
 DEU FMD 21(62), 533-544, 2019

533

1 Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir, TURKEY
2,3 Dokuz Eylul University, Engineering Faculty, Department of Computer Engineering, Izmir, TURKEY

Sorumlu Yazar / Corresponding Author *: derya@cs.deu.edu.tr

Geliş Tarihi / Received: 28.11.2018

Kabul Tarihi / Accepted: 08.01.2019

DOI:10.21205/deufmd.2019216218

Araştırma Makalesi/Research Article

Atıf şekli/ How to cite: KIYAK, ÖZTÜRK, E., BİRANT, K. U., BİRANT. D. (2019). An Ordinal Classification Approach for Software Bug Prediction.
DEUFMD, 21(62), 533-544.

Abstract

Software bug prediction is the process of utilizing classification and/or regression algorithms to
predict the presence of possible errors (or defects) in a source code. However, current classification
studies in the literature assume that the target attribute values in the datasets are binary (i.e. buggy
or non-buggy) or unordered, so they lose inherent order between the class values such as zero, less
and more bug levels. To overcome this drawback, this study proposes a novel approach which
suggests ordinal classification methods as a solution for software bug prediction problem. This
article compares ordinal and nominal versions of various classification algorithms (random forest,
support vector machine, Naive Bayes and k-nearest neighbor) in terms of classification performance
on real-world 38 software engineering datasets. The results indicate that ordinal classification
approach achieves better classification accuracy on average than the traditional (nominal) solutions.
Keywords: Software bug prediction, Ordinal classification, Software engineering, Software quality

Öz

Yazılım hata tahmini, kaynak kodda bulunan olası hataların (veya kusurların) varlığını tahmin
etmek için sınıflandırma ve/veya regresyon algoritmalarının kullanımı işlemidir. Fakat, literatürde
bulunan sınıflandırma çalışmaları, veri setlerindeki hedef özellik değerlerini iki olasılıklı (hatalı veya
hatasız) veya sırasız olarak kabul etmektedir. Bu nedenle; sıfır, az veya çok hatalı gibi sınıf değerleri
arasındaki sıralama mantığını değerlendirmemektedir. Bu eksikliği gidermek amacıyla, bu çalışma,
yazılım hata tahminleme problemi için sıralı sınıflandırma metotlarını kullanan yeni bir yaklaşım
önermektedir. Makalede, çeşitli sınıflandırma algoritmalarının (rastgele orman, destek vektör
makineleri, Naive Bayes ve k-en yakın komşu) sıralı ve itibari sürümleri, yazılım mühendisliği
alanındaki 38 gerçek veriseti üzerinde sınıflandırma performansları açısından karşılaştırılmıştır.
Sonuçlar, sıralı sınıflandırma yaklaşımının geleneksel (itibari) çözümlere nispeten ortalamada daha
iyi bir sınıflandırma doğruluğuna ulaştığını göstermektedir.
Anahtar Kelimeler: Yazılım hata tahmini, Sıralı sınıflandırma, Yazılım mühendisliği, Yazılım kalitesi

An Ordinal Classification Approach for Software Bug
Prediction

Yazılım Hata Tahmini için Sıralı Sınıflandırma Yaklaşımı
Elife Öztürk Kıyak 1 , Kökten Ulaş Birant 2 , Derya Birant 3*

mailto:derya@cs.deu.edu.tr
https://orcid.org/0000-0003-1873-2878
https://orcid.org/0000-0002-5107-6406
https://orcid.org/0000-0003-3138-0432

DEU FMD 21(62), 533-544, 2019

534

1. Introduction

A bug (defect or fault) is an anomaly in the
software that may cause it to behave incorrectly
and it can be considered as the result of an error
[1]. Bug prediction is a significant research topic
in empirical studies of software engineering.
Software bug prediction is the process of
constructing a learning model on software
metrics and defect information to predict the
possible bug levels in software modules. The
quality of bug prediction models is highly
dependent on the selection of learning methods
and algorithms. For this reason, this study
investigates and compares different
classification algorithms for bug prediction
problem.

Classification is a major task in data analysis
that is used to predict the categorical label of a
specific instance based on the model.
Classification tasks can be categorized into two
broad types, named nominal classification and
ordinal classification, based on whether their
class labels are ordered or not. Nominal
classification (binary or multi-class) assigns an
instance to exactly one of the classes which are
not ordered from the best to the worst such as
gender (male, female) or hair color (blonde,
brown, brunette), so it discards the order
among instances. Ordinal classification is a kind
of multi-class classification where there is an
inherent ordering between the classes such as
bad < average < good < excellent. The ordinal
classification can be regarded as a special case
of the nominal one, when additional
information about the rank order of the classes
is available. Some studies [2,3] proved that the
ordinal classification approach is marginally
better than the traditional multi-class
classification approach.

Although there are many classification studies
[4-11] performed in software bug prediction, to
the best of our knowledge, there has been no
prior detailed investigation for ordinal
classification in this problem. To fill this gap in
the literature, the study presented in this article
focuses on the application of ordinal
classification algorithms on real-world software
bug data. Actually, the number of bugs found in
a software module during test contain an
ordinal response variable, since it can be
categorized as high > medium > low.

The novelty and main contributions of this
article are as follows: (i) it provides a brief
survey of classification studies which has been

revealed to predict software bugs, (ii) it is the
first study that the ordinal classification
methods have been implemented for software
bug prediction, (iii) it compares traditional
random forest (RF), support vector machine
(SVM), Naive Bayes (NB) and k-nearest
neighbor (KNN) algorithms with their ordinal
versions, (iv) it presents experimental studies
conducted on 38 different software bug
datasets to demonstrate better classification
performance of ordinal classification rather
than conventional (nominal) classification
algorithms in terms of accuracy.

The organization of the paper is as follows.
Section 2 briefly summarizes the related
previous studies on the subject. Section 3
explains the material and methods proposed in
this paper. Section 4 contains experimental
work including dataset description, experiment
procedure and results on ordinal data. Finally,
Section 5 gives concluding remarks and future
directions.

