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Abstract: Item response theory is a widely used framework for the
design, scoring, and scaling of measurement instruments. Item response
models are typically used for dichotomously scored questions that have only
two score points (e.g., multiple-choice items). However, given the
increasing use of instruments that include questions with multiple response
categories, such as surveys, questionnaires, and psychological scales,
polytomous item response models are becoming more utilized in education
and psychology. This study aims to demonstrate the application of
explanatory item response theory (IRT) models to polytomous item
responses in order to explain common variability in item clusters, person
groups, and interactions between item clusters and person groups.
Explanatory forms of several IRT models – such as Partial Credit Model
and Rating Scale Model – are demonstrated and the estimation procedures
of these models are explained. Findings of this study suggest that
explanatory IRT models can be more parsimonious than traditional IRT
models for polytomous data when items and persons share common
characteristics. Explanatory forms of the polytomous IRT models can
provide more information about response patterns in item responses by
estimating fewer item parameters.

1. INTRODUCTION

Item response theory (IRT) models have been widely used for the design, scoring, and scaling
of educational and psychological assessments during the past three decades (Bond & Fox, 2001;
Embretson & Reise, 2000; Lord, 1980; van der Linden & Hambleton, 1997; Wright & Masters,
1982). Dichotomous IRT models, such as the Rasch model (RM; Rasch, 1960/1980) and two-
parameter logistic model (2PL; Birnbaum, 1968), have been more common in practice due to
the popularity of standardized assessments with dichotomously scored multiple-choice items.
However, today’s educators desire to differentiate their students with more innovative
assessment tools that consist of not only dichotomous items but also items with more than one
score level (i.e., polytomous items). Similarly, many researchers prefer to use surveys,
questionnaires, and scales with Likert-type items that often consist of multiple, ordered
response categories (e.g., strongly disagree, disagree, agree, and strongly agree). To
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accommodate such items, polytomous IRT models need to be utilized. Polytomous IRT models,
including the Nominal Response Model (NRM; Bock, 1972), the Graded Response Model
(GRM; Samejima, 1969), the Sequential Response Model (SRM; Tutz, 1990, 1991), the Rating
Scale Model (RSM; Andrich, 1978), and the Partial Credit Model (PCM; Masters, 1982), can
be used for items with either nominal or ordered response categories.

The traditional IRT models – regardless of number of response categories – can only provide
direct information regarding respondents’ trait levels in aptitude, achievement, cognitive
abilities, and so on, as well as item information concerning the difficulty, discrimination, and
fit of an item to the selected IRT model. Although researchers and practitioners often use these
descriptive measures for making decisions regarding respondents and items, traditional IRT
models are not able to identify any systematic effects that result from the design of a
measurement instrument. That is, these models do not explain common variability across items
or across respondents based on the design or theory behind the instrument. Measuring the
commonality of responses is an important step in test development because it allows test
developers to assess the degree which construct-relevant or construct-irrelevant features –
including linguistic, communicative, cognitive, cultural, or physical features – are related to the
construct being measured (AERA, APA, NCME, 2014). For example, consider a test that is
taken by examinees who either are native speakers of English or speak English as a secondary
language, but understanding the English language is not relevant to the target construct being
measured. Under traditional IRT models, there would be no way of directly estimating the mean
difference between primary and secondary English speakers’ performances.
Expanding the same example, assume that this test assesses mathematical knowledge for
middle-school students and researchers are interested in examining the potential effects of
including graphics on test items to assist students in answering the items. The researchers can
create two equivalent test forms where one test form contains images on half of the items, while
the remaining items have no images. The second form contains the same items as the first form,
but the presence or absence of images on items is the opposite of the first form. Using traditional
IRT models, there would be no way of directly estimating the impact of using images on the
difficulty levels of these test forms.

Information about the mean differences between primary and secondary English speakers or
the impact of images in test items can be directly estimated using Explanatory Item Response
Modeling (EIRM). De Boeck and Wilson (2004) introduced the EIRM framework for
measuring common variability in item clusters, respondent groups, or the interactions between
item clusters and respondent groups. Instead of estimating the descriptive effects of
respondents’ trait level or item difficulty, the explanatory item response models extract
information from responses by including explanatory variables. Under the EIRM framework,
traditional IRT models can be formulated as a subset of models that belong to a larger class of
models – generalized linear mixed models (GLMMs). GLMMs can function as explanatory
IRT models when the model includes an item covariate, a person covariate, or a person-by-item
covariate (De Boeck & Wilson, 2004; Wilson, De Boeck, & Carstensen, 2008). The EIRM
approach defines responses to items as repeated measures nested within each respondent in a
multilevel framework. Within a multilevel model, the effects of explanatory variables can be
estimated either as fixed or random effects. The linear logistic test model (LLTM; Fischer,
1973; De Boeck, 2008), the latent regression Rasch model (Zwinderman, 1991), and the latent
regression LLTM are widely-used forms of explanatory IRT models (Desjardins & Bulut,
2018).

With EIRM, the object of measurement is typically not at the item or respondent levels, but a
higher level to explain the relationship among the items or respondents. In the earlier example,
explanatory IRT models can provide information to explain the mean differences between
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primary and secondary speakers of English, and help determine whether there is any impact of
including images on the difficulty of items within the same model. Therefore, researchers can
analyze item response data from tests using a perspective that goes beyond common practices
in psychology and educational measurement (De Boeck & Wilson, 2004, p.7). The inclusion of
explanatory variables in IRT models is typically based on a pre-defined theory. In the case of
the example above, explanatory variables indicating English as a primary language (a person
covariate) and presence of an image in an item (an item covariate) could be included as
predictors in the same model.

