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Abstract 

Software bug prediction is the process of utilizing classification and/or regression algorithms to 
predict the presence of possible errors (or defects) in a source code. However, current classification 
studies in the literature assume that the target attribute values in the datasets are binary (i.e. buggy 
or non-buggy) or unordered, so they lose inherent order between the class values such as zero, less 
and more bug levels. To overcome this drawback, this study proposes a novel approach which 
suggests ordinal classification methods as a solution for software bug prediction problem. This 
article compares ordinal and nominal versions of various classification algorithms (random forest, 
support vector machine, Naive Bayes and k-nearest neighbor) in terms of classification performance 
on real-world 38 software engineering datasets. The results indicate that ordinal classification 
approach achieves better classification accuracy on average than the traditional (nominal) solutions.   
Keywords: Software bug prediction, Ordinal classification, Software engineering, Software quality 

 

Öz 

Yazılım hata tahmini, kaynak kodda bulunan olası hataların (veya kusurların) varlığını tahmin 
etmek için sınıflandırma ve/veya regresyon algoritmalarının kullanımı işlemidir. Fakat, literatürde 
bulunan sınıflandırma çalışmaları, veri setlerindeki hedef özellik değerlerini iki olasılıklı (hatalı veya 
hatasız) veya sırasız olarak kabul etmektedir. Bu nedenle; sıfır, az veya çok hatalı gibi sınıf değerleri 
arasındaki sıralama mantığını değerlendirmemektedir. Bu eksikliği gidermek amacıyla, bu çalışma, 
yazılım hata tahminleme problemi için sıralı sınıflandırma metotlarını kullanan yeni bir yaklaşım 
önermektedir. Makalede, çeşitli sınıflandırma algoritmalarının (rastgele orman, destek vektör 
makineleri, Naive Bayes ve k-en yakın komşu) sıralı ve itibari sürümleri, yazılım mühendisliği 
alanındaki 38 gerçek veriseti üzerinde sınıflandırma performansları açısından karşılaştırılmıştır. 
Sonuçlar, sıralı sınıflandırma yaklaşımının geleneksel (itibari) çözümlere nispeten ortalamada daha 
iyi bir sınıflandırma doğruluğuna ulaştığını göstermektedir.  
Anahtar Kelimeler: Yazılım hata tahmini, Sıralı sınıflandırma, Yazılım mühendisliği, Yazılım kalitesi 
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1. Introduction 

A bug (defect or fault) is an anomaly in the 
software that may cause it to behave incorrectly 
and it can be considered as the result of an error 
[1]. Bug prediction is a significant research topic 
in empirical studies of software engineering. 
Software bug prediction is the process of 
constructing a learning model on software 
metrics and defect information to predict the 
possible bug levels in software modules. The 
quality of bug prediction models is highly 
dependent on the selection of learning methods 
and algorithms. For this reason, this study 
investigates and compares different 
classification algorithms for bug prediction 
problem.  

Classification is a major task in data analysis 
that is used to predict the categorical label of a 
specific instance based on the model. 
Classification tasks can be categorized into two 
broad types, named nominal classification and 
ordinal classification, based on whether their 
class labels are ordered or not. Nominal 
classification (binary or multi-class) assigns an 
instance to exactly one of the classes which are 
not ordered from the best to the worst such as 
gender (male, female) or hair color (blonde, 
brown, brunette), so it discards the order 
among instances. Ordinal classification is a kind 
of multi-class classification where there is an 
inherent ordering between the classes such as 
bad < average < good < excellent. The ordinal 
classification can be regarded as a special case 
of the nominal one, when additional 
information about the rank order of the classes 
is available. Some studies [2,3] proved that the 
ordinal classification approach is marginally 
better than the traditional multi-class 
classification approach. 

Although there are many classification studies 
[4-11] performed in software bug prediction, to 
the best of our knowledge, there has been no 
prior detailed investigation for ordinal 
classification in this problem. To fill this gap in 
the literature, the study presented in this article 
focuses on the application of ordinal 
classification algorithms on real-world software 
bug data. Actually, the number of bugs found in 
a software module during test contain an 
ordinal response variable, since it can be 
categorized as high > medium > low.  