2. Related Work

Ordinal classification has been applied in
various fields, including health [2], atmospheric
research [12], image classification [13],
transport system [14], emergency and disaster
information services [15]. A better classification
performance was obtained in these studies
when the order between the class labels was
taken into account. There are only a few studies
in software engineering related to ordinal
learning. A study [16] used ordinal classification
to obtain the intensity of code smells. Code
smell severity is considered as an ordinal
variable. Another software engineering related
study [17] discovers ordinal association rules,
instead of ordinal classification. However, to the
best of our knowledge, our study is the first
study that the ordinal classification methods
have been implemented for software bug
prediction.

Metric based bug prediction is to analyze a set
of independent metric variables (the
predictors) in the historical data and then
classify the unknown ones based on these
variables. Metric based bug prediction has
proved to be very useful in various studies
[18,19] since it deals with reducing the cost of
testing as well as to improve the quality of the
software end product.

Bug prediction has been widely studied for
binary classification [4-7,9,11] in which the

DEU FMD 21(62), 533-544, 2019

535

dependent variable (bugs) is divided into two
groups: one with no bugs and the other with at
least one. In other words, they regard bug value
as binary: buggy or non-buggy. However, in the
present study, we addressed the problem of
multi-class classification.

While binary classification determines whether
a program is defective or non-defective without
taking into account the number of defects, some
studies conducted to predict how many defects
exist in a software module. As noted in the
study [18], it is also valuable to be able to
predict the number of bugs in a software
project. Therefore, several studies [20,21]
focused on the prediction of the number of
defects with respect to independent variables
by using regression technique. While [20] used
statistical linear regression, [21] proposed an
integrated regression model.

In the literature, various algorithms have been
used by different studies when predicting bugs
on a software project. For instance, neural
network was used to develop a bug prediction
model [4]. SVM and KNN algorithms are
compared to find similarities of different files to
predict defectiveness [8]. NB algorithm was
preferred by some studies [9,11]. Similarly,
Bayesian networks were applied to obtain the
probabilities of appearances of defects [10].
However, differently from these previous
studies, our study compares nominal and
ordinal versions of various algorithms (RF, SVM,
NB and KNN).

In the literature, there exist two types of bug
prediction researches: constructing a
classification model on past data of the same
software project (within-project approach) [5]
or belonging to different projects (cross-project
approach) [9,22,23]. Each approach has its own
benefits and drawbacks [5]. Another research
study [11] applied the combination of within
and cross-project data when historical data is
limited in the project.

In order to reduce irrelevant source code
metrics, some studies applied different feature
selection techniques, including genetic
algorithm [24], Bayesian network [10], greedy
forward selection [25], and Pearson correlation
method [7]. Kumar et al. [4] used several
techniques one after another, including t-test,
univariate logistic regression, correlation
analysis and multivariate linear regression.
After feature selection step, the obtained set of

software metrics are considered as input to
develop a bug prediction model.

An imbalanced class in the dataset is one of the
main problems in software bug prediction, i.e.
the number of instances that belong to the
“buggy” class is far less compared to the
number of instances that belong to the “non-
buggy” class. Various techniques have been
proposed to address this problem by specifying
particular instances as missing [26], balancing
data using SMOTE technique [9] or applying
ensemble-based techniques [25,27]. Wijaya and
Wahono [28] used random undersampling
technique to deal with imbalanced data [28].
Tomar and Agarwal [29] proposed a system
that assigns higher misclassification cost to the
buggy instances and lower cost to the non-
buggy instances. Some studies [30,31]
compared different imbalance approaches such
as sampling, cost-sensitive, ensemble,
threshold-moving or hybrid approaches.

3. Material and Methods

3.1. Ordinal Classification

Assume that D={(xi, yi) | i=1,...,n} denote the
dataset that has n instances, where an input
vector xi belongs to the input feature space X,
the associated class label yi belongs to the
output set Y = {C1, C2,...,Ck} and k is the number
of classes. Ordinal classification is a form of
multi-class nominal classification where there
exists an inherent ordering among the class
labels, i.e., C1 < C2<...<Ck. If the target attribute
contains numerical values, a set of thresholds
𝜃1, 𝜃2, ... , 𝜃k-1 with the property 𝜃1 < 𝜃2 <...<𝜃k-1
divides the real number line into k disjoint
segments as follows.

𝑦 = {

𝐶1 𝑖𝑓 𝑦∗ ≤ 𝜃1,
𝐶2 𝑖𝑓 𝜃1 < 𝑦∗ ≤ 𝜃2,

⋮
𝐶𝑘 𝑖𝑓 𝜃𝑘−1 < 𝑦∗.

 (1)

Ordinal classification approach used in this
study transforms an ordinal classification
problem into a set of binary classification
problems, which are separately solved by
different classifiers and then class labels are
predicted by combining the binary outputs [3].
As shown in Figure 1, k class problem is
converted into a set of k-1 binary sub-problems.
It is important to note that, the performance of
the approach depends on the threshold values
as well as the way of combining the outputs.

DEU FMD 21(62), 533-544, 2019

536

The approach aims to learn the cumulative
probabilities Pr(yi ≤ Ci) instead of the distinct
class probabilities Pr(yi = Ci) as follows.

Pr(C1) = 1 − Pr(class > C1)

Pr(Ci) = Pr(class > Ci-1) − Pr(class > Ci), 1 < i < k

Pr(Ck) = Pr(class > Ck-1)

Figure 1. Conversion of k class ordinal data into
k-1 binary class data.

3.2. Classification Algorithms

The classification algorithms used in this study
are briefly described as follows.

Random Forest (RF) is an ensemble
classification algorithm that consists of multiple
decision trees and put them together to obtain
more accurate prediction. Each tree is
generated from bootstrap samples extracted
from original dataset by replacement. It uses
bootstrap aggregating and evaluates different
subsets of features at each node to reduce
overfitting. The predictions of all trees are
gathered by a voting mechanism such as
majority voting.