1.1. Significance of Study

To date, EIRM has been mostly applied to either dichotomous data or pseudo-dichotomous data
where polytomous response categories have been collapsed into binary categories through the
selective grouping of ordered or nominal response categories (e.g., Bulut, Palma, Rodriguez, &
Stanke, 2015; De Boeck & Partchev, 2012; Plieninger & Meiser, 2014; Prowker & Camilli,
2007; Scheiblechner, 2009; Verhelst & Verstralen, 2008). Despite more recent attempts that
described how to estimate explanatory IRT models for items with ordered or nominal response
categories (e.g., Jiao & Zhang, 2014; Wang & Liu, 2007; Tuerlinckx & Wang, 2004), the
proposed models have been limited in terms of utilizing a familiar polytomous IRT model (e.g.,
GRM, PCM, and RM) within the EIRM framework. Also, these models mostly focused on the
first threshold between item response categories as it is often interpreted as the difficulty of
polytomous items. In this study, we aim to establish a basis for explanatory IRT models for
polytomous item response data, not by formulating a new model, but elucidating the flexibility
and usefulness of the existing polytomous explanatory IRT models. We used a real dataset to
demonstrate the utility of the explanatory IRT models by examining the threshold parameters
and model fit statistics. In addition, we described a new parameterization of the explanatory
IRT models for polytomous response data that allows a straightforward estimation of these
models in R (R Core Team, 2018).

1.2. Theoretical Background

1.2.1. Explanatory Item Response Modeling

Explanatory item response models can utilize IRT for both measurement and explanation purposes
(De Boeck & Wilson, 2004). The main advantage of these models is the flexibility to analyze items
and respondents, while simultaneously decomposing common variability across item- and respondent
groups (Briggs, 2008). In addition, EIRM allows a theory to be directly imputed into IRT models.
EIRM has been applied to a wide array of psychometric and measurement studies, including construct
validity studies aiming to explain common variability in item parameters (Cohen & Bolt, 2005; De
Ayala, Kim, Stapleton, & Dayton, 2002; Embretson, 2006), latent growth modeling (Wilson, Zheng,
& McGuire, 2012), local item dependence studies (Wang & Wilson, 2005), differential functioning
(Luppescu, 2002; Williams & Beretvas, 2006; French & Finch, 2010), item parameter drift (Bulut et
al., 2015), and contextual effect studies (Albano, 2013; Kan & Bulut, 2014; Kubinger, 2008).

Despite the increasing popularity of EIRM in educational and psychological settings, there are only a
few instances of EIRM where researchers used explanatory variables to explain the item-level or
person-level variation in polytomous response data. One of the very first attempts to study EIRM with
polytomous data was Tuerlinckx and Wang’s (2004) study where the authors fit a series of models to
a verbal aggression dataset that consisted of 24 items with three response categories. The study
examined model fit of five models: a RSM, an explanatory RSM with two person covariates, a PCM,
an explanatory PCM with two person covariates, and an explanatory PCM with using five item
covariates crossed with threshold parameters and two person covariates. The two polytomous
explanatory models with only person covariates estimated two more parameters than their traditional
counterparts. In both cases, the explanatory models with person characteristics fit better than the
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traditional polytomous IRT models. However, neither of these explanatory models could explain the
location of thresholds or the distance between thresholds in the items.

Tuerlinckx and Wang’s explanatory IRT model with both item and person covariates is the most
interesting of the three polytomous explanatory models. This model estimates 13 parameters in total
– 5 item explanatory variables for the first threshold, 5 item explanatory variables for the second
threshold parameter, the two person covariates, and the variance component for the person trait level.
Compared to the traditional PCM, the model estimates 36 fewer parameters. Unlike the first two
explanatory models, this model uses covariates to explain the location of thresholds. Threshold
locations for each item can be approximated by summing the coefficients where relevant item
characteristics are present. Using AIC and BIC, this model did not fit as well compared to the other
two explanatory models. While both the first and second threshold locations are estimated using item
covariates, the parameterization of this model does not make it easy to explain the distance between
thresholds. Furthermore, although this model uses explanatory variables to estimate the location of all
thresholds, the way the model is parameterized, without reference to prior thresholds, makes the
estimated coefficients more difficult to interpret. Like traditional IRT models, it is important to refer
to the prior threshold locations when developing polytomous explanatory models.

1.2.2. Modeling Polytomous Data

The notation for the EIRM framework is similar to traditional IRT models. Under the PCM,
with adjacent item response categories indexed by j and possible item scores from 0 to J, the
log-odds of selecting response category j over j – 1 on item i ( = 1, 2, 3, … , ) for
person n can be written as:log ( ) = θ – δ + τ , (1)

where θ represents the latent trait of person n and it is normally distributed as ( , ).
Traditionally, the δ is considered an overall index of item difficulty; however, this is actually
the location of the threshold between the first (j = 0) and second (j = 1) response categories for
item i. The first threshold is often treated as the item difficulty because the first threshold
represents the first step to obtain at least a partial credit instead of the lowest possible score on
the item. When item response data are dichotomous, there are no estimates for τ . Therefore, a
single threshold parameter, δ , becomes the item difficulty parameter. When three or more
response categories exist, τ represents the distance between the (j – 2)/(j – 1) threshold and
the (j – 1)/j threshold for item i.

In the explanatory form of PCM (EPCM; Tuerlinckx & Wang, 2004), the log-odds of selecting
response j over j −1 on item i for person n can be written as:

log ( ) = – + τ , (2)

where Znij is a matrix that can be used to estimate both fixed- and random-effects related to the
person traits. When fitting a traditional IRT model, Znij would be a vector of ones. For the
earlier example with examinees who are either native speakers of English or speak English as
a second language, the Znij matrix could include an additional column of ones (for native
speakers) and zeros (for non-native speakers) to estimate a fixed effect for English as a primary
language as well as a column of ones to estimate a residual person effect. Similar to Znij, Xnij is
a matrix of item-related information that describes the characteristics of individual items. With
traditional IRT models, a matrix with K − 1 columns indicating the item would be used to
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estimate item difficulties for individual items. In the case of the example above, a vector of
ones (for items with images) and zeros (for items without images) can be included as an
additional column in Xnij to estimate the impact of the absence or presence of images for
person n on item i. Finally, τ in Equation 2 represents the distance between the (j −2)/(j
−1) threshold and the (j−1)/j threshold for item i, as in the traditional PCM.

