
  DEU FMD 21(62), 419-431, 2019 

 

419 

1 Bahcesehir University, Faculty of Engineering and Natural Sciences, Civil Engineering Department, Istanbul, TURKEY 
Corresponding Author *: masoud.negin@eng.bau.edu.tr  

 

 

Geliş Tarihi / Received: 11.09.2018  

Kabul Tarihi / Accepted: 08.01.2019 

DOI:10.21205/deufmd.2019216209 

Araştırma Makalesi/Research Article 

Atıf şekli/ How to cite: NEGIN, M. (2019). G Attenuation of the Rayleigh Waves in a Covered Half-space Made of Viscoelastic Materials. 

DEUFMD, 21(62), 419-431. 

  

Abstract 

This paper investigates the attenuation of the generalized Rayleigh waves propagating in a covered 
half-space made of viscoelastic materials. Exact equations of motion of the theory of linear 
viscoelasticity are utilized. The complex dispersion equation is obtained for an arbitrary type of 
hereditary operator of the viscoelastic materials and a solution algorithm is developed for obtaining 
numerical results on the attenuation of the waves under consideration. Viscoelasticity of the 
materials are described through fractional-exponential operators by Rabotnov. Attenuation curves 
are obtained and discussed for the dispersion curves which are limited by the dispersion curve 
constructed for the purely elastic cases with instantaneous and long-term values of the elastic 
constants. According to this discussion, the rules of the studied attenuation and the influence of the 
rheological parameters of the materials on this attenuation are established. In particular, it is 
established that a decrease in the values of the creep time of the viscoelastic materials causes an 
increase in the magnitude of the attenuation coefficient.  
Keywords: Generalized Rayleigh wave, Attenuation, Dispersion, Viscoelastic  material, Rheological parameters, Fractional-

exponential operator 

 

Öz 

Bu makalede lineer viskoelastik malzemelerden oluşan tabakalı yarı uzay ortamlarda yayılan 
genelleştirilmiş Rayleigh dalgalarının sönümlenmesi incelmiştir. Araştırmalar doğrusal 
viskoelastisite teorisinin hareket denklemleri uygulayarak parçalı homojen modeli aracılığıyla ile 
yapılmıştır. Dispersiyon denklemi, elde edilmiş ve sayısal sonuçlar elde etmek için bir çözüm 
algoritması geliştirilmiştir. Farklı atenüasyon durumları için katmanların viskozitesinin etkisi, 
elastik sabitlerle karakterize eden reolojik parametreler aracılığıyla incelenmiştir. Malzemelerin 
viskoelastisite modelide Rabotnov 'un kısmi eksponansiyel operatörü ’nü kullanılmıştır. Özellikle, 
reolojik parametrelerin, incelenen dalgalarının atenüasyonunu nasıl etkilediği tespit edilmiştir. 
Anahtar Kelimeler: Genelleştirilmiş Rayleigh dalgası, Sönümlenme, Dispersiyon, Viskoelastik malzeme, Reolojik 

parametreler, Kısmi eksponansiyel operatörü 
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1. Introduction 

Viscoelastic Rayleigh wave research actually is 
very old and is going back to early 1940s. Later 
on, the study of wave propagation in attenuative 
materials has been a subject of extensive 
investigation in the literature. The review of the 
most related investigations before 1990s can be 
found in the paper by Carcione [1].  

Until now, researchers have mainly used two 
different mathematical models to study the 
dispersion and the attenuation behavior of the 
guided waves in viscoelastic media. In fact, in 
most cases they either have described the 
viscoelasticity of the materials by simple spring-
dashpot models such as the classical Kelvin-
Voigt, Maxwell or some combinations of those 
models such as the standard linear solid model 
(see for instance [2-6]) or they have just 
replaced the real elasticity constants by the 
complex ones in the stress–strain relations of 
the viscoelastic materials (see for instance [7-
10]). Yet, such simple mathematical models and 
numerical results obtained therein cannot 
illustrate the real and complex character of the 
viscoelastic materials and more importantly the 
influence of the rheological parameters on the 
corresponding wave dispersion and 
attenuation. Meral et al. [11, 12] recent efforts 
by utilizing fractional order Voigt model are 
more realistic model for the wave propagation 
and attenuation problems in viscoelastic media. 
In this way, by introducing a new rheological 
parameter, which is in fact, the order of the 
fractional derivatives, they got results which are 
agreed more accurately with experiments as 
compared with conventional models.  