Support Vector Machine (SVM) is a supervised
machine learning algorithm that can be used for
classification or regression problems. The goal
of the support vector machine is to discover an
optimal hyperplane in an N-dimensional space
that maximizes the margin between classes.
SVM can effectively perform linear and non-
linear classification. In the case of non-linear
classification, SVM maps the inputs into high-
dimensional spaces by using a kernel trick. SVM
provides advantages in classifying small size,
non-linear, complex related and high-
dimensional instances.

Naive Bayes (NB) algorithm is another
supervised machine learning algorithm based
on Bayes Theorem which is an equation that

gives the relationship of conditional
probabilities to predict class labels. The aim is
to obtain the probability of a class label
according to the observed features. It assumes
that each feature is independent of other
features. This algorithm is useful when the
number of attributes is high.

K-nearest neighbor (KNN) is a simple supervised
classification algorithm in which an object is
classified by looking at the k nearest objects and
by selecting most frequently occurring class. A
distance function (i.e. Euclidean, Minkowski,
Manhattan) is used to calculate the distances of
the neighbors to the given point. The KNN
algorithm provides highly effective results in
the presence of large training sets. The optimal
k value is found by experiments based on the
performances of the classifiers.

4. Experimental Studies

In the experimental studies, ordinal
classification approach was applied on 38
software bug datasets to demonstrate its
competitive superiority over the traditional
nominal classification. We compared ordinal
and nominal versions of four classification
algorithms (random forest, support vector
machine, Naive Bayes and k-nearest neighbor)
separately by using Weka tool [32].

In the following subsections, dataset
description, experimental work details and
obtained results are explained respectively.

4.1. Dataset Description

In this study, real-world datasets from Tera-
PROMISE repository [33] was used to conduct
experiments. PROMISE repository [34] is one of
the most preferred and the largest repositories
for software engineering researches. Since
datasets in the repository are publicly available,
studies can be easily repeated and verified. This
repository was also used by several studies [4-
11,35,36]. Datasets contain source code metrics
that can be used to evaluate the quality of the
software or utilized to predict bugs. Table 1
shows 20 independent object-oriented metrics
such as “wmc”, “dit”, “noc” etc. and one
dependent variable “bug” which is used for
prediction.

 C
1
 C

2
 C

3
 C

4
 C

5
 Class labels

Binary

Classification

DEU FMD 21(62), 533-544, 2019

537

Table 1. List of software metrics

ID Metric Metric Full Name Description Data Type

1 WMC Weighted Methods per Class Sum of the complexities of methods defined in class Numeric

2 DIT Depth of Inheritance Tree Maximum level of the inheritance hierarchy of a class Numeric

3 NOC Number of Children The number of subclasses of a class Numeric

4 CBO Coupling Between Objects The number of coupled classes Numeric

5 RFC Response for a Class
The number of all methods in a class and methods called by
these methods

Numeric

6 LCOM Lack of Cohesion in Methods
The number of set of methods that shared references to
instance variables

Numeric

7 CA Afferent Couplings The number of classes that use a particular class Numeric

8 CE Efferent Couplings The number of classes which are used by specific class Numeric

9 NPM Number of Public Methods The number of all public methods stated in a class Numeric

10 LCOM3 Lack of Cohesion in Methods It is a variation of LCOM Numeric

11 LOC Lines of Code The number of physical lines of code within the method Numeric

12 DAM Data Access Metric
the number of private attributes is divided by all number of
attributes in the class

Numeric

13 MOA Measure of Aggregation
The number of types of data declarations that are user-
defined classes

Numeric

14 MFA
Measure of Functional
Abstraction

The number of methods inherited by a class is divided by the
number of methods

Numeric

15 CAM
Cohesion Among Methods of
Class

The relatedness among methods based upon the parameter
list of these methods

Numeric

16 IC Inheritance Coupling
The number of parent classes to which a given class is
coupled

Numeric

17 CBM Coupling Between Methods
Total number of new methods to which all the inherited
methods are coupled

Numeric

18 AMC Average Method Complexity
Average method size which means the number of binary
codes for each class

Numeric

19 MAX_CC
Maximum McCabe's
Cyclomatic Complexity

Maximum number of independent paths in a method Numeric

20 AVG_CC
Average McCabe's Cyclomatic
Complexity

Average number of independent paths in a method Numeric

21 Bug Number of Bugs Number of bugs detected in the class Numeric

Table 2 shows data characteristics: the project
name, its release, the number of instances, the
percentage of bugs, lines of code and type.
There are 28 releases of 12 open-source
projects and 10 academic projects [9,11]. Bug
percentage is below 10% for 5 datasets,
between 10% and 20% for 20 datasets and
above 20% for 13 datasets.

4.2. Experimental Work

In this study, we defined three ordinal class
labels for bug proneness: bug free, less buggy,

and more buggy. All instances where bug is zero
were accepted as bug free classes. The instances
that have only one bug were marked as less
buggy, and the others that have more than or
equal to two bugs were accepted as more buggy.
Converting bug data from numeric to
categorical enabled the implementation of
ordinal classification since instances were
ranked with respect to their bug values. After
conversion, the popular classification
algorithms were compared by keeping all the
parameters as default in Weka tool.

DEU FMD 21(62), 533-544, 2019

538

Table 2. The basic characteristics of the datasets
(OS: open-source, AC: academic, KLOC: Kilo Lines of Code)

ID Project Release
of
Ins.

Bug
(%)

KLOC
Type ID Project Release

of
Ins.