Equation 2 illustrates one of the main issues that often occur when utilizing EPCM. While
explanatory variables are used to describe the traits of respondents and the difficulty of initial
thresholds, the model contains no parameters to describe the common variation beyond the
initial threshold parameter. In Equation 2, the other threshold parameters are an afterthought;
and thus the model allows for parameters to explain the common variability between initial
thresholds, respondents, and their interactions, but fails to do the same for subsequent
thresholds. RSM forces thresholds between J and J−1 to be equidistant for all items, whereas
PCM allows for unique estimates of all thresholds across the items. Extending the EIRM
framework to all thresholds can allow distances between thresholds to be explained using
available covariates.

Natesan, Limbers, and Varni (2010) extended the polytomous EIRM research by applying an
explanatory form of GRM to polytomous response data. The study combined the polytomous
model with cumulative logits (Tuerlinckx & Wang, 2004) and a 2-level latent regression model
(Van den Noortgate & Paek, 2004). The authors compared the fit of two models, a GRM and
an explanatory GRM model that was the combination of the 2-level latent regression model and
the polytomous model with cumulative logits. This explanatory model contained a person
covariate related to emotional quality of life and no additional item covariates. The two models
were estimated using both Bayesian likelihood estimation in WINBUGS (Lunn, Thomas, &
Spiegelhalter, 2000) and a standard IRT model fitting approach in MULTILOG 7 (Thissen,
Chen, & Bock, 2003) on data from a five-item emotional functioning scale. The authors argued
that the model with the explanatory person covariate was better because a clearer picture of
emotional functioning was obtained when a measure of emotional quality of life was included
in the model (Natesan et al., 2010). Although the authors used a person covariate in their
explanatory IRT model, their study did not focus on explaining the distance between item
thresholds.

The most common application of explanatory IRT models to polytomous response data is the
identification of differential item functioning (DIF) in items with three or more response options
(Williams & Beretvas, 2006; Vaughn, 2006). These models include an interaction term between
a person covariate (e.g., gender) and the initial threshold parameter for a given item. The
distance between additional thresholds is estimated with a single threshold parameter when
using the explanatory RSM or multiple threshold parameters when using the explanatory PCM
(i.e., EPCM). With very little implementation of these models, one of the goals of this study is
to display the flexibility of polytomous explanatory IRT models that can help researchers
understand the context of the distance between thresholds.

1.2.3. Alternative Parameterizations

To recap, there have been very few studies that implemented explanatory IRT models with
polytomous response data. There are two major reasons for the scarcity of such studies. First,
explanatory IRT models for polytomous response data often require a large number of parameters to
be estimated, which may be computationally intensive, especially if the data include many items and
respondents. Also, as the number of parameters that the model yields increases, the interpretation of
model results becomes more difficult (Bulut et al., 2015). Second, the number of software programs
for estimating explanatory models with polytomous data has been limited due to the parameterization
of these models. Previous research utilized different software programs for the estimation of
explanatory IRT models with polytomous response data, such as WINBUGS (Jiao & Zhang, 2014;
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Natesan et al., 2010), HLM (Williams & Beretvas, 2006), and the PROC NLMIXED procedure
in SAS (Tuerlinckx & Wang, 2004). However, some of these programs (e.g., HLM and SAS)
are only commercially available and the others (e.g., WINBUGS) require a strong
understanding of the Bayesian modeling.

To avoid the problems described above, some researchers restructured polytomous response data into
dichotomous response data and utilized free software programs that are capable of estimating
GLMMs with dichotomous data (e.g., Bulut et al., 2015; De Boeck & Partchev, 2012; Plieninger &
Meiser, 2014; Prowker & Camilli, 2007; Scheiblechner, 2009; Verhelst & Verstralen, 2008).
However, changing the original structure of data often results in information loss and thus adds
additional bias to the inferences made from the estimated models. Alternatively, some researchers
maintained the original structure of polytomous data but only focused on explaining the initial
threshold – or item location – in the estimation process and ignored subsequent thresholds (e.g.,
Tuerlinckx & Wang, 2004). However, if explanatory IRT models only examine the initial threshold
in the items, potential relationships that may exist across all thresholds could be missed when
interpreting the model results.

To solve some of these technical problems, a different parameterization of polytomous IRT models
is necessary. Consider the number of thresholds estimated using the traditional RSM and PCM models
for a dataset that has J response categories for each item ( = 1, 2, 3, … , ). Under the traditional
RSM, a total of J−1 thresholds need to be estimated beyond the initial thresholds for each item. The
estimation of only J – 1 parameters is quite restrictive because it assumes that the distance between
two thresholds is the same across all items. When researchers assume and thus fit such a model, they
have strong a theory about responses. If the researchers fit a polytomous explanatory IRT model with
predictors related to their theory, then the model can produce conclusions with greater fidelity.

Under the traditional PCM, a total of (J – 1) × K threshold parameters will be estimated beyond the
initial threshold parameters for each item. The estimation of (J – 1) × K parameters assumes that the
distance between any two thresholds on any item is unique. When researchers fit the PCM, there is
no a priori theory regarding their models, although the distance between thresholds might be related
to item characteristics, respondent characteristics, or an interaction between the two. If a researcher
chooses an explanatory IRT model with covariates that explains the distances between thresholds over
traditional approaches such as the RSM or PCM, then the researcher is potentially choosing a model
that restricts the number of threshold estimates and ties those estimates to an underlying theory. The
following section elaborates on these potential models, using a new parameterization.