Now we consider a brief review of related 
investigations which are close to the studies 
carried out in this article. We begin this review 
with the paper by Carcione [1] which 
investigated the anelastic characteristics of the 
Rayleigh waves from the standpoint of balance 
energy and calculated the quality factors as a 
function of the frequency and depth.  He 
showed that the viscoelastic properties 
calculated from energy consideration are 
consistent with those obtained from the 
Rayleigh secular equation. 

Romeo [13] showed that the secular equation 
for Rayleigh waves propagating on a 
viscoelastic half-space always admits only one 
complex root corresponding to a surface wave. 
He obtained the roots in terms of complex 
integrals and showed that the wave solution 

represents an admissible surface wave for any 
viscoelastic relaxation kernel compatible with 
thermodynamics. Lai and Rix [14], based on the 
Cauchy residue theorem of complex analysis, 
presented a technique which permits 
simultaneous determination of the Rayleigh 
dispersion and attenuation curves for linear 
viscoelastic media with arbitrary values of 
material damping ratio. Jousset et al. [15] 
studied the magma properties and rheology and 
their impact on low-frequency volcanic 
earthquakes. They used linear viscoelastic 
theory and showed that volcanic media can be 
approximated by a standard linear solid (SLS) 
for seismic frequencies above 2 Hz. The results 
demonstrated that attenuation modifies both 
amplitudes and dispersive characteristics of 
low-frequency seismic waves. Fan [16] 
considered the nonlinear damping mechanism 
of seismic waves by applying the perturbation 
method and obtained the analytical solution of 
the Rayleigh wave propagation. Zhang et al. [17] 
investigated the dispersion of Rayleigh waves in 
viscoelastic media by applying pseudospectral 
modelling method to obtain high accuracy. In 
pseudospectral method the spatial derivatives 
in the vertical and horizontal directions are 
calculated using Chebyshev and Fourier 
difference operators, respectively. Chiriţă et al. 
[5] studied the propagation of surface waves 
over an exponentially graded half-space of 
isotropic Kelvin-Voigt viscoelastic material by 
means of wave solutions with spatial and 
temporal finite energy. They showed that when 
there is just one wave solution it is found to be 
retrograde at the free surface, while when there 
is more than one viscoelastic surface wave, one 
is retrograde and the others are direct at the 
free surface.  

This completes the review of the investigations 
related to the Rayleigh waves in a viscoelastic 
half-space. The following concrete conclusions 
can be made from the foregoing review: 

i. The investigations of the Rayleigh waves 

and their attenuation were carried out 

either by replacing the real elasticity 

modulus of the viscoelastic materials by 

frequency independent (the hysteretic 

model) or by frequency dependent 

complex modulus (the Maxwell, Kelvin-

Voigt or SLS models) which are obtained 

from the experiments; 
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ii. There is no any investigation regarding 

the investigation of the generalized 

Rayleigh waves in viscoelastic half-space 

covered with the elastic or viscoelastic 

layer.  

These considerations led the authors to study 
the generalized Rayleigh wave dispersion for a 
viscoelastic covering half-space utilizing more 
realistic mathematical model [18] by using 
Rabotnov [19] fractional exponential operator 
which are already used in the papers [20-25].  

Note that the study made in paper [18] in a 
certain sense, is the extension of the authors 
previous works [26-28] on dispersion of the 
generalized Rayleigh waves in an initially 
stressed elastic covered half-space to 
viscoelastic cases, where the constitutive 
relations for the covering layer and the half-
space materials are described by the fractional 
exponential operator by Rabotnov [19]. 
Nevertheless, in the paper [18], dispersion of 
Rayleigh waves in a viscoelastic covered half-
space is studied for the selected wave 
attenuation cases determined according to the 
rules described in [29, 30]. However, up to now 
there has not been any investigation carried out 
utilizing the fractional exponential operators by 
Rabotnov [19] studying the dispersive 
attenuation of viscoelastic Rayleigh waves for 
the selected possible dispersion curves to which 
the present work relates. More precisely, the 
main goal of the present work is the theoretical 
investigation of the possible dispersive 
attenuation of the generalized Rayleigh waves 
propagating in a covered half-space made of 
viscoelastic materials in the cases where the 
constitutive relations of the materials are 
described through the fractional exponential 
operator by Rabotnov [19]. Moreover, the 
investigations carried out in the present work 
also include the study of the influence of the 
rheological parameters of the covering layer 
and the half-space materials on these 
attenuations of the Rayleigh waves.  