The novelty and main contributions of this 
article are as follows: (i) it provides a brief 
survey of classification studies which has been 

revealed to predict software bugs, (ii) it is the 
first study that the ordinal classification 
methods have been implemented for software 
bug prediction, (iii) it compares traditional 
random forest (RF), support vector machine 
(SVM), Naive Bayes (NB) and k-nearest 
neighbor (KNN) algorithms with their ordinal 
versions, (iv) it presents experimental studies 
conducted on 38 different software bug 
datasets to demonstrate better classification 
performance of ordinal classification rather 
than conventional (nominal) classification 
algorithms in terms of accuracy. 

The organization of the paper is as follows. 
Section 2 briefly summarizes the related 
previous studies on the subject. Section 3 
explains the material and methods proposed in 
this paper. Section 4 contains experimental 
work including dataset description, experiment 
procedure and results on ordinal data. Finally, 
Section 5 gives concluding remarks and future 
directions. 

2. Related Work 

Ordinal classification has been applied in 
various fields, including health [2], atmospheric 
research [12], image classification [13], 
transport system [14], emergency and disaster 
information services [15]. A better classification 
performance was obtained in these studies 
when the order between the class labels was 
taken into account. There are only a few studies 
in software engineering related to ordinal 
learning. A study [16] used ordinal classification 
to obtain the intensity of code smells. Code 
smell severity is considered as an ordinal 
variable. Another software engineering related 
study [17] discovers ordinal association rules, 
instead of ordinal classification. However, to the 
best of our knowledge, our study is the first 
study that the ordinal classification methods 
have been implemented for software bug 
prediction. 

Metric based bug prediction is to analyze a set 
of independent metric variables (the 
predictors) in the historical data and then 
classify the unknown ones based on these 
variables. Metric based bug prediction has 
proved to be very useful in various studies 
[18,19] since it deals with reducing the cost of 
testing as well as to improve the quality of the 
software end product. 

Bug prediction has been widely studied for 
binary classification [4-7,9,11] in which the 
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dependent variable (bugs) is divided into two 
groups: one with no bugs and the other with at 
least one. In other words, they regard bug value 
as binary: buggy or non-buggy. However, in the 
present study, we addressed the problem of 
multi-class classification. 

While binary classification determines whether 
a program is defective or non-defective without 
taking into account the number of defects, some 
studies conducted to predict how many defects 
exist in a software module. As noted in the 
study [18], it is also valuable to be able to 
predict the number of bugs in a software 
project. Therefore, several studies [20,21] 
focused on the prediction of the number of 
defects with respect to independent variables 
by using regression technique. While [20] used 
statistical linear regression, [21] proposed an 
integrated regression model.  

In the literature, various algorithms have been 
used by different studies when predicting bugs 
on a software project. For instance, neural 
network was used to develop a bug prediction 
model [4]. SVM and KNN algorithms are 
compared to find similarities of different files to 
predict defectiveness [8]. NB algorithm was 
preferred by some studies [9,11]. Similarly, 
Bayesian networks were applied to obtain the 
probabilities of appearances of defects [10]. 
However, differently from these previous 
studies, our study compares nominal and 
ordinal versions of various algorithms (RF, SVM, 
NB and KNN).  

In the literature, there exist two types of bug 
prediction researches: constructing a 
classification model on past data of the same 
software project (within-project approach) [5] 
or belonging to different projects (cross-project 
approach) [9,22,23]. Each approach has its own 
benefits and drawbacks [5]. Another research 
study [11] applied the combination of within 
and cross-project data when historical data is 
limited in the project. 

In order to reduce irrelevant source code 
metrics, some studies applied different feature 
selection techniques, including genetic 
algorithm [24], Bayesian network [10], greedy 
forward selection [25], and Pearson correlation 
method [7]. Kumar et al. [4] used several 
techniques one after another, including t-test, 
univariate logistic regression, correlation 
analysis and multivariate linear regression. 
After feature selection step, the obtained set of 

software metrics are considered as input to 
develop a bug prediction model.  