Bug
(%)

KLOC
Type

D1

Ant

1.3 125 16 OS D20 Intercafe - 125 16 11 AC

D2 1.4 178 22.47 OS D21 Kalkulator - 178 22.47 4 AC

D3 1.5 293 10.92 OS D22

Log4j

1.0 135 25.19 21 OS

D4 1.6 351 26.21 OS D23 1.2 205 92.20 38 OS

D5 1.7 745 22.28 208 OS D24 Pbeans 2.0 51 19.61 15 OS

D6 Arc - 234 11.54 31 AC D25 Poi 2.0 314 11.78 93 OS

D7 Berek - 43 37.21 AC D26 Redaktor - 176 15.34 59 AC

D8 1.0 339 3.83 33 OS D27 Serapion - 45 20 10 AC

D9 Camel 1.4 872 16.63 98 OS D28 Skarbonka - 45 20 15 AC

D10 1.6 965 19.48 113 OS D29

Synapse

1.0 157 10.19 28 OS

D11 E-learning - 64 7.81 3 AC D30 1.1 222 27.03 42 OS

D12

Forest

0.7 29 17.24 OS D31 Systemdata - 65 13.85 15 AC

D13 0.8 32 6.25 OS D32 Termoproject - 42 30.95 8 AC

D14

Ivy

1.4 241 6.64 59 OS D33 Tomcat 1.0 585 13.16 300 OS

D15 2.0 352 11.36 87 OS D34

Xalan

2.4 723 15.21 225 OS

D16

Jedit

4.0 306 24.51 144 OS D35 2.7 909 98.79 428 OS

D17 4.1 312 25.32 153 OS D36

Xerces

1.2 440 16.14 159 OS

D18 4.2 367 13.08 170 OS D37 1.3 453 15.23 167 OS

D19 4.3 492 2.24 202 OS D38 1.4 588 74.32 141 OS

These default parameters can be summarized as
follows:

 For RF, the number of trees is set to 100, the
number of features is calculated by
int(log2(#predictors)+1), so it is arranged as
5 for the experiments in this study.

 For SVM, the complexity constant c is set to 1,
the kernel is selected as PolyKernel and
epsilon value is assigned as 1.0E-12.

 NB uses a probabilistic model to infer the
most likely class without a specific input
parameter.

 For KNN, distance function is configured as
Euclidean Distance and k value (the number
of neighbors) is specified as 1.

For each dataset, 10-fold cross validation and
leave-one-out cross validation techniques were
applied to compare the ordinal and nominal
version of algorithms. N-fold cross validation
(nFCV) is widely used validation method that
separates dataset into equal n subsets. One of
the subsets is used as test set and other parts
(n-1) are used as training set and this procedure
is repeated n times so that all parts are used as
test and training set. Leave-one-out cross
validation (LOOCV) uses a single instance from

DEU FMD 21(62), 533-544, 2019

539

the dataset as the test data, and the remaining
part of the dataset as the training data. This
process is repeated for all instances. We used
LOOCV technique since it would be the best
option for small datasets, because we would
need to maximize the availability of the training
data.

4.3. Experimental Results

In this study, the developed classification
models were evaluated according to accuracy
values. Accuracy is a performance measure that
shows the percentage of correctly predicted
observations and calculated by following
formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (2)

where TP (true positives) and TN (true
negatives) represent the number of instances
correctly predicted as actual classes (“positive”
and “negative”). In other words, TP means that
the value of actual class is “positive” and
predicted class is “positive”, while TN shows
that the actual class is “negative” and predicted
class is “negative”. However, FP (false positives)
and FN (false negatives) denote the number of
instances incorrectly classified. To put it
another way, FN occurs when actual class is
“positive” and predicted class is “negative”. If
actual class is “negative” and predicted value is
“positive” then it is identified as FP.

In the experimental studies, we eliminated
some of the datasets that have less than 70%
accuracy for most of the classification
algorithms. Because this means that the dataset
is improper for classification task due to a
reason, for example (i) insufficient training
samples, (ii) imbalanced distribution of the data
between classes, (iii) the presence of outlier
(noisy) values, or (iv) adjacency of class's
intervals.

While, Table 3 shows nFCV results, Table 4
gives LOOCV results for both nominal and
ordinal versions of classification algorithms
(random forest, support vector machine, Naive
Bayes and k-nearest neighbor) on the datasets.

When the average results in Table 3 are
examined, it is clearly seen that ordinal
classification outperforms or equals to nominal
classification for all algorithms. Ordinal NB
(75.54%) is significantly more accurate than

conventional NB (73.07%) on average. The
small improvement over nominal case shows
that ordering information can become more
useful when the RF algorithm is used. Ordinal
SVM produced a slight increment in
classification accuracy. However, ordinal KNN
showed no change or very slight increase when
comparing with nominal KNN. Ordinal RF
achieved the best performance with 83.92%
accuracy on average.

Table 4 shows the leave-one-out cross
validation results. When LOOCV technique is
used (instead of nFCV), the difference in
classification accuracy between ordinal and
nominal NB algorithm remains high, 75.19%
versus 72.82%. Among the algorithms applied
in this study, ordinal RF has superiority in
terms of classification accuracy. Improvements
also exist for SVM and KNN algorithms.

Figure 2 shows the number of data sets in which
the ordinal algorithms perform equal to or
better than nominal versions when 10-FCV
technique is used. On 30 datasets, ordinal NB is
equal to or more accurate than conventional NB.
Ordinal RF wins against plain RF or tied on 31
datasets of 38 ones. Similarly, Figure 3 shows
the number of dataset when LOOCV technique is
used. In this case, ordinal RF algorithm is better
than or equal to its nominal version on 28
datasets. Compared to nominal SVM, the equal
or win ratio for ordinal SVM is 24/38 for 10-
FCV and 27/38 for LOOCV. KNN shows almost
the same results for both 10-FCV and LOOCV
(except the dataset Xerces 1.2).