The investigations are carried out within the 
framework of the piecewise homogeneous body 
model. Exact equations of the linear theory of 
viscoelasticity are used and it is assumed that 
perfect interface conditions take place between 
the covering layer and the half-space. Numerical 
results and discussions on the influence of the 
rheological parameters of the viscoelastic 
materials on the attenuation of the generalized 
Rayleigh waves propagating in the covered half-

space are established. Theoretical results 
obtained in this study can be used in many 
engineering practical problems related to wave 
propagation in viscoelastic layered media, as 
well as, in many scientific areas such as material 
sciences, geophysical sciences and earthquake 
studies and etc.   

2.  Governing field equations and relations 

Consider a covering half-space (Fig. 1) and 
assume that the thickness of the covering layer 

is h . The positions of the points we determine 

with the coordinates in the Cartesian system 

1 2 3Ox x x  of coordinates associated with the 

interface plane between the covering layer and 
half-space. We assume that the plane-strain 

state in the 1 2Ox x  plane occurs in the 

considered “covering layer + half-space” system, 
according to which, the component of the 

displacement vector in the 3Ox  axis direction is 

equal to zero. Moreover, we assume that the 
materials of the constituents of the system are 
isotropic, homogeneous and hereditary-
viscoelastic and the near-surface (or 
generalized Rayleigh) waves propagate in the 

positive direction of 1Ox  axis in this system. 

Below we use the notation with upper indices 
(1) and (2) to indicate the belonging of the 
values to the covering layer and half-space 
respectively.  

Thus, we write the governing field equations 
and relations for the case under consideration 

under plane-strain state in 1 2Ox x  plane.  

 

 

Figure 1. Geometry of the covered half-space 
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Equations of motion: 

   
 

 2

11 12 1

2

1 2

,

m m m
m u

x x t

 


  
 
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   
 

 2

12 22 2

2

1 2
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x x t

 

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  
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(1) 

Constitutive relations and strain-displacement 
relations: 

( )( )* ( ) ( )*)
1 1

(
11 2 ;
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(2) 

where 
( )*,m  

( )*m  are the following 

viscoelastic operators: 
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 
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 
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 (3) 

In Eq. (3) ( )
0
m , 

( )
0
m  are the instantaneous 

values of Lame’s constants at 0,t   and ( )
1 ( )

m
t , 

( )
1 ( )

m
t  are the corresponding kernel functions 

describing the hereditary properties of the m-th 
materials of the constituents. The other 
notation used in the equations (1)-(3) is 
conventional. 

According to Fig. 1, we assume that the 
following boundary and contact conditions on 
the free face plane of the covering layer and on 
the interface between the covering layer and 
half-space satisfy:  

Boundary conditions: 

2

12
(1)

0,
x h




   
2

(1)
22 0,

x h



  (4) 

Contact conditions: 

2 2

2 2
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| | ,
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x x

x x

u u

u u
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


  

  2 2

2 2

(1) (2)

12 0 12 0

(1) (2)

22 0 22 0

| | ,

| | .

x x

x x

 
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


 

(5) 

Moreover, the following decay conditions must 
be satisfied: 

2 2

(2) (2)
0, 0.i j i

x x
u

 
   (6) 

This completes the consideration of the 
governing field equations and relations within 
the framework of which the present 
investigation is carried out. 