An imbalanced class in the dataset is one of the 
main problems in software bug prediction, i.e. 
the number of instances that belong to the 
“buggy” class is far less compared to the 
number of instances that belong to the “non-
buggy” class. Various techniques have been 
proposed to address this problem by specifying 
particular instances as missing [26], balancing 
data using SMOTE technique [9] or applying 
ensemble-based techniques [25,27]. Wijaya and 
Wahono [28] used random undersampling 
technique to deal with imbalanced data [28]. 
Tomar and Agarwal [29] proposed a system 
that assigns higher misclassification cost to the 
buggy instances and lower cost to the non-
buggy instances. Some studies [30,31] 
compared different imbalance approaches such 
as sampling, cost-sensitive, ensemble, 
threshold-moving or hybrid approaches. 

3. Material and Methods 

3.1. Ordinal Classification  

Assume that D={(xi, yi) | i=1,...,n} denote the 
dataset that has n instances, where an input 
vector xi belongs to the input feature space X, 
the associated class label yi belongs to the 
output set Y = {C1, C2,...,Ck} and k is the number 
of classes. Ordinal classification is a form of 
multi-class nominal classification where there 
exists an inherent ordering among the class 
labels, i.e., C1 < C2<...<Ck. If the target attribute 
contains numerical values, a set of thresholds 
𝜃1, 𝜃2, ... , 𝜃k-1 with the property 𝜃1 < 𝜃2 <...<𝜃k-1 
divides the real number line into k disjoint 
segments as follows. 

𝑦 = {

𝐶1    𝑖𝑓 𝑦∗ ≤ 𝜃1,          
𝐶2    𝑖𝑓 𝜃1 < 𝑦∗ ≤ 𝜃2,

⋮                                 
𝐶𝑘    𝑖𝑓 𝜃𝑘−1 < 𝑦∗.     

 (1) 

Ordinal classification approach used in this 
study transforms an ordinal classification 
problem into a set of binary classification 
problems, which are separately solved by 
different classifiers and then class labels are 
predicted by combining the binary outputs [3]. 
As shown in Figure 1, k class problem is 
converted into a set of k-1 binary sub-problems. 
It is important to note that, the performance of 
the approach depends on the threshold values 
as well as the way of combining the outputs. 
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The approach aims to learn the cumulative 
probabilities Pr(yi ≤ Ci) instead of the distinct 
class probabilities Pr(yi = Ci) as follows.  

Pr(C1) = 1 − Pr(class > C1) 

Pr(Ci) = Pr(class > Ci-1) − Pr(class > Ci),    1 < i < k 

Pr(Ck) = Pr(class > Ck-1)  

 

Figure 1. Conversion of k class ordinal data into 
k-1 binary class data. 

3.2. Classification Algorithms 

The classification algorithms used in this study 
are briefly described as follows. 

Random Forest (RF) is an ensemble 
classification algorithm that consists of multiple 
decision trees and put them together to obtain 
more accurate prediction. Each tree is 
generated from bootstrap samples extracted 
from original dataset by replacement. It uses 
bootstrap aggregating and evaluates different 
subsets of features at each node to reduce 
overfitting. The predictions of all trees are 
gathered by a voting mechanism such as 
majority voting. 

Support Vector Machine (SVM) is a supervised 
machine learning algorithm that can be used for 
classification or regression problems. The goal 
of the support vector machine is to discover an 
optimal hyperplane in an N-dimensional space 
that maximizes the margin between classes. 
SVM can effectively perform linear and non-
linear classification. In the case of non-linear 
classification, SVM maps the inputs into high-
dimensional spaces by using a kernel trick. SVM 
provides advantages in classifying small size, 
non-linear, complex related and high-
dimensional instances.  

Naive Bayes (NB) algorithm is another 
supervised machine learning algorithm based 
on Bayes Theorem which is an equation that 

gives the relationship of conditional 
probabilities to predict class labels. The aim is 
to obtain the probability of a class label 
according to the observed features. It assumes 
that each feature is independent of other 
features. This algorithm is useful when the 
number of attributes is high. 