1.2.4. Strictly Threshold Explanatory Models

The Strictly Threshold Explanatory Model (STEM) is a compromise of the RSM and the PCM that
utilizes EIRM. Rather than estimating a single distance between thresholds as in the RSM, or the
unique distances between item-by-step threshold combinations as in the PCM, the STEM constrains
the estimation of the distances between threshold locations based on common item and/or person
characteristics. In the STEM model, the initial item thresholds (i.e., item difficulties) are estimated
without the use of explanatory variables; however, subsequent distances are estimated using
explanatory variables. Consider the earlier example where including graphics on mathematics items
and respondents’ primary language are likely to affect responses to items and particularly the
thresholds. For this example, items are scored in one of three categories incorrect, partially correct,
and correct. The STEM can be used to estimate this model as follows:log ( ) = θ – (δ + τ (Primary English) + τ (Other Language)+ τ (Images) ). (3)
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In this model, θ still represents the trait level of person n (i.e., mathematical ability), δ represents
the initial threshold location (i.e., the incorrect/partially correct threshold) for item i. The distance
between the incorrect/partially correct and the partially correct/correct threshold is estimated using
three parameters, τ , τ , and, τ , which represent the distance between thresholds for primary English
speakers controlling for images on items, secondary English speakers controlling for images on items,
and the presence of images on items controlling for English language status.

While the STEM is a compromise between the RSM and PCM, the model constraints are beneficial
for this particular model. Like the PCM, the STEM does not have fixed step threshold parameters that
are equal across all items, rather several step parameters based on features embedded within the items.
Like the RSM, the STEM is easier to interpret than the PCM due to fewer numbers of estimated
parameters. This interpretation is aided by the use of EIRM and distances between item thresholds
are now due to an interaction between the threshold and the item features.

1.2.5. Explanatory Partial Credit Model

The STEM utilizes EIRM, but only for restricting, explaining, and measuring thresholds beyond the
first threshold and does not use explanatory variables for the location of the initial threshold locations
(i.e., the incorrect/partially correct thresholds). If the STEM seems appropriate, then using
explanatory variables for locating the initial threshold and subsequent thresholds for items is a logical
extension. To illustrate the Explanatory Partial Credit Model (EPCM) model, consider the same
example for the STEM. For the EPCM, both initial thresholds and distances between thresholds are
estimated using explanatory variables. Thus, the EPCM can be written as:log ( ) = θ – (δ (Primary English) + δ (Other Language) + δ (Images)

(4)+ τ (Primary English) + τ (Other Language) + τ (Images) )
In this model, θ , τ , τ , and, τ have the same meaning as the STEM, and the estimates of δ , δ ,
and δ represent the effects of primary English speakers, secondary English speakers, and images in
items on the initial threshold locations, respectively. Components present on a particular item and
respondent in Equation 4 are additive. Thus, the initial threshold for an item with an image from an
examinee whose primary language is English would be located at δ + δ . For the same item, the
distance between the incorrect/partially correct and partially correct/correct thresholds is equal toτ + τ . For this example, a total of seven parameters will be estimated regardless of the number of
items on the assessment: three parameters for the initial threshold, three parameters for the distances
between the thresholds, and a variance component for respondent trait level. A more generalized
formula for the EPCM can be written as:

log ( ) = – + , (5)

where – has the same meaning as the adjacent categories logit model introduced in
Equation 2, and is a matrix of indicator variables used to estimate both fixed- and random-effects
related to the distances between thresholds, .

There is an important caveat when fitting explanatory IRT models to polytomous data. In the GLMM
framework, the number of item-related parameters that can be estimated for each person group is
limited to the total number of item-by-step threshold combinations. For example, if a test has 10 items
with four response options, thus three thresholds, then a maximum of 30 parameters (10 items x 3
thresholds) per person group could be estimated for the test (i.e., ten for each step level). Therefore,
researchers who utilize explanatory models need to ensure that the explanatory IRT model of interest
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with item and person covariates is capable of estimating all the parameters given the constraint on the
number of parameters to be estimated.

1.2.6. Cross-Classified Explanatory Partial Credit Model

The cross-classified EPCM extends the EPCM by including an additional variance component for
item difficulty. The result is a model that contains two random-effects, a random-effect for person
trait level and a random-effect for item thresholds. Figure 1 displays a network graph describing the
cross-classified nature of random items and random persons within the GLMM framework (Beretvas,
2008). By including the random item effect in the cross-classified EPCM, the model acknowledges
that additional unaccounted item-related variability exists in the data. The random effect is described
as a residual item difficulty because the model already includes item-level predictors. The difficulty
of each item can be found by extracting item difficulties from a posterior distribution and combining
the values with the relevant item-level predictors. Since these models include fixed-effect predictors
for items and an additional random effect that accounts for residual item variability, items can be
considered partly random or mixed effects (Van Den Noortgate, De Boeck, & Meulders, 2003).

Figure 1. A network graph depicting the cross-classified nature of items and examinees.

As explained earlier, polytomous explanatory IRT models can recover item thresholds either as
a fixed effect or as a random effect (Wang, Wilson, & Shih, 2006; Wang & Wu, 2011). From a
theoretical standpoint, fitting an IRT model with explanatory item covariates assumes that the
researcher has a conceptual understanding of the response process. It is unlikely that the
researcher would be able to identify and include all the item-related covariates that can affect
the difficulty of an item. The inclusion of the random-effect for item thresholds represents an
effect for all of the unexplained components that are not included as fixed explanatory item
threshold predictors. Including a random effect suggests that not all features that affect item
difficulty are included in the model, but their net effect is a normal distribution of item
difficulties with some known mean and variance.