3. Solution of the field equations and 
obtaining the dispersion equation 

As we consider the harmonic waves 

propagating in 1Ox  direction, therefore we can 

use the factor 
 1i kx t

e


 (where k  is the 

wavenumber and   is the circular frequency) 

for presentation of the components of the 
displacement vector and strain tensor as 
follows: 

   1

2

( ) ( ) ,m m

i i
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
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(7) 

Now using the relation, 

1 2
0

1 2

( ) ( )

( ) ( ) ,

t

t

f t f d

f t f d
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  




 




 (8) 

and using the transformation t s  , we can 

do the following manipulations for the integrals 
in Eq. (3), 
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and in a similar way, 

 

( )
1

( ) ( )
1 1

( )

,

t
m i

m mi t
c s

t e d

e i





  

 









 

  (10) 
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(11) 

Taking the relations (9)-(11) into consideration, 
finally we obtain the following expressions for 
the stresses from the equations (2) and (3): 
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In this way, instead of the Lame constants in the 
relations (2) and (3) we obtain the complex 

modulus  ( )m  ,  ( )mM  , where the real 

and imaginary parts are determined through 

the expressions (11) and (13). In other words, 
for the case under consideration the complete 
system of the field equations for the viscoelastic 
medium, can also be obtained from the 
corresponding ones for the purely elastic 
system just by replacing the elastic Lame 

constants ( )
0
m  and ( )

0
m  with the complex 

modulus  ( )m  and  ( )mM  , respectively.   

Thus, according to (7), (12) and (13), we obtain 
the following equations of motion in terms of 
the displacement amplitudes from the equation 
of motion (1): 
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After some mathematical operations, we derive 

the following equation for  
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The general solution of equation (15) for the m-
th layer can be written as: 
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In a similar way we can also determine the 

function 
   21

m
v x  from Eq. (14). Note that, as 

we consider the surface waves, according to the 

decay conditions in Eq.(6) both  2

1R )e( 0R k   

and  2

2R )e( 0R k   inequalities must be satisfied 

simultaneously.   

Finally, using the expressions (16) and Eq. (7) 
and (2) we obtain the following dispersion 
equation from the boundary and contact 
conditions (4) and (5): 

det 0, ; 1, 2, ... , 6.ij i j    (18) 

The explicit expressions of the components of 
the matrix ( )ij  are given in Appendix A 

through the expressions (A1). 

This completes the consideration to the solution 
to the field equations and obtaining the 
dispersion equation (18). 

4. Numerical results and discussions 

4.1 The selection of the viscoelastic 
operators and the determination of the 
dimensionless rheological parameters 

Solving the dispersion equation (18) requires 

given values of ( )
1

m
c

 , ( )
1

m
s

 , ( )
1
m
c

  and ( )
1
m
s

  

determined through the expressions (11) by the 

kernel functions ( )
1

m
 , and ( )

1
m

  of the 

viscoelastic operators. We recall that these 
operators (3) describe the viscoelastic 
properties of the m−th material. Consequently, 

for determination of the quantities ( )
1

m
c

 , ( )
1

m
s

 , 

( )
1
m
c

 and ( )
1
m
s

  it is necessary to have explicit 

expressions for the kernel functions ( )
1

( )
m

t  and 

( )
1

( )
m

t . Here we describe the viscoelasticity of 

the materials of the constituents through the 
fractional exponential operator by Rabotnov 
[19], i.e. we assume that 

( )

( )
( )( ) 0
0 ( )

0

( )
( ) ( )0

( )
0

( ) ( )
(1 )

3
( ) ,

2(1 )
m

m
mm

m

m
m m

m

t t

R t



   




 









 
 

 
  

    

 

( )

( )
( )( ) 0
0 ( )

0

( )
( ) ( )0

( )
0

3
( ) ( )

2(1 )

3
( ) ,

2(1 )
m

m
mm

m

m
m m

m

t t

R t



   




 









 
 

 
  

    

 

(19) 

where 

 

 

( )

( )

( ) ( )

( ) ( )

0

( )

, ( ) ,

m

m

m m

t
m m

R x t

R x t d







   





 

 ( )

( )
( )

( ) ( )

( ) (1 )

( )

0

, ( )

( )
.

((1 )(1 ))

m

m
m

m m

m n n

m

n

R x t t

x t
t

n










 






  


 

(20) 

Here ( )x  is the Gamma function and the 

constants ( )m , ( )
0
m

  and ( )m  are the 

rheological parameters of the m−th viscoelastic 
material. The mechanical meanings of these 
rheological parameters are explained in the 
papers by Akbarov [20] and Akbarov and 
Kepceler [22].  