K-nearest neighbor (KNN) is a simple supervised 
classification algorithm in which an object is 
classified by looking at the k nearest objects and 
by selecting most frequently occurring class. A 
distance function (i.e. Euclidean, Minkowski, 
Manhattan) is used to calculate the distances of 
the neighbors to the given point. The KNN 
algorithm provides highly effective results in 
the presence of large training sets. The optimal 
k value is found by experiments based on the 
performances of the classifiers. 

4. Experimental Studies 

In the experimental studies, ordinal 
classification approach was applied on 38 
software bug datasets to demonstrate its 
competitive superiority over the traditional 
nominal classification. We compared ordinal 
and nominal versions of four classification 
algorithms (random forest, support vector 
machine, Naive Bayes and k-nearest neighbor) 
separately by using Weka tool [32]. 

In the following subsections, dataset 
description, experimental work details and 
obtained results are explained respectively. 

4.1. Dataset Description 

In this study, real-world datasets from Tera-
PROMISE repository [33] was used to conduct 
experiments. PROMISE repository [34] is one of 
the most preferred and the largest repositories 
for software engineering researches. Since 
datasets in the repository are publicly available, 
studies can be easily repeated and verified. This 
repository was also used by several studies [4-
11,35,36]. Datasets contain source code metrics 
that can be used to evaluate the quality of the 
software or utilized to predict bugs. Table 1 
shows 20 independent object-oriented metrics 
such as “wmc”, “dit”, “noc” etc. and one 
dependent variable “bug” which is used for 
prediction. 
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Table 1. List of software metrics  

ID Metric Metric Full Name Description Data Type 

1 WMC Weighted Methods per Class Sum of the complexities of methods defined in class Numeric 

2 DIT Depth of Inheritance Tree Maximum level of the inheritance hierarchy of a class Numeric 

3 NOC Number of Children The number of subclasses of a class Numeric 

4 CBO Coupling Between Objects The number of coupled classes Numeric 

5 RFC Response for a Class 
The number of all methods in a class and methods called by 
these methods 

Numeric 

6 LCOM Lack of Cohesion in Methods 
The number of set of methods that shared references to 
instance variables 

Numeric 

7 CA Afferent Couplings The number of classes that use a particular class Numeric 

8 CE Efferent Couplings The number of classes which are used by specific class Numeric 

9 NPM Number of Public Methods The number of all public methods stated in a class Numeric 

10 LCOM3 Lack of Cohesion in Methods It is a variation of LCOM Numeric 

11 LOC Lines of Code The number of physical lines of code within the method Numeric 

12 DAM Data Access Metric 
the number of private attributes is divided by all number of 
attributes in the class 

Numeric 

13 MOA Measure of Aggregation 
The number of types of data declarations that are user-
defined classes 

Numeric 

14 MFA 
Measure of Functional 
Abstraction 

The number of methods inherited by a class is divided by the 
number of methods 

Numeric 

15 CAM 
Cohesion Among Methods of 
Class 

The relatedness among methods based upon the parameter 
list of these methods 

Numeric 

16 IC Inheritance Coupling 
The number of parent classes to which a given class is 
coupled 

Numeric 

17 CBM Coupling Between Methods 
Total number of new methods to which all the inherited 
methods are coupled 

Numeric 

18 AMC Average Method Complexity 
Average method size which means the number of binary 
codes for each class 

Numeric 

19 MAX_CC 
Maximum McCabe's 
Cyclomatic Complexity 

Maximum number of independent paths in a method Numeric 

20 AVG_CC 
Average McCabe's Cyclomatic 
Complexity 

Average number of independent paths in a method Numeric 

21 Bug Number of Bugs Number of bugs detected in the class Numeric 

 

Table 2 shows data characteristics: the project 
name, its release, the number of instances, the 
percentage of bugs, lines of code and type. 
There are 28 releases of 12 open-source 
projects and 10 academic projects [9,11]. Bug 
percentage is below 10% for 5 datasets, 
between 10% and 20% for 20 datasets and 
above 20% for 13 datasets.  