Figure 2. Comparison of algorithms in terms of
the number of datasets which have better
performance when 10-FCV is used

0
5

10
15
20
25
30
35
40

RF
(ORD)

SVM
(ORD)

NB
(ORD)

KNN
(ORD)

31

24
30

38

Th
e

 N
u

m
b

e
r

o
f

D
at

as
e

ts

Algorithms

10-Fold Cross Validation

DEU FMD 21(62), 533-544, 2019

540

Table 3. Comparison of classification accuracies (10-fold cross validation)

Dataset Name
RF (ORD)

(%)

RF

(%)

SVM (ORD)

(%)

SVM

(%)

NB (ORD)

(%)

NB

(%)

KNN (ORD)

(%)

KNN

(%)

Ant 1.3 82.40 80.80 82.40 83.20 69.60 60.80 79.20 79.20

Ant 1.4 76.40 75.84 77.53 77.53 41.01 41.01 64.61 64.61

Ant 1.5 90.10 89.76 89.08 88.74 73.04 66.55 85.32 85.32

Ant 1.6 78.06 75.78 73.50 75.50 74.36 73.79 73.50 73.50

Ant 1.7 79.60 80.27 79.87 80.40 76.78 69.26 75.17 75.17

Arc 87.18 86.75 88.03 88.46 79.06 77.35 79.06 79.06

Berek 79.07 76.74 86.05 76.74 79.07 79.07 76.74 76.74

Camel 1.0 95.58 95.28 96.17 96.17 91.74 91.74 92.92 92.92

Camel 1.4 83.95 83.95 83.37 83.37 78.21 76.03 77.06 77.06

Camel 1.6 79.79 78.96 80.41 80.52 77.41 76.17 73.16 73.16

E-learning 90.63 90.63 90.63 90.63 82.81 84.38 85.94 85.94

Forest 0.7 82.76 82.76 79.31 79.31 72.41 82.76 79.31 79.31

Forest 0.8 93.75 93.75 93.75 93.75 93.75 93.75 87.50 87.50

Intercafe 85.19 85.19 85.19 85.19 77.78 81.48 70.37 70.37

Ivy 1.4 93.36 93.36 93.36 93.36 87.97 86.30 88.38 88.38

Ivy 2.0 88.64 89.20 88.64 88.35 80.40 79.26 83.81 83.81

Jedit 4.0 78.10 78.76 74.51 77.12 74.84 45.42 75.82 75.82

Jedit 4.1 74.68 77.56 75.96 76.28 75.64 59.61 74.04 74.04

Jedit 4.2 87.74 87.19 87.47 87.74 83.65 74.39 81.47 81.47

Jedit 4.3 97.56 97.56 97.76 97.56 93.90 93.90 96.54 96.54

Kalkulator 81.48 81.48 77.78 74.07 66.67 70.37 85.19 85.19

Log4j 1.0 76.30 75.56 77.04 76.30 78.52 73.33 68.15 68.15

Log4j 1.2 82.93 81.46 83.41 83.41 54.15 50.73 75.61 75.61

Pbeans 2 78.43 78.43 78.43 78.43 78.43 68.63 68.63 68.63

Poi 2.0 88.22 87.58 87.90 88.22 82.80 82.80 82.80 82.80

Redaktor 89.20 89.20 90.34 90.34 77.27 76.14 86.93 86.93

Serapion 80.00 80.00 82.22 84.44 71.11 75.56 73.33 73.33

Skarbonka 71.11 73.33 77.78 77.78 68.89 73.33 75.56 75.56

Synapse 1.0 87.90 87.26 89.17 89.81 75.16 75.16 83.44 83.44

Synapse 1.1 75.68 76.13 73.87 73.42 70.72 63.96 70.27 70.27

Systemdata 84.62 83.08 89.23 89.23 83.08 80.00 86.15 86.15

Termoproject 76.19 73.81 71.43 73.81 71.43 69.05 61.90 61.90

Tomcat 91.14 90.91 91.03 91.03 84.50 83.33 87.53 87.53

Xalan 2.4 83.68 84.51 84.51 84.79 78.28 78.28 79.67 79.67

Xalan 2.7 84.93 84.27 78.77 78.77 62.38 62.82 80.20 80.20

Xerces 1.2 85.00 84.55 83.86 83.86 77.50 72.95 80.68 80.68

Xerces 1.3 87.64 87.42 84.55 84.55 80.79 79.69 84.77 84.77

Xerces 1.4 79.93 79.93 59.86 60.88 45.40 47.45 73.64 73.64

AVG 83.92 83.66 83.27 83.24 75.54 73.07 79.06 79.06

DEU FMD 21(62), 533-544, 2019

541

Tablo 4. Comparison of classification accuracies (Leave-one-out cross validation)

Dataset Name
RF(ORD)

(%)

RF

(%)

SVM(ORD)

(%)

SVM

(%)

NB (ORD)

(%)

NB

(%)

KNN (ORD)

(%)

KNN

(%)