Random item models have been extended to EIRM in several different contexts including, but
not limited to, explaining a construct (De Boeck, 2008; Janssen, 2010; Janssen, Schepers, &
Peres, 2004), understanding the components of item sets created using automatic item
generation (Holling, Bertling, & Zeuch, 2009), predicting item difficulty (Hartig, Frey, Nold, &
Klieme, 2012), understanding the impact of cognitive supports on alternative assessments
(Ferster, 2013), investigating differential facet functioning (Cawthon, Kaye, Lockhart, &
Beretvas, 2012), and modeling item position effects (Albano, 2013). Extending the EPCM in
Equation 4, which parameterizes the model for the example considering the role of images in
item difficulty for primary and secondary English-speaking students on a mathematics test, the
cross-classified EPCM can be written as:
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log ( ) = θ – (δ (Primary English) + δ (Other Language) + δ (Images)
(6)

+ τ (Primary English) + τ (Other Language) + τ (Images) + ϵ )
Compared to Equation 4, the only difference in Equation 6 is the additional parameter of ϵ ,
where ϵ ~ (0, ), representing the random effect for residual item difficulty. If the estimate of ϵ is
zero, then the model in Equation 6 is equivalent to the EPCM in Equation 4. By including the random
item effect in the cross-classified EPCM, the model acknowledges that additional unaccounted item-
related variability exists within the data. Since these models include fixed-effect predictors for items
and an additional random effect that accounts for residual item variability, items can be considered
partly random (Van Den Noortgate et al., 2003).

The explanatory IRT models outlined in this section can be estimated in several ways, most typically
marginal maximum likelihood estimation in conjunction with the EM algorithm (Bock & Aitkin,
1981) or restricted maximum likelihood in conjunction with the Laplace estimation. These models
can also be estimated using Bayesian methods such as the Markov Chain Monte Carlo estimation
method (Gelman, Carlin, Stern, & Rubin, 2013). The aforementioned methods are available through
a wide variety of statistical software programs. In this study, we use the eirm package (Bulut, 2019)
in R (R Core Team, 2018) for estimating traditional and explanatory IRT models for polytomous
response data. The eirm package is essentially a wrapper for the lme4 package (Bates, Maechler,
Bolker, & Walker, 2015), which is capable of estimating various GLMMs using a restricted
maximum likelihood method. In the following sections, we demonstrate how to estimate each of the
explanatory IRT models discussed earlier as well as their traditional counterparts using a real dataset
with polytomous item responses.

2. METHOD
2.1. Data

For this study, we used a verbal aggression dataset (Vansteelandt, 2000) to demonstrate the estimation
of explanatory IRT models with polytomous response data. The verbal aggression dataset consists of
the responses to a verbal aggression measure based on potentially frustrating situations. A total of 316
first-year psychology students from a Belgian university (243 women and 73 men) responded to the
items about four situations: a bus failing to stop, missing a train, the grocery store closing immediately
prior to entering, and an operator disconnecting a call because the respondent can no longer pay. For
each situation, the students were asked to decide whether they would curse, shout, or scold; whether
they would either do the chosen behavior or just want to do it; and whether they would blame
themselves or others for the situation. The situations did not follow a factorial design, but each
situation type prompt occurred 6 times resulting in 24 items in total. The response options were no,
perhaps, or yes for each item. Table 1 shows a descriptive summary of the items and item covariates
in the verbal aggression dataset.

We selected this particular dataset because (1) it is a well-known dataset since it has been used as an
illustrative example in previous demonstrations of explanatory IRT models (De Boeck, 2008, 2011;
De Boeck & Wilson, 2004, Tuerlinckx & Wang, 2004); (2) it is publicly available through many
packages in R (e.g., lme4 and difR) – which would allow readers to replicate the analyses presented
in this study (see the Appendix for the R codes); and (3) the small sample size of the verbal aggression
dataset justifies the need for estimating a parsimonious model for exploratory purposes rather than a
traditional IRT model with many item parameters. Previous research suggested that when polytomous
items have three response categories, sample sizes of 300 (or possibly more, if the number of response
categories is larger) might be necessary to obtain robust estimates of item threshold parameters
(Linacre, 2002; Reise & Yu, 1990). The verbal aggression dataset narrowly exceeds the suggested
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sample size for polytomous IRT modeling. Therefore, we highlight the trends in the results from
traditional IRT models (e.g., RSM and PCM) but intentionally avoid any further interpretation.

Table 1. Explanatory Variables and Response Frequencies in the Verbal Aggression Dataset

Item Situation
Explanatory Variables Response Options

Behavior Mode Blame No Perhaps Yes
1 1 Curse Want Other 91 95 130
2 1 Scold Want Other 126 86 104
3 1 Shout Want Other 154 99 63
4 2 Curse Want Other 67 112 137
5 2 Scold Want Other 118 93 105
6 2 Shout Want Other 158 84 74
7 3 Curse Want Self 128 120 68
8 3 Scold Want Self 198 90 28
9 3 Shout Want Self 240 63 13
10 4 Curse Want Self 98 127 91
11 4 Scold Want Self 179 88 49
12 4 Shout Want Self 217 64 35
13 1 Curse Do Other 91 108 117
14 1 Scold Do Other 136 97 83
15 1 Shout Do Other 208 68 40
16 2 Curse Do Other 109 97 110
17 2 Scold Do Other 162 92 62
18 2 Shout Do Other 238 53 25
19 3 Curse Do Self 171 108 37
20 3 Scold Do Self 239 61 16
21 3 Shout Do Self 287 25 4
22 4 Curse Do Self 118 117 81
23 4 Scold Do Self 181 91 44
24 4 Shout Do Self 259 43 14

2.2. Model Overview

The following IRT models were fit the verbal aggression dataset: the RSM, the PCM, the EPCM, and
the cross-classified EPCM. All of the models focused on the estimation of the first threshold (i.e.,
no/perhaps step) and the second threshold (i.e., perhaps/yes step) for each item. As explained earlier,
the RSM and the PCM are traditional IRT models and thus do not include any item-level or person-
level covariates. Note that we included the RSM and PCM for illustrative purposes only; we do not
intend to make any inferences from the estimated threshold parameters due to having a small sample
size in the verbal aggression dataset. The primary focus of this study was the two explanatory IRT
models: the EPCM and the cross-classified EPCM. These models aimed to explain the variability
between the step thresholds using item covariates.