4.2. Experimental Work 

In this study, we defined three ordinal class 
labels for bug proneness: bug free, less buggy, 

and more buggy. All instances where bug is zero 
were accepted as bug free classes. The instances 
that have only one bug were marked as less 
buggy, and the others that have more than or 
equal to two bugs were accepted as more buggy. 
Converting bug data from numeric to 
categorical enabled the implementation of 
ordinal classification since instances were 
ranked with respect to their bug values. After 
conversion, the popular classification 
algorithms were compared by keeping all the 
parameters as default in Weka tool.  
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Table 2. The basic characteristics of the datasets  
(OS: open-source, AC: academic, KLOC: Kilo Lines of Code) 

ID Project Release 
# of 
Ins. 

Bug 
(%) 

KLOC 
Type ID Project Release 

# of 
Ins. 

Bug 
(%) 

KLOC 
Type 

D1 

Ant 

1.3 125 16  OS D20 Intercafe - 125 16 11 AC 

D2 1.4 178 22.47  OS D21 Kalkulator - 178 22.47 4 AC 

D3 1.5 293 10.92  OS D22 

Log4j 

1.0 135 25.19 21 OS 

D4 1.6 351 26.21  OS D23 1.2 205 92.20 38 OS 

D5 1.7 745 22.28 208 OS D24 Pbeans 2.0 51 19.61 15 OS 

D6 Arc - 234 11.54 31 AC D25 Poi  2.0 314 11.78 93 OS 

D7 Berek - 43 37.21  AC D26 Redaktor - 176 15.34 59 AC 

D8  1.0 339 3.83 33 OS D27 Serapion - 45 20 10 AC 

D9 Camel 1.4 872 16.63 98 OS D28 Skarbonka - 45 20 15 AC 

D10  1.6 965 19.48 113 OS D29 

Synapse 

1.0 157 10.19 28 OS 

D11 E-learning - 64 7.81 3 AC D30 1.1 222 27.03 42 OS 

D12 

Forest 

0.7 29 17.24  OS D31 Systemdata - 65 13.85 15 AC 

D13 0.8 32 6.25  OS D32 Termoproject - 42 30.95 8 AC 

D14 

Ivy  

1.4 241 6.64 59 OS D33 Tomcat 1.0 585 13.16 300 OS 

D15 2.0 352 11.36 87 OS D34 

Xalan 

2.4 723 15.21 225 OS 

D16 

Jedit 

4.0 306 24.51 144 OS D35 2.7 909 98.79 428 OS 

D17 4.1 312 25.32 153 OS D36 

Xerces 

1.2 440 16.14 159 OS 

D18 4.2 367 13.08 170 OS D37 1.3 453 15.23 167 OS 

D19 4.3 492 2.24 202 OS D38 1.4 588 74.32 141 OS 

  

These default parameters can be summarized as 
follows: 

 For RF, the number of trees is set to 100, the 
number of features is calculated by 
int(log2(#predictors)+1), so it is arranged as 
5 for the experiments in this study.  

 For SVM, the complexity constant c is set to 1, 
the kernel is selected as PolyKernel and 
epsilon value is assigned as 1.0E-12.  

 NB uses a probabilistic model to infer the 
most likely class without a specific input 
parameter.  

 For KNN, distance function is configured as 
Euclidean Distance and k value (the number 
of neighbors) is specified as 1. 

For each dataset, 10-fold cross validation and 
leave-one-out cross validation techniques were 
applied to compare the ordinal and nominal 
version of algorithms. N-fold cross validation 
(nFCV) is widely used validation method that 
separates dataset into equal n subsets. One of 
the subsets is used as test set and other parts 
(n-1) are used as training set and this procedure 
is repeated n times so that all parts are used as 
test and training set. Leave-one-out cross 
validation (LOOCV) uses a single instance from 
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the dataset as the test data, and the remaining 
part of the dataset as the training data. This 
process is repeated for all instances. We used 
LOOCV technique since it would be the best 
option for small datasets, because we would 
need to maximize the availability of the training 
data.  