Ant 1.3 81.60 81.60 82.40 83.2 70.40 64.00 79.20 79.20

Ant 1.4 75.28 76.40 77.53 77.53 38.20 39.33 65.73 65.73

Ant 1.5 90.44 90.10 89.08 89.08 71.33 65.87 85.32 85.32

Ant 1.6 77.78 76.92 71.51 75.50 74.93 73.22 72.65 72.65

Ant 1.7 80.00 79.60 79.60 80.67 76.64 67.79 75.57 75.57

Arc 87.18 86.75 88.03 88.46 81.20 80.77 78.63 78.63

Berek 79.07 74.42 86.05 76.74 81.40 81.40 76.74 76.74

Camel 1.0 95.58 95.58 96.17 96.17 92.04 92.04 93.51 93.51

Camel 1.4 83.60 83.83 83.37 83.37 77.87 75.69 78.21 78.21

Camel 1.6 79.90 79.79 80.31 80.52 77.72 77.41 73.37 73.37

E-learning 89.06 89.06 90.63 90.63 84.38 81.25 87.50 87.50

Forest 0.7 79.31 86.21 79.31 79.31 68.97 82.76 79.31 79.31

Forest 0.8 93.75 93.75 93.75 93.75 93.75 93.75 87.50 87.50

Intercafe 85.19 85.19 85.19 85.19 74.07 81.48 77.78 77.78

Ivy 1.4 93.36 93.36 93.36 93.36 88.38 86.31 88.38 88.38

Ivy 2.0 87.50 88.64 88.07 88.35 80.97 79.55 85.23 85.23

Jedit 4.0 77.45 77.45 75.16 76.47 74.84 41.18 75.16 75.16

Jedit 4.1 75.64 77.24 74.68 75.96 75.64 59.62 72.12 72.12

Jedit 4.2 87.19 87.74 87.19 87.74 83.38 75.20 82.02 82.02

Jedit 4.3 97.56 97.56 97.76 97.76 93.90 94.11 96.54 96.54

Kalkulator 81.48 77.78 70.37 70.37 62.96 70.37 85.19 85.19

Log4j 1.0 77.04 76.30 78.52 75.56 79.26 73.33 66.67 66.67

Log4j 1.2 82.44 83.41 83.41 83.41 51.22 53.66 77.56 77.56

Pbeans 2 76.47 78.43 78.43 78.43 78.43 74.51 68.63 68.63

Poi 2.0 88.22 88.22 88.21 87.90 83.44 83.44 83.76 83.76

Redaktor 89.77 89.77 90.34 90.34 75.57 76.14 85.80 85.80

Serapion 82.22 77.78 84.44 84.44 71.11 73.33 73.33 73.33

Skarbonka 71.11 71.11 77.78 77.78 71.11 68.89 71.11 71.11

Synapse 1.0 87.26 87.26 89.81 89.81 74.52 75.80 82.17 82.17

Synapse 1.1 78.83 76.13 73.87 72.97 69.37 63.96 73.87 73.87

Systemdata 84.62 83.08 89.23 89.23 81.54 73.85 83.08 83.08

Termoproject 73.81 73.81 73.81 71.43 71.43 61.90 61.90 61.90

Tomcat 91.14 91.03 91.03 91.03 84.27 83.33 87.53 87.53

Xalan 2.4 84.23 83.82 84.79 84.79 78.01 78.84 80.22 80.22

Xalan 2.7 83.39 84.82 79.21 79.21 61.61 62.05 80.09 80.09

Xerces 1.2 84.55 83.64 83.86 83.86 77.50 73.86 80.23 79.77

Xerces 1.3 87.20 86.98 84.33 84.55 80.57 79.91 84.33 84.33

Xerces 1.4 79.59 80.27 60.37 60.71 45.24 47.28 75.34 75.34

AVG 83.68 83.55 83.18 83.04 75.19 72.82 79.24 79.23

 DEU FMD 21(62), 533-544, 2019

542

Figure 3. Comparison of algorithms in terms of
the number of datasets which have better
performance when LOOCV is used

The line graphs given in Figure 4 and Figure 5
show the ranks of ordinal classification
algorithms for each dataset for 10-FCV and
LOOCV techniques respectively. In the ranking
method, each algorithm is rated according to its
accuracy score on the corresponding dataset.
This process is performed by assigning rank 1
to the most accurate algorithm, rank 2 to the
second best and so on. In the case of tie, the
average ranking is assigned to each algorithm.
According to the comparative results, random
forest has better performance according to
others, because it generally has the lowest rank
values. SVM has also good performances since
its rank values are generally 1 or 2. This
situation is valid for both 10-FCV and LOOCV
techniques.

Figure 4. Rank of ordinal classification algorithms for each dataset when 10-FCV technique is used

Figure 5. Rank of ordinal classification algorithms for each dataset when LOOCV technique is used

0
5

10
15
20
25
30
35
40

RF
(ORD)

SVM
(ORD)

NB
(ORD)

KNN
(ORD)

28 27 26

38

Th
e

 N
u

m
b

e
r

o
f

D
at

as
e

ts

Algorithms

Leave-one-out Cross Validation

1

1,5

2

2,5

3

3,5

4

A
n

t
1

.3

A
n

t
1

.4

A
n

t
1

.5

A
n

t
1

.6

A
n

t
1

.7

A
rc

B
er

ek

C
am

el
 1

.0

C
am

el
 1

.4

C
am

el
 1

.6

E-
le

ar
n

in
g

Fo
re

st
 0

.7

Fo
re

st
 0

.8

In
te

rc
af

e

Iv
y

1
.4

Iv
y

 2
.0

Je
d

it
 4

.0

Je
d

it
 4

.1

Je
d

it
 4

.2

Je
d

it
 4

.3

K
al

ku
la

to
r

Lo
g4

j 1
.0

Lo
g4

j 1
.2

P
b

ea
n

s
2

P
o

i 2
.0

R
ed

ak
to

r

Se
ra

p
io

n

Sk
ar

b
o

n
ka

Sy
n

ap
se

 1
.0

Sy
n

ap
se

 1
.1

Sy
st

em
d

at
a

Te
rm

o
p

ro
je

ct

To
m

ca
t

X
al

an
 2

.4

X
al

an
 2

.7

X
er

ce
s

1
.2

X
er

ce
s

1
.3

X
er

ce
s

1
.4

R
an

k

Algorithms

10-Fold Cross Validation

RF (ORD) SVM (ORD) NB (ORD) KNN (ORD)

1

1,5

2

2,5

3

3,5

4

A
n

t
1

.3

A
n

t
1

.4

A
n

t
1

.5

A
n

t
1

.6

A
n

t
1

.7

A
rc

B
er

ek

C
am

el
 1

.0

C
am

el
 1

.4

C
am

el
 1

.6

E-
le

ar
n

in
g

Fo
re

st
 0

.7

Fo
re

st
 0

.8

In
te

rc
af

e

Iv
y

1
.4

Iv
y

 2
.0

Je
d

it
 4

.0

Je
d

it
 4

.1

Je
d

it
 4

.2

Je
d

it
 4

.3

K
al

ku
la

to
r

Lo
g4

j 1
.0

Lo
g4

j 1
.2

P
b

ea
n

s
2

P
o

i 2
.0

R
ed

ak
to

r

Se
ra

p
io

n

Sk
ar

b
o

n
ka

Sy
n

ap
se

 1
.0

Sy
n

ap
se

 1
.1

Sy
st

em
d

at
a

Te
rm

o
p

ro
je

ct

To
m

ca
t

X
al

an
 2

.4

X
al

an
 2

.7

X
er

ce
s

1
.2

X
er

ce
s

1
.3

X
er

ce
s

1
.4

R
an

k

Algorithms

Leave-One-Out Cross Validation

RF (ORD) SVM (ORD) NB (ORD) KNN (ORD)