 

Thus, using the relations (11) and (20) we 
obtain: 
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(21) 

where 
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( )
( ) 2 ( )
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( )
( ) 2 ( )

( ) sin
2 ,

( ) 2 sin 1
2
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m m
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(22) 

 
( ) 1

( ) ( )
1 (1)

2

, .

m

m m c
Q k h

c





     

(23) 

At the same time, as in the papers [20, 22] 
introducing the following dimensionless 
rheological parameters: 

( )

( ) ( )
( ) ( ), ,

( ) 1
0 ( ) ( ) 1

0

m

m m
m md Q

m

m m
R

 


 

  

   
 

 
(24) 

the following expressions can be obtained for 
the long-term values of the mechanical 

constants ( )m
c , ( )m

s , ( )m
c  and ( )m

s  which 

enter into the equation (15): 

lim ( 1) 1 ,

(1 2 ) 1
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( ) ( )( )lim ( 1) 1
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3 1
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m mm
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    
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

 
   

 

(25) 

The dimensionless rheological parameter ( )md  

in (24) characterizes the long-term value of the 

elastic constants, the parameter ( )mQ  

characterizes the creep time, and the 

rheological parameter ( )m  characterizes the 

form of the creep (or relaxation) function of the 
m-th viscoelastic material at the beginning 
region of deformation. Note that the case where 

( ) 0m   corresponds to the ‘standard 

viscoelastic body’ model (or the model by 
Kelvin). Consequently, according to the above 
expressions, the effect of the viscoelasticity of 
the m-th material on the attenuation curves will 
be estimated through these three dimensionless 
rheological parameters.  

This completes the selection of the viscoelastic 
operators and dimensionless viscoelastic 
operators. 

4.2 Algorithm for determination of the 
attenuation curves 

As we consider the time harmonic wave 
propagation in a viscoelastic material, therefore 
it must be assumed that the wave number k  is 

a complex one and can be presented as: 

2
1 2 1

1

(1 ), .
k

k k ik k i
k

       (26) 

Here, the imaginary part 2k  of the wave number 

k  (or parameter   which is called the 

coefficient of the attenuation) defines the 
attenuation of the wave amplitude under 
consideration. Note that we determine the 
phase velocity of the studied waves through the 
expression: 

1/ .c k  (27) 

Considering the relations (22)-(24) and 
according to the known physico-mechanical 
considerations, it can be predicted that in the 
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case where  ( ) 1mQ  , the behavior of the 

viscoelastic system must be very close to the 
corresponding purely elastic case with long-
term values of the elastic constants at t  . 

Also, according to the physico-mechanical 
considerations, it can be predicted that in the 

case  ( ) 1mQ  , its behavior must be very 

close to the corresponding purely elastic system 
with instantaneous values of the elastic 
constants at 0t  . Thus, according to the 

statements, it can be predicted that increasing 

the values of the parameters ( )mQ  and ( )md  

correspond to decreasing the viscous part of the 
viscoelastic deformations in the constituents. 
Consequently, by decreasing the values of the 

rheological parameters ( )mQ  and ( )md  we 

increase the effect of the material viscosity on 
the dispersion curves.   

Regarding the solution of the dispersion 
equation (18), since the values of the 
determinant obtained in (18) are complex, 
therefore the dispersion equation can be 
reduced to the following form 

det 0,ij   (28) 

where det ij  means the modulus of the 

complex number det ij . Consequently for 

construction of the attenuation or dispersion 
curves for the selected parameters of the 
problem it is necessary to solve numerically the 
equation (28).  

For more clarity of the features of the solution 

procedure to the dispersion equation related to 

the viscoelastic case we first recall the features 

for the purely elastic case: 

(a) The dispersion equation contains only two 

unknowns: c  and 1k h , where for each possible 

selected value of 1k h  the values of  the velocity 

c  are determined through the solution to this 

equation;  

(b) This solution procedure is carried out by 

employing the well-known numerical methods 

such as bi-section method which is based on the 

sign change of the dispersion determinant. 

However in the viscoelastic case the above-

noted features (a) and (b) change to the 

following ones: 

(c) The dispersion equation contains three 

unknowns: c , 1k h  and  ; 

(d) The sign of the dispersion determinant does 

not change. 