Equation 7 shows the RSM and the PCM for the verbal aggression dataset. θ represents the overall
verbal aggression level of person n, δ is the initial threshold between the no and perhaps response
categories for item i, and τ represents the distance between the no/perhaps threshold and
the perhaps/yes threshold for item i. The only difference between the RSM and the PCM is that τ is
the same across all items in the RSM. That is, the distance between the no/perhaps threshold and
the perhaps/yes threshold is constant across all of the items:

log ( )( ) or log ( )( ) = θ – δ + τ . (7)
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Equation 8 demonstrates the EPCM with the item-related covariates. In addition to behavior type (i.e.,
curse, scold, or shout), blame type (others or self) and blame mode (want or do) were used as
explanatory covariates in the model. Because the items follow a within-group membership and not
between-group membership, all test characteristics cannot be estimated simultaneously because of
over-specification. As a result, only a single parameter is needed to estimate the effect of blaming self
over blaming others. Similarly, a single parameter is needed to estimate the effect of wanting versus
doing an act of verbal aggression.

log ( )( ) or log ( )( ) = θ – (δ (Curse) + δ (Scold) + δ (Shout)
(8)+ δ (Do) + δ (Self) + τ (Curse) + τ (Scold) + τ (Shout) )

The parameters τ , τ , and, τ in Equation 8 indicate the distances between the no/perhaps step
thresholds and the perhaps/yes step thresholds. Behavior type (i.e., δ , δ , and δ ) also explains the
initial step thresholds for the no/perhaps thresholds. The parameter δ4 is the difficulty associated with
going from wanting to complete a behavior to doing a behavior and δ5 represents the difficulty
associated with going from blaming others to blaming oneself.

Equation 9 demonstrates the cross-classified EPCM with the item-related covariates. This model
includes all of the elements in the EPCM in Equation 8. In addition, there is an error term, ϵ , which
presents the random effect for residual item difficulty.

log ( )( ) or log ( )( ) = θ – (δ (Curse) + δ (Scold) + δ (Shout) +
(9)+ δ (Do) + δ (Self) + τ (Curse) + τ (Scold) + τ (Shout) + ϵ )

The models summarized in Equations 7 through 9 were fit to the verbal aggression dataset using the
eirm package (Bulut, 2019). The eirm package controls the glmer function from the lme4 package
(Bates et al., 2015) and prints model results in a simpler output. The glmer function is capable of
fitting a GLMM to a dependent variable that follows a binominal distribution within a multilevel
structure. Therefore, regular response data in a wide format (persons as rows and items as columns)
need to be reformatted into a long format (items nested within persons) and contained indicator codes
for items and responses. In addition, polytomous item responses must be transformed into a
dichotomous form. The polyreformat function from the eirm package can transform polytomous
items into multiple dichotomous items, without distorting the original response structure. In this study,
the response categories of no, perhaps, and yes were dichotomized by creating new labels for each
response category. Table 2 shows the reformatted response categories for the verbal aggression
dataset.

Table 2. Reformatting Polytomous Responses into Multiple Dichotomous Responses

Original Response Category “perhaps” Category “yes”
No 0 NA

Perhaps 1 0

Yes 0 1

Because the five IRT models in this study were not nested within each other, a direct
comparison between the models using a chi-square test was not possible. Instead, we compared
the models using the relative fit indices of the Akaike Information Criterion (AIC; Akaike, 1974)
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and Bayesian Information Criterion (BIC; Schwarz, 1978). The AIC and BIC indices can be
calculated using deviance statistics from each model, where deviance is

Deviance = −2(loglikelihood) (10)

and AIC and BIC fit indices can be computed as

AIC = Deviance + (2 × k), and (11)

BIC = Deviance + (df  log(n)) (12)

where k is the number of estimated parameters and n is sample size. AIC and BIC were chosen for
several reasons. First, while AIC and BIC answer two different questions, when the criteria agree on
the best model, this provides reassurance on the robustness on the model choice (Kuha, 2004).
Second, regardless of the criteria of use for both AIC and BIC, readers have a preferred relative fit
index.

3. RESULTS

Table 3 displays the estimated locations of item difficulties and step distances for the RSM and PCM.
The RSM is a more restrictive model than the PCM. Item difficulty was estimated for each item
individually, while the step distance for perhaps to yes was fixed (0.54 logits) across the items. The
most difficult item based on the location of the no/perhaps threshold (2.69 logits) was the item
S3DoShout, which is about whether the respondent would do a shouting behavior when the grocery
store closes just as he or she is about to enter. Also, the RSM indicates that selecting the yes option
is exp(0.54) = 1.72 times more difficult than selecting no and perhaps options in the items, after
controlling for the latent trait (i.e., verbal aggression) level.

Unlike the RSM, the PCM allows each item to have a unique item difficulty (i.e., the threshold
for no and perhaps options) and a unique step parameter for the distance between the perhaps and yes
option. Based on the estimated item difficulties from the PCM, the item S3DoShout was still the most
difficult item (2.71 logits for the no/perhaps threshold) among the 24 items – which is not surprising
given the very low frequency of response option “yes” for this particular item (see Table 1). Unlike
the fixed step parameters in the RSM, the PCM had unique step parameters for the distance from
perhaps to yes, ranging from -0.10 to 1.13 across the 24 items. This result suggests that the items in
the verbal aggression dataset did not have similar distances from perhaps to yes, and thus
unconstrained step parameters from the PCM can possibly explain more variation among the items.

