

The maximum error on the exponent function is determined below. Substitute in Eq. 

(4.17)  with ( / 2) ( / 2) coth( / 2).f x x x  The variation of the resulting expression yields 

 

2 2

2 2 2

2

2( ( ) ) (coth( ) 1)

x

x x x

x f f
e

f x

 
    

 
 

The maximum error occurs at / 2= =ln2/2 x s which gives .25
s
e f  . Thus any 

error in computing the exponent is of the same order as that of the cotangent 

function. 

4.6.  Hyperbolic arctangent function 

The hyperbolic arctangent, atanh, and the logarithm functions are mutually 

dependent. We will exploit this dependence to determine the scales for each of them. 

We derive the Chebyshev expansion of atanh by utilizing its similarity with the 

arctangent function. By substituting i   in Eq. (3.24)  and employing the 

identities 

 

                                                       
1 1

tan tanh

tan tanh

i i

i i

 

  




                                   

we get 

                 
2 1

1
2 1

0

tanh ( 2)
tanh (tanh ) 2 ( ), 1 1

2 1

n

n

n

x T x x
n











   


                         (4.18) 

The scale tanh   is related to the logarithm function and is determined next. 
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4.7.  Logarithm function 

The logarithm function is represented by the Taylor series expansion 

 

         2 3 41 1 1
ln(1 )

2 3 4
y y y y y                                  (4.19) 

Lack of symmetry of Eq. (4.19)  will require more expansion terms to achieve a 

desired accuracy than those for symmetric functions. Thus the logarithm function is 

transformed into a symmetric function as follows: from Eq. (4.19)  we get 

 

                                        2 3 41 1 1
ln(1 ) ( )

2 3 4
y y y y y                   (4.20) 

Subtracting the above two equations 

                                           
2 1

1

0

1
ln 2 2 tanh

1 2 1

n

n

y y
y

y n







 

 
            (4.21) 

To utilize Eq. (4.18)  in the above, we substitute for tanhy u  in Eq. (4.21)  to get 

 

     
2 1

1
2 1

0

1 tanh tanh ( 2)
ln 2 tanh ( tanh ) 4 ( ), 1 1

1 tanh 2 1

n

n

n

u
u T u u

u n

 












    

 
  (4.22) 

 

Since a real number w in a digital computer is represented by 2
n

w x , n is an integer, 

then its logarithm is 

 

                  ln ln 2 ln , 1 2w n x x                                    (4.23) 

 

which shows that the logarithm needs only be computed for1 2x  . Now let 

                                   
1 tanh 1

tanh
1 tanh 1

u s x
s x u

u s x






 
  

 
                                          (4.24) 

 

and substituting in Eq. (4.22)  yields 
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                           11
ln ln 2 tanh tanh , 1 1, 1 2x u u x

s


                             (4.25) 

The above requires that we map the interval [1,2] of x to the interval [-1,1] of u.  

Therefore, from Eq.  (4.24), for u=-1 and x=1 we get 

 

1
tanh( )

1

s

s



 


 

and for u=1 and x=2 Eq. (4.24)   gives 

                                                        
2 1

tanh( )
2 1

s

s






 

Solving the above two equations results in, 

                                           
2 1 1

tanh( )
2 1 2

s


 


 

Substituting for tanh(β) and s in Eq. (4.25)   gives 

                                1 2
ln ln 2 2 tanh , 1 2

2

x
x x

x

 
   


                                (4.26) 

Chebyshev coefficients for the hyperbolic arctangent function are listed in Table 6. 

Listed also are its power series for degrees 1, 3…13. 

 

5. Conclusions 

The Chebyshev polynomials is a powerful tool for economizing transcendental 

functions that often results in minimal computations and uniform error distribution. 

Scaling these polynomials according to the given function can extend their 

usefulness as demonstrated for the trigonometric and hyper trigonometric functions. 

Nevertheless there are some functions that can not be efficiently economized as the 

arcsine/arccosine functions. Also there are other functions that can be efficiently 

economized via the use of other functions as in the exponent and the logarithm 

functions. The economization data for the sine, cosine, tangent, arc tangent, 

exponent and logarithm functions are provided in Tables 1-6. 
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Appendix 

Chebyshev Recursion Equations 

Rearranging the trigonometric identity 

 

           2 cos cos cos( ) cos( ) cos( 1) cos( 1)n n n n n                (A.1) 

 

yields 

 cos( 1) 2 cos cos cos( 1)n n n        (A.2) 

 

Substituting from Eq. (2.3) in Eq. (A.2) 

 

 1 1( ) 2 cos ( ) ( )n n nT T T       (A.3) 

 

Using the transformation 

 cosx   (A.4) 

in Eq. (A.3) yields 

 1 1( ) 2 ( ) ( )n n nT x xT x T x    (A.5) 

 

A power series as function of the Chebyshev polynomials is shown below. Let 

 

 ,
i i

u e v e
 

   (A.6) 

The binomial theorem states 

                                    1 1
( ) ...

1 1

n n n n nn n
u v u u v uv v

n

    
         

   
 

  1 1 2 2 2 2
( ) ( ) ( ) ( )

1 2

n n n n n n nn n
u v u v u v uv u v u v

      
          

   
 

Substituting from Eq. (A.6) in the above gives 
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                2 cos 2 cos 2 cos( 2) 2 cos( 4)
1 2

n n n n
n n n   

   
        

   
                 (A.7) 

Substituting from Eq. (A.4) and Eq. (2.3) in the above gives 

      2 42 ( )
2

2 2 ( ) 2 ( )
1

n n
n n n

n n
xx T x T x T 

   
    

   
                        (A.8) 

The last term in the RHS of Eq. (A.8) depends on whether n is odd or even, hence 

                         2 0

2

2 2 ( ) 2 ( ) ... ( ),  is even
1

n n
n n n

nn
x T x T x T x n

  
       

     

                          2 11
2

2 2 ( ) 2 ( ) ... 2 ( ),  is odd
1

n n
n n n

nn
x T x T x T x n 

  
       

     

Equivalently the above two equations can be represented by the equations 

 

                             2
22 1

0

21
( ), 0,1, 2,

2

n
n

kn
k

n
x T H k n

n k


 
  

 
                          (A.9) 

                         2 1
2 2 12

0

1
, 0,1, 2,

2 1
( )

2

n
n

n kn
k

n
k

n
x T x

 



 
 

 


   (A.10) 

where 

                        

( ) 1, 1, 2,

.5, 0

0 otherwise

H k k

k

 

 



                                       (A.11) 
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