Consequently, according to the feature (c), in 

the viscoelastic case, the values of two 

unknowns must be given in advance to 

determine the values of the remained third one 

from the dispersion equation. If the selected 

two unknowns are 1k h  and  , then we can 

determine the wave propagation velocity c  as a 

result of the solution to the dispersion equation. 

Note that this approach was already made in 

the papers by Akbarov and Negin [28], Akbarov 

and Kepceler [22], Akbarov et al. [23, 24] under 

which the wave attenuation coefficient  was 

determined according to the expressions given 

in the references Ewing et al. [29] and Kolsky 

[30]. However, if the selected two unknowns 

are c  and 1k h , then we can determine the 

attenuation coefficient   as a result of the 

solution to the dispersion equation, which is 

made in the present paper and the attenuation 

curves are determined.  The latter approach 

was also made in the paper by Barshinger and 

Rose [7] and Kocal and Akbarov [25]. 

According to the feature (d), as in the 

viscoelastic case det 0ij  , we cannot employ 

the aforementioned algorithm based on for 

example the bi-section method. Therefore, in 

the viscoelastic case we use the algorithm which 

is based on direct calculation of the values of 

the moduli of the dispersion determinant 

det ij  and the sought roots are determined 

from the criterion 9det 10ij  .  

Thus, in the present paper we investigate the 

attenuation of the generalized Rayleigh waves 

within the scope of the foregoing algorithm. It 

should be noted that (see for instance, the paper 

by Sharma [31]) there is no general method for 
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finding the complex roots of the transcendental 

secular equations. At the same time, it is known 

that the functional iteration method detailed by 

Sharma [31] can be applied for determination of 

the complex roots of an analytical function. 

Namely, this method is employed for solution of 

the complex roots of the corresponding secular 

equations in the papers Sharma [32], Sharma 

and Othman [33], Kumar and Parter [34], 

Sharma and Kumar [35], Sharma et al. [36] and 

others listed therein. However, under 

application the functional iteration method the 

secular equation is reduced to the 

corresponding algebraic equations within the 

scope of certain assumptions and the 

application of this method requires the 

successful selection of the initial iteration. The 

aforementioned requirements are the 

disadvantages of the functional iteration 

method. Nevertheless, this method allows 

simultaneously determine the real and 

imaginary parts of the complex roots of the 

secular equations, which is the advantage of this 

method.   

However, the algorithm used in the present 

paper and detailed above allows us to 

determine only the real or only the imaginary 

parts of the complex roots of the secular 

equation, which is the disadvantage of that. At 

the same time, the application of the present 

algorithm does not require to reduce the 

secular equation to the corresponding algebraic 

equation and the successful selection of the 

initial iteration, which are the advantages of the 

present algorithm.   

4.3 Concrete numerical results and their 

discussions 

Now we consider numerical results related to 

the attenuation curves which are obtained 

within the scope of the following assumptions 
(1) (2)

0 0 0.3,   (1) (2)   and (2) (1) (2) (1)

2 2 0 0/ /c c    

in the cases where (2) (1)

0 0/ 2   . We suppose 

that the viscoelasticity properties of the 

covering layer are the half-space are the same, 

i.e. we suppose that (1) (2)( ),Q Q Q   

(1) (2) ( ),d d d   (1) (2)( )    . Furthermore, 

throughout the numerical investigation carried 

out in the present paper it is assumed that 

0.5  .  

Note that the numerical results detailed in the 

paper Akbarov and Negin [28], as well as many 

other ones which are not given here, show that 

the dispersion curves obtained for the 

corresponding purely elastic cases with 

instantaneous and long-term values of the 

elastic constants can be taken as the lower and 

upper limit cases for the dispersion curves 

obtained for the considered viscoelastic case. 

This statement allows us namely to select 

admissible dispersion curves and 

corresponding wave propagation velocity c  for 

the viscoelastic case. Then using these curves 

we can find the corresponding attenuation 

coefficient   from the solution of the 

dispersion equation (28) for each fixed value of 

the dimensionless wavenumber. 

Thus, first we construct dispersion curves 

related to the purely elastic case with 

instantaneous and long-term values of the 

elastic constants of the materials of the covering 

layer and of the half-space. These dispersion 

curves are illustrated in Fig. 2 with dashed lines. 