 DEU FMD 21(62), 533-544, 2019

543

5. Conclusion and Future Work

Software bug prediction is the process of
developing predictive models to improve
software quality and testing efficiency. This
paper presents an approach that enables
standard classification algorithms to make use
of ordering information for software bug
prediction. The approach converts the problem
into a set of binary classification problems that
exploit the ordering information. The approach
was implemented on 38 software bug datasets
to demonstrate its competitive superiority over
the traditional classification. First, the bug
values of the instances were updated according
to their bug tendency: bug free (=0), less buggy
(=1), and more buggy (>=2). Then, the
classification performances of random forest,
support vector machine, Naive Bayes and k-
nearest neighbor algorithms were compared
with their ordinal versions. Based on the
experimental studies, it is possible to say that
ordinal classification methods provide better
performance on software bug prediction than
nominal ones.

As future work; according to the results of this
study, a stand-alone application may be
developed for providing bug prediction to the
basic users, when historical data are fed. This
tool may run several ordinal classification
algorithms on given dataset without any
experience on “data mining” and may give some
vision about development. In addition, this tool
may provide more samples to the data
repository and so this may strength the
inferences of this work. Another future work
may be conducted by increasing the number of
features in the datasets. Because the current
datasets don’t include any parameter about
developer background, so the effect of personal
characteristics doesn’t taken into account.
However, a more extended dataset (with
developer background information) may help
for better prediction.

References

[1] Burnstein, I. 2003. Practical Software Testing: A
Process-Oriented Approach. 2003rd edition. Springer-
Verlag New York, 710p.

[2] Georgoulas, G., Karvelis P., Gavrilis D., Stylios C. D.,
Nikolakopoulos G. 2017. An Ordinal Classification
Approach for CTG Categorization. 39th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 11-15 July, 2642-
2646. DOI: 10.1109/EMBC.2017.8037400

[3] Frank, E., Hall, M. 2001. A Simple Approach to Ordinal
Classification. 12th European Conference on Machine
Learning, Freiburg, Germany, September 5-7, 2001,
Lecture Notes in Computer Science, Volume. 2167, 145-
156.

[4] Kumar, L., Misra S., Rath Ku S. 2017. An Empirical
Analysis of the Effectiveness of Software Metrics and
Fault Prediction Model for Identifying Faulty Classes,
Computer Standards & Interfaces, Volume. 53, p. 1-32.
DOI: 10.1016/j.csi.2017.02.003

[5] Nucci, D. D., Palomba, F., Oliveto, R., Lucia, D. A. 2017.
Dynamic Selection of Classifiers in Bug Prediction: An
Adaptive Method, IEEE Transactions on Emerging Topics
in Computational Intelligence, Volume. 1, Issue 3, p. 202-
212. DOI: 10.1109/TETCI.2017.2699224

[6] Gupta, D. L., Saxena, K., 2017. Software Bug Prediction
using Object-Oriented Metrics, Sādhanā, Volume. 42,
Issue. 5, p. 655-669. DOI: 10.1007/s12046-017-0629-5

[7] Gupta, D. L., Saxena K. 2016. AUC based Software
Defect Prediction for Object-Oriented Systems,
International Journal of Current Engineering and
Technology, Volume. 6, Issue. 5.

[8] Okutan, A., Yildiz O. T. 2016. A Novel Kernel to Predict
Software Defectiveness, Journal of Systems and Software,
Volume. 119, p. 109-121. DOI: 10.1016/j.jss.2016.06.006

[9] Ryu, D., Baik, J. 2016. Effective Multi-Objective Naïve
Bayes Learning for Cross-Project Defect Prediction,
Applied Soft Computing, Volume. 49, p. 1062-1077. DOI:
10.1016/j.asoc.2016.04.009

[10] Okutan, A., Yıldız O. T. 2014. Software Defect
Prediction using Bayesian Networks, Empirical Software
Engineering, Volume. 19, Issue. 1, p. 154-181. DOI:
10.1007/s10664-012-9218-8

[11] Turhan, B., Mısırlı A. T., Bener, A. 2013. Empirical
Evaluation of the Effects of Mixed Project Data on
Learning Defect Predictors, Information and Software
Technology, Volume. 55, Issue. 6, p. 1101-1118. DOI:
10.1016/j.infsof.2012.10.003

[12] Guijo-Rubio, D., Gutiérreza, P.A. Casanova-Mateo C.,
Sanz-Justob, J., Salcedo-Sanzd, S., Hervás-Martíneza, C.
2018. Prediction of Low-visibility Events due to Fog using
Ordinal Classification, Atmospheric Research, Volume.
214, p. 64-73. DOI: 10.1016/j.atmosres.2018.07.017

[13] Beckham, C., Pal, C. 2017. Unimodal Probability
Distributions for Deep Ordinal Classification. 34th
International Conference on Machine Learning, Sydney,
Australia.

[14] Okyere, S., Yang, J. Aminatou, M., Tuo, G., Zhan, B.
2018. Multimodal Transport System Effect on Logistics
Responsive Performance: Application of Ordinal Logistic
Regression, European Transport, Issue. 68, Paper. 4.