4.3. Experimental Results 

In this study, the developed classification 
models were evaluated according to accuracy 
values. Accuracy is a performance measure that 
shows the percentage of correctly predicted 
observations and calculated by following 
formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (2) 

where TP (true positives) and TN (true 
negatives) represent the number of instances 
correctly predicted as actual classes (“positive” 
and “negative”). In other words, TP means that 
the value of actual class is “positive” and 
predicted class is “positive”, while TN shows 
that the actual class is “negative” and predicted 
class is “negative”. However, FP (false positives) 
and FN (false negatives) denote the number of 
instances incorrectly classified. To put it 
another way, FN occurs when actual class is 
“positive” and predicted class is “negative”. If 
actual class is “negative” and predicted value is 
“positive” then it is identified as FP.  

In the experimental studies, we eliminated 
some of the datasets that have less than 70% 
accuracy for most of the classification 
algorithms. Because this means that the dataset 
is improper for classification task due to a 
reason, for example (i) insufficient training 
samples, (ii) imbalanced distribution of the data 
between classes, (iii) the presence of outlier 
(noisy) values, or (iv) adjacency of class's 
intervals. 

While, Table 3 shows nFCV results, Table 4 
gives LOOCV results for both nominal and 
ordinal versions of classification algorithms 
(random forest, support vector machine, Naive 
Bayes and k-nearest neighbor) on the datasets. 

When the average results in Table 3 are 
examined, it is clearly seen that ordinal 
classification outperforms or equals to nominal 
classification for all algorithms. Ordinal NB 
(75.54%) is significantly more accurate than 

conventional NB (73.07%) on average. The 
small improvement over nominal case shows 
that ordering information can become more 
useful when the RF algorithm is used. Ordinal 
SVM produced a slight increment in 
classification accuracy. However, ordinal KNN 
showed no change or very slight increase when 
comparing with nominal KNN. Ordinal RF 
achieved the best performance with 83.92% 
accuracy on average. 

Table 4 shows the leave-one-out cross 
validation results. When LOOCV technique is 
used (instead of nFCV), the difference in 
classification accuracy between ordinal and 
nominal NB algorithm remains high, 75.19% 
versus 72.82%. Among the algorithms applied 
in this study, ordinal RF has superiority in 
terms of classification accuracy. Improvements 
also exist for SVM and KNN algorithms. 

Figure 2 shows the number of data sets in which 
the ordinal algorithms perform equal to or 
better than nominal versions when 10-FCV 
technique is used. On 30 datasets, ordinal NB is 
equal to or more accurate than conventional NB. 
Ordinal RF wins against plain RF or tied on 31 
datasets of 38 ones. Similarly, Figure 3 shows 
the number of dataset when LOOCV technique is 
used. In this case, ordinal RF algorithm is better 
than or equal to its nominal version on 28 
datasets. Compared to nominal SVM, the equal 
or win ratio for ordinal SVM is 24/38 for 10-
FCV and 27/38 for LOOCV. KNN shows almost 
the same results for both 10-FCV and LOOCV 
(except the dataset Xerces 1.2). 

 

Figure 2. Comparison of algorithms in terms of 
the number of datasets which have better 
performance when 10-FCV is used  
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Table 3. Comparison of classification accuracies (10-fold cross validation) 

Dataset Name 
RF (ORD) 

(%) 

RF 

(%) 

SVM (ORD) 

(%) 

SVM 

(%) 

NB (ORD) 

(%) 

NB 

(%) 

KNN (ORD) 

(%) 

KNN 

(%) 