In this way, according to the discussions made 

above, after construction of the dispersion 

curves related to the purely elastic cases, now 

we can select the admissible dispersion curves 

related to the different viscoelastic cases. For 

example, we can take the dispersion curves 

shown in Fig. 2 with solid lines which are 

numbered as 1 to 5 from the dispersion curve 

constructed at t   the dispersion curve 

constructed at 0t  . 

After the above preparation, now we choose 

values for the dimensionless wavenumber 1k h  

and the wave propagation velocity (1)

2/c c  

according to the admissible dispersion curves 

indicated in Fig. 2. For example, if we take the 

dispersion curve indicated by number 1 in Fig. 2 

as an admissible dispersion curve, then for the 

given wavenumber 1k h  the values of wave 
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propagation velocities (1)

2/c c  are determined 

from this curve. After this determination, finally, 

we calculate the attenuation coefficient   from 

the dispersion equation (28) given the values 

for the rheological parameters Q , d  and   we 

construct the attenuation curves which will be 

discussed below. In other words, first, the wave 

propagation velocity (1)

2/c c  is chosen from the 

corresponding admissible dispersion curves 

(Fig. 2) for the selected value of wavenumber 

1k h  and then the unknown attenuation 

coefficient   is determined numerically from 

the solution to the dispersion equation (28). 

Thus, by employing the above solution 

procedure we found the attenuation curves 

given in Figs. 3, 4, 5, 6 and 7 which are 

constructed under various values of the 

parameter Q  for the dispersion curves 

indicated by numbers 1, 2, 3, 4 and 5 in Fig. 2, 

respectively, in the case where (1) (2) 25.d d   

Note that for more illustration of the influence 

of the rheological parameter d  on the 

attenuation curves, these curves are also 

constructed for the cases where (1) (2) 5d d   

and (1) (2) 50d d  . However, the admissible 

dispersion curves and the attenuation curves 

related to these cases are not given here for 

reducing of the paper volume.  

The concrete conclusions followed from the 

foregoing numerical results are given in the 

next section. 

 

 

 

 

 

Figure 2. Selected dispersion curves for the 

case where d(1) = d(2) = 25 

 

 

Figure 3. Attenuation of the curve indicated by 
number 1 in Fig. 2 for various values of the 
rheological parameter Q 
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Figure 4. Attenuation of the curve indicated by 
number 2 in Fig. 2 for various values of the 
rheological parameter Q 

 

 

 

 

Figure 5. Attenuation of the curve indicated by 
number 3 in Fig. 2 for various values of the 
rheological parameter Q 

 

 

 

 

 

 

Figure 6. Attenuation of the curve indicated by 
number 4 in Fig. 2 for various values of the 
rheological parameter Q 

 

 

 

 

Figure 7. Attenuation of the curve indicated by 
number 5 in Fig. 2 for various values of the 
rheological parameter Q 
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5. Conclusions 

We proposed an approach for determination of 

the attenuation coefficient of the generalized 

Rayleigh waves propagating in a covered half-

space made of viscoelastic materials. The 

approach is based on selection of the admissible 

dispersion curves of the generalized Rayleigh 

wave which can propagate in the viscoelastic 

covered half-space under consideration. The 

investigations are made within the scope of the 

exact equations of motion of the theory of linear 

viscoelasticity. The constitutive relations of the 

viscoelastic materials of the both covering layer 

and the half-space are described through the 

fractional exponential operators by Rabotnov 

and three dimensionless rheological parameters 

are introduced and through these parameters 

the influence of the viscosity of the covered half-

space materials on the attenuation curves is 

studied. The numerical results related to these 

curves are presented. According to analyses of 

these results, the following concrete 

conclusions can be drawn: 

 An increase in the values of the 

rheological parameters d and Q causes a 

decrease in the values of the attenuation 

coefficient; 

 Considerable values of the attenuation 

coefficient are obtained for the low 

wavenumber cases; 

 The decreasing rate of the attenuation 

coefficient increase with the rheological 

parameter Q; 

 After a certain value of the dimensionless 

wavenumber (denote it by 1( )*k h ) the 

values of the attenuation coefficient 

decrease monotonically with the 1k h ; 

 The value of the 1( )*k h  depends on the 

rheological parameters d and Q; 

 The influence of the “distance” from the 

selected dispersion curves from the limit 

ones on the attenuation coefficient is 

insignificant.  
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