[15] Kim, S., Kim, H., K., Namkoong, Y. 2016. Ordinal
Classification of Imbalanced Data with Application in
Emergency and Disaster Information Services, IEEE
Intelligent Systems, Volume. 31, Issue. 5, p. 50-56. DOI:
10.1109/MIS.2016.27

[16] Fontana, F. A., Zanoni, M. 2017. Code Smell Severity
Classification using Machine-Learning Techniques,

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Chrysostomos%20D.%22&searchWithin=%22Last%20Name%22:%22Stylios%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22George%22&searchWithin=%22Last%20Name%22:%22Nikolakopoulos%22&newsearch=true&sortType=newest
https://doi.org/10.1109/EMBC.2017.8037400
https://doi.org/10.1016/j.csi.2017.02.003
https://doi.org/10.1016/j.asoc.2016.04.009
https://doi.org/10.1016/j.infsof.2012.10.003
http://doi.org/10.1016/j.atmosres.2018.07.017
https://doi.org/10.1109/MIS.2016.27

DEU FMD 21(62), 533-544, 2019

544

Knowledge-Based Systems, Volume. 128, p. 43-58. DOI:
10.1016/j.knosys.2017.04.014

[17] Czibula, G., Marian, Z., Czibula, I. G. 2014. Software
Defect Prediction using Relational Association Rule
Mining, Information Sciences, Volume. 264, p. 260-278.
DOI: 10.1016/j.ins.2013.12.031

[18] Madeyski, L., Jureczko, M. 2015. Which Process
Metrics Can Significantly Improve Defect Prediction
Models? An empirical study, Software Quality Journal,
Volume. 23, Issue. 3, p. 393-422. DOI: 10.1007/s11219-
014-9241-7

[19] Prasad, M. C., Florence, L., Arya, A. 2015. A Study on
Software Metrics based Software Defect Prediction using
Data Mining and Machine Learning Techniques,
International Journal of Database Theory and Application,
Volume. 8, Issue. 3, p. 179-190. DOI:
10.14257/ijdta.2015.8.3.15

[20] Valles-Barajas, F. 2015. A Comparative Analysis
between Two Techniques for the Prediction of Software
Defects: Fuzzy and Statistical Linear Regression,
Innovations in Systems and Software Engineering,
Volume. 11, Issue. 4, p.277-287. DOI: 10.1007/s11334-
015-0256-4

[21] Felix, E. A., Lee, S. P. 2017. Integrated Approach to
Software Defect Prediction, IEEE Access, Volume. 5, p.
21524-21547. DOI: 10.1109/ACCESS.2017.2759180

[22] Zhang, F., Keivanloo, I., Zou Y. 2017. Data
Transformation in Cross-project Defect Prediction,
Empirical Software Engineering, Volume. 22, Issue. 6, p.
3186-3218. DOI: 10.1007/s10664-017-9516-2

[23] Herbold, S., Trautsch, A., Grabowski, J. 2017. A
Comparative Study to Benchmark Cross-Project Defect
Prediction Approaches, IEEE Transactions on Software
Engineering, Volume. 44, Issue. 9, p. 811-833. DOI:
10.1109/TSE.2017.2724538

[24] Wahono, R. S., Herman, N. S. 2014. Genetic Feature
Selection for Software Defect Prediction, Advanced
Science Letters, Volume. 20, Issue.1, p. 239-244. DOI:
10.1166/asl.2014.5283

[25] Laradji, I. H., Alshayeb, M., Ghouti, L. 2015. Software
Defect Prediction using Ensemble Learning on Selected
Features, Information and Software Technology, Volume.
58, p. 388-402. DOI: 10.1016/j.infsof.2014.07.005

[26] Rana, Z. A., Mian, M. A., Shamail, S. 2015. Improving
Recall of Software Defect Prediction Models using
Association Mining, Knowledge-Based Systems Volume.
90, p. 1-13. DOI: 10.1016/j.knosys.2015.10.009

[27] Huda, S., Liu, K., Abdelrazek, M., Ibrahim, A., Alyahya,
S., Al-Dossari, H., Ahmad, S. 2018. An Ensemble
Oversampling Model for Class Imbalance Problem in
Software Defect Prediction, IEEE Access, Volume. 6, p.
24184-24195. DOI: 10.1109/ACCESS.2018.2817572

[28] Wijaya, A., Wahono, R. S. 2017. Tackling Imbalanced
Class in Software Defect Prediction using Two-Step
Cluster-based Random Undersampling and Stacking
Technique. Jurnal Teknologi, Volume. 79, Issue. 7-2, p. 45-
50.

[29] Tomar, D., Agarwal, S. 2016. Prediction of Defective
Software Modules using Class Imbalance Learning,

Applied Computational Intelligence and Soft
Computing, Volume. 2016. DOI: 10.1155/2016/7658207

[30] Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J.,
Riquelme, J. C. 2014. Preliminary Comparison of
Techniques for Dealing with Imbalance in Software Defect
Prediction. Proceedings of the 18th International
Conference on Evaluation and Assessment in Software
Engineering, 13-14 May, London, England, United
Kingdom. DOI: 10.1145/2601248.2601294

[31] Wang, S., Yao, X. 2013. Using Class Imbalance
Learning for Software Defect Prediction, IEEE
Transactions on Reliability, Volume. 62, Issue. 2, p. 434-
443. DOI: 10.1109/TR.2013.2259203

[32] Weka - Data Mining Software in Java,
https://www.cs.waikato.ac.nz/ml/weka/. (Accessed:
21.11. 2018).

[33] Tera-Promise Data,
https://github.com/klainfo/DefectData/tree/master/inst
/extdata/terapromise/ck. (Accessed: 20.11.2018).

[34] PROMISE Software Engineering Repository
http://promise.site.uottawa.ca/SERepository/ (Accessed:
20.11.2018).

[35] Li, J., He, P., Zhu, J., Lyu, M. R. 2017. Software Defect
Prediction via Convolutional Neural Network. IEEE
International Conference on Software Quality, Reliability
and Security (QRS), 25-29 July, Praque, Czech Republic.
DOI: 10.1109/QRS.2017.42

[36] Bowes, D., Hall, T., Petrić, J. 2018. Software Defect
Prediction: Do Different Classifiers Find the Same
Defects?, Software Quality Journal, Volume. 26, Issue. 2, p.
525-552. DOI: 10.1007/s11219-016-9353-3

https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1016/j.ins.2013.12.031
https://doi.org/10.1109/ACCESS.2017.2759180
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1016/j.knosys.2015.10.009
https://doi.org/10.1109/ACCESS.2018.2817572
https://doi.org/10.1155/2016/7658207
https://doi.org/10.1145/2601248.2601294
https://doi.org/10.1109/TR.2013.2259203
http://promise.site.uottawa.ca/SERepository/
https://doi.org/10.1109/QRS.2017.42