Ant 1.3 82.40 80.80  82.40 83.20 69.60 60.80 79.20 79.20 

Ant 1.4 76.40 75.84 77.53 77.53 41.01 41.01 64.61 64.61 

Ant 1.5 90.10 89.76 89.08 88.74 73.04 66.55 85.32 85.32 

Ant 1.6 78.06 75.78 73.50 75.50 74.36 73.79 73.50 73.50 

Ant 1.7 79.60 80.27 79.87 80.40 76.78 69.26 75.17 75.17 

Arc 87.18 86.75 88.03 88.46 79.06 77.35 79.06 79.06 

Berek 79.07 76.74 86.05 76.74 79.07 79.07 76.74 76.74 

Camel 1.0 95.58 95.28 96.17 96.17 91.74 91.74 92.92 92.92 

Camel 1.4 83.95 83.95 83.37 83.37 78.21 76.03 77.06 77.06 

Camel 1.6 79.79 78.96 80.41 80.52 77.41 76.17 73.16 73.16 

E-learning 90.63 90.63 90.63 90.63 82.81 84.38 85.94 85.94 

Forest 0.7 82.76 82.76 79.31 79.31 72.41 82.76 79.31 79.31 

Forest 0.8 93.75 93.75 93.75 93.75 93.75 93.75 87.50 87.50 

Intercafe 85.19 85.19 85.19 85.19 77.78 81.48 70.37 70.37 

Ivy 1.4 93.36 93.36 93.36 93.36 87.97 86.30 88.38 88.38 

Ivy 2.0 88.64 89.20 88.64 88.35 80.40 79.26 83.81 83.81 

Jedit 4.0 78.10 78.76 74.51 77.12 74.84 45.42 75.82 75.82 

Jedit 4.1 74.68 77.56 75.96 76.28 75.64 59.61 74.04 74.04 

Jedit 4.2 87.74 87.19 87.47 87.74 83.65 74.39 81.47 81.47 

Jedit 4.3 97.56 97.56 97.76 97.56 93.90 93.90 96.54 96.54 

Kalkulator 81.48 81.48 77.78 74.07 66.67 70.37 85.19 85.19 

Log4j 1.0 76.30 75.56 77.04 76.30 78.52 73.33 68.15 68.15 

Log4j 1.2 82.93 81.46 83.41 83.41 54.15 50.73 75.61 75.61 

Pbeans 2 78.43 78.43 78.43 78.43 78.43 68.63 68.63 68.63 

Poi 2.0 88.22 87.58 87.90 88.22 82.80 82.80 82.80 82.80 

Redaktor 89.20 89.20 90.34 90.34 77.27 76.14 86.93 86.93 

Serapion 80.00 80.00 82.22 84.44 71.11 75.56 73.33 73.33 

Skarbonka 71.11 73.33 77.78 77.78 68.89 73.33 75.56 75.56 

Synapse 1.0 87.90 87.26 89.17 89.81 75.16 75.16 83.44 83.44 

Synapse 1.1 75.68 76.13 73.87 73.42 70.72 63.96 70.27 70.27 

Systemdata 84.62 83.08 89.23 89.23 83.08 80.00 86.15 86.15 

Termoproject 76.19 73.81 71.43 73.81 71.43 69.05 61.90 61.90 

Tomcat 91.14 90.91 91.03 91.03 84.50 83.33 87.53 87.53 

Xalan 2.4 83.68 84.51 84.51 84.79 78.28 78.28 79.67 79.67 

Xalan 2.7 84.93 84.27 78.77 78.77 62.38 62.82 80.20 80.20 

Xerces 1.2 85.00 84.55 83.86 83.86 77.50 72.95 80.68 80.68 

Xerces 1.3 87.64 87.42 84.55 84.55 80.79 79.69 84.77 84.77 

Xerces 1.4 79.93 79.93 59.86 60.88 45.40 47.45 73.64 73.64 

AVG 83.92 83.66 83.27 83.24 75.54 73.07 79.06 79.06 
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Tablo 4. Comparison of classification accuracies (Leave-one-out cross validation) 

Dataset Name 
RF(ORD) 

(%) 

RF 

(%) 

SVM(ORD) 

(%) 

SVM 

(%) 

NB (ORD) 

(%) 

NB 

(%) 

KNN (ORD) 

(%) 

KNN 

(%) 