The PCM results in Table 3 show that four items related to the shouting behavior (S1DoShout,
S2DoShout, S4WantShout, and S4DoShout) have a negative distance parameter for perhaps/yes,
indicating that the thresholds are not ordered in the same order as the response categories (no, perhaps,
and yes). That is, selecting the option “yes” over “perhaps” in these four items was easier for the
respondents. This psychometric phenomenon is often called disordered thresholds or reversed deltas
in the literature (Adams, Wu, & Wilson, 2012). In the current study, disordered thresholds may be an
indicator of some response processes where respondents prefer to manifest their verbal aggression
more explicitly by selecting “yes” rather than “perhaps”. Because the items with disordered thresholds
seem to be related to different behavior types (i.e., shouting vs. others), using this characteristic within
the EIRM framework can help elucidate the disordered threshold problem.
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Table 3. Locations of No/Perhaps and Perhaps/Yes Thresholds for the Rating Scale Model (RSM) and
Partial Credit Model (PCM)

Table 4 displays the estimated item parameters for the EPCM and the cross-classified EPCM. Each
model decomposed the no/perhaps step thresholds based on behavior type (cursing, scolding,
shouting), behavior mode (doing or wanting), and blame type (self or others). The main difference
between the EPCM and the cross-classified EPCM was the additional random item residuals in the
cross-classified EPCM. The top part of Table 4 indicates the location of the no/perhaps thresholds for
the items based on behavior type, behavior mode, and blame type. For instance, the items associated
with the cursing behavior type (δCurse = −0.916) were easier to endorse than the scolding (δScold =
−0.073) and shouting (δShout = 0.728) behavior types for both EPCM and cross-classified EPCM. Also,
for the items associated with blaming self over blaming others (δSelf), endorsing the response category
of perhaps over no was exp(0.786) = 2.19 times more difficult in the EPCM and exp(0.82) = 2.27
times more difficult in the cross-classified EPCM. Endorsing perhaps over no for the mode of doing
over the mode of wanting (δDo) was estimated to be exp(0.465) = 1.59 times more difficult in the
EPCM and exp(0.51)=1.67 times more difficult in the cross-classified EPCM.

The bottom part of Table 4 shows the estimated step parameters for the distance from the first
threshold (no/perhaps) to the second threshold (perhaps/yes), depending on the behavior type. The
estimated step parameter for the cursing behavior indicated the largest value for both EPCM (τCurse =
0.781) and cross-classified EPCM (τCurse = 0.8). This finding suggests that selecting the response of

RSM PCM

Items
Location of
no/perhaps

Distance to
perhaps/yes

Location of
no/perhaps

Distance to
perhaps/yes

Est. SE Est. SE Est. SE Est. SE

S1WantCurse -0.53 0.12 0.54 0.05 -0.38 0.16 0.26 0.21
S1WantScold -0.13 0.12 0.54 0.05 0.12 0.16 0.00 0.21
S1WantShout 0.35 0.12 0.54 0.05 0.35 0.15 0.56 0.22
S2WantCurse -0.73 0.12 0.54 0.05 -0.95 0.17 0.89 0.21
S2WantScold -0.17 0.12 0.54 0.05 0.01 0.16 0.17 0.21
S2WantShout 0.30 0.12 0.54 0.05 0.51 0.15 0.02 0.22
S3WantCurse 0.12 0.12 0.54 0.05 -0.09 0.14 1.02 0.21
S3WantScold 0.96 0.13 0.54 0.05 0.82 0.14 1.02 0.27
S3WantShout 1.54 0.15 0.54 0.05 1.47 0.16 0.90 0.36
S4wantCurse -0.22 0.12 0.54 0.05 -0.52 0.15 1.13 0.21
S4WantScold 0.65 0.12 0.54 0.05 0.66 0.15 0.49 0.23
S4WantShout 1.12 0.14 0.54 0.05 1.29 0.16 -0.10 0.27
S1DoCurse -0.42 0.12 0.54 0.05 -0.51 0.16 0.69 0.21
S1DoScold 0.10 0.12 0.54 0.05 0.13 0.15 0.46 0.21
S1DoShout 1.01 0.13 0.54 0.05 1.17 0.16 -0.02 0.26
S2DoCurse -0.27 0.12 0.54 0.05 -0.15 0.16 0.32 0.21
S2DoScold 0.43 0.12 0.54 0.05 0.45 0.15 0.47 0.22
S2DoShout 1.47 0.14 0.54 0.05 1.63 0.17 -0.09 0.30
S3DoCurse 0.65 0.12 0.54 0.05 0.44 0.14 1.20 0.24
S3DoScold 1.53 0.15 0.54 0.05 1.49 0.16 0.70 0.34
S3DoShout 2.69 0.21 0.54 0.05 2.71 0.22 0.21 0.63
S4DoCurse 0.00 0.12 0.54 0.05 -0.17 0.15 0.91 0.21
S4DoScold 0.69 0.12 0.54 0.05 0.64 0.15 0.66 0.24
S4DoShout 1.88 0.16 0.54 0.05 1.98 0.18 -0.02 0.37
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yes over perhaps and no was more difficult for the items related to cursing than the items related to
scolding and shouting. The opposite of this statement is true for the shouting-related items. That is,
selecting yes over perhaps and no was easier for the items related to shouting than those related to
either cursing or scolding. When the top and bottom parts of Table 4 are compared, the same trend
seems to be reversed. The distance from no/perhaps to perhaps/yes was the smallest for the shouting
behavior (τ = 0.007) whereas the same distance for the cursing behavior was the largest
(τ = 0.781). This finding suggests that endorsing yes over perhaps and no in the cursing items
required high levels of verbal aggression, whereas endorsing yes over perhaps and no in the shouting
items was much easier for the respondents.

Table 4. Summary of the EPCM and Crossed-Classified EPCM

EPCM Cross-Classified EPCM

b SE exp(b) b SE exp(b)
Behavior – Curse, Scold or Shout
Curse -0.916 0.082 0.400 -0.961 0.134 0.383
Scold -0.073 0.079 0.930 -0.117 0.132 0.890
Shout 0.728 0.080 2.071 0.714 0.132 2.042

Blame – Self or Others

Self 0.786 0.047 2.194 0.820 0.105 2.270

Mode – Do or Want

Do 0.465 0.046 1.592 0.510 0.105 1.665

No/Perhaps to Perhaps/Yes – Step x Behavior
Step x Curse 0.781 0.076 2.184 0.800 0.077 2.226
Step x Scold 0.395 0.110 1.484 0.440 0.111 1.553
Step x Shout 0.007 0.124 1.007 0.158 0.126 1.171

Table 5 displays the model fit results for the four IRT models. Comparing the RSM to the PCM, AIC
favors the PCM, while BIC favors the more parsimonious RSM. Given the disagreement between
AIC and BIC, there is not a robust agreement between the relative model fit statistics and thus we
cannot make a decision regarding whether the distance between the no/perhaps and perhaps/yes
should be equidistant across the items. The EPCM used three covariates to explain item difficulties
and one covariate to explain step parameters. For the explanatory IRT models, both AIC and BIC
favored the cross-classified EPCM, which is not a surprising outcome because the cross-classified
EPCM includes more parameters. The model estimates fixed effects for the behavior type, behavior
mode, and blaming as well as random effects for the individual items that represent the thresholds of
no to perhaps.

Table 5. Summary of the Model-Fit Results from the Four IRT Models

Model df AIC BIC

Rating Scale Model 26 11470 11656

Partial Credit Model 49 11450 11801

Explanatory Partial Credit Model 9 11521 11586

Cross-classified Explanatory Partial Credit Model 10 11469 11548
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4. DISCUSSION

Traditional polytomous IRT models provide information about the threshold locations of items and
estimate the latent trait levels of respondents. Although traditional IRT models are capable of
describing respondents and items, they often fail to explain why thresholds for certain items function
in a different way. Polytomous explanatory IRT models presented in this study are an alternative that
can provide a meaningful context to the response processes.

Previous studies that utilized explanatory IRT models with polytomous data estimated the location of
all thresholds without reference to prior thresholds, making the coefficients difficult to interpret. This
study took an alternative approach to parameterizing thresholds so that the distance between
thresholds would have a simplified interpretation. By improving the interpretation of these
parameters, it potentially allows for improved practices in developing measurement instruments –
such as surveys, scales, and questionnaires. In addition to re-parameterizing the explanatory IRT
models for polytomous data, this study also displayed the versatility of explanatory IRT models by
comparing several models.

A total of four traditional and explanatory IRT models were fit to the verbal aggression data: RSM,
PCM, EPCM, and cross-classified EPCM. AIC and BIC model fit indices were used to compare the
models. Both model-fit indices favored explanatory IRT models over the more traditional RSM and
PCM. The AIC statistic favored the cross-classified EPCM, which included both the first threshold
parameters as random effects and additional covariates to explain the distance between the no/perhaps
and perhaps/yes step threshold locations. When comparing the relative fit of the cross-classified
EPCM to the other models, the findings suggested that cross-classified models could be useful, as the
model showed better relative fit compared to its more restrictive EPCM counterpart. Despite the
inconclusive relative fit of the cross-classified EPCM and EPCM, these models show great utility in
explaining why an item may be difficult by using information from the collective assessment. For
instance, the explanatory item response models indicated that respondents are less likely to select a
yes response for an item associated with the shouting behavior than other behavior types, which is the
type of information that would not otherwise be collected from either the RSM or the PCM.

While EIRM has not been typically used for explaining the distance between step thresholds in
polytomous items, this study revealed a situation where the estimated step thresholds between
response categories did not vary enough for some items. For instance, after fitting explanatory models
to explain the difference between the location of the no/perhaps response threshold and the
perhaps/yes threshold, the results showed that a group of items, specifically the items sharing the same
shout behavior type did not show a statistically significant difference between the no/perhaps and
the perhaps/yes step thresholds. This could be interpreted as the perhaps option not being as useful to
understanding respondents underlying verbal aggression for the items where verbal aggression is
expressed through shouting. This means respondents were likely to skip perhaps and go from selecting
no to yes when reaching a certain level of aggression. This finding implies that when the more
traditional PCM is fit to the data, there are instances where perhaps thresholds do not function
properly. By using explanatory response models, the functionality of multiple response categories in
polytomous items can be determined and the cases where of a response option not functioning could
be explained by using an item-related covariate.

While this study only examined polytomous data structures with explanatory item response models,
future studies can compare the conclusions drawn from polytomous explanatory IRT models against
the findings from the models where polytomous item responses are dichotomized and dichotomous
IRT models are applied. Additionally, the models in this study can be modified for different purposes,
such detecting item parameter drift and construct shift in polytomously-scored items and improving
test equating/linking results in both dichotomous and polytomous data settings.
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Appendix

R codes for estimating the explanatory IRT models with the verbal aggression dataset

# Install and load the required packages
install.packages("devtools")
devtools::install_github(repo = "okanbulut/eirm")
library("eirm")

# Reformat the VerbAgg dataset for polytomous EIRM
data("VerbAgg")
VerbAgg2 <- polyreformat(data=VerbAgg, id.var = "id", long.format = FALSE,

var.name = "item", val.name = "resp")

# Rating Scale Model
mod1 <- eirm(formula = "polyresponse ~ -1 + item + polycategory + (1|id)",

data = VerbAgg2)

print(mod1, Easiness = FALSE)

# Partial Credit Model
mod2 <- eirm(formula = "polyresponse ~ -1 + item + item:polycategory +

(1|id)", data = VerbAgg2)

print(mod2, Easiness = FALSE)

# Explanatory Partial Credit Model
mod3 <- eirm(formula = "polyresponse ~ -1 + btype + situ + mode +

polycategory + polycategory:btype + (1|id)",
data = VerbAgg2)

print(mod3, Easiness = FALSE)

# Cross-Classified Explanatory Partial Credit Model
mod4 <- eirm(formula = "polyresponse ~ -1 + btype + situ + mode +

polycategory + polycategory:btype + (1|item) + (1|id)",
data = VerbAgg2)

print(mod4, Easiness = FALSE)