Ant 1.3 81.60 81.60 82.40 83.2 70.40 64.00 79.20 79.20 

Ant 1.4 75.28 76.40 77.53 77.53 38.20 39.33 65.73 65.73 

Ant 1.5 90.44 90.10 89.08 89.08 71.33 65.87 85.32 85.32 

Ant 1.6 77.78 76.92 71.51 75.50 74.93 73.22 72.65 72.65 

Ant 1.7 80.00 79.60 79.60 80.67 76.64 67.79 75.57 75.57 

Arc 87.18 86.75 88.03 88.46 81.20 80.77 78.63 78.63 

Berek 79.07 74.42 86.05 76.74 81.40 81.40 76.74 76.74 

Camel 1.0 95.58 95.58 96.17 96.17 92.04 92.04 93.51 93.51 

Camel 1.4 83.60 83.83 83.37 83.37 77.87 75.69 78.21 78.21 

Camel 1.6 79.90 79.79 80.31 80.52 77.72 77.41 73.37 73.37 

E-learning 89.06 89.06 90.63 90.63 84.38 81.25 87.50 87.50 

Forest 0.7 79.31 86.21 79.31 79.31 68.97 82.76 79.31 79.31 

Forest 0.8 93.75 93.75 93.75 93.75 93.75 93.75 87.50 87.50 

Intercafe 85.19 85.19 85.19 85.19 74.07 81.48 77.78 77.78 

Ivy 1.4 93.36 93.36 93.36 93.36 88.38 86.31 88.38 88.38 

Ivy  2.0 87.50 88.64 88.07 88.35 80.97 79.55 85.23 85.23 

Jedit 4.0 77.45 77.45 75.16 76.47 74.84 41.18 75.16 75.16 

Jedit 4.1 75.64 77.24 74.68 75.96 75.64 59.62 72.12 72.12 

Jedit 4.2 87.19 87.74 87.19 87.74 83.38 75.20 82.02 82.02 

Jedit 4.3 97.56 97.56 97.76 97.76 93.90 94.11 96.54 96.54 

Kalkulator 81.48 77.78 70.37 70.37 62.96 70.37 85.19 85.19 

Log4j 1.0 77.04 76.30 78.52 75.56 79.26 73.33 66.67 66.67 

Log4j 1.2 82.44 83.41 83.41 83.41 51.22 53.66 77.56 77.56 

Pbeans 2 76.47 78.43 78.43 78.43 78.43 74.51 68.63 68.63 

Poi 2.0 88.22 88.22 88.21 87.90 83.44 83.44 83.76 83.76 

Redaktor 89.77 89.77 90.34 90.34 75.57 76.14 85.80 85.80 

Serapion 82.22 77.78 84.44 84.44 71.11 73.33 73.33 73.33 

Skarbonka 71.11 71.11 77.78 77.78 71.11 68.89 71.11 71.11 

Synapse 1.0 87.26 87.26 89.81 89.81 74.52 75.80 82.17 82.17 

Synapse 1.1 78.83 76.13 73.87 72.97 69.37 63.96 73.87 73.87 

Systemdata 84.62 83.08 89.23 89.23 81.54 73.85 83.08 83.08 

Termoproject 73.81 73.81 73.81 71.43 71.43 61.90 61.90 61.90 

Tomcat 91.14 91.03 91.03 91.03 84.27 83.33 87.53 87.53 

Xalan 2.4 84.23 83.82 84.79 84.79 78.01 78.84 80.22 80.22 

Xalan 2.7 83.39 84.82 79.21 79.21 61.61 62.05 80.09 80.09 

Xerces 1.2 84.55 83.64 83.86 83.86 77.50 73.86 80.23 79.77 

Xerces 1.3 87.20 86.98 84.33 84.55 80.57 79.91 84.33 84.33 

Xerces 1.4 79.59 80.27 60.37 60.71 45.24 47.28 75.34 75.34 

AVG 83.68 83.55 83.18 83.04 75.19 72.82 79.24 79.23 
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Figure 3. Comparison of algorithms in terms of 
the number of datasets which have better 
performance when LOOCV is used 

The line graphs given in Figure 4 and Figure 5 
show the ranks of ordinal classification 
algorithms for each dataset for 10-FCV and 
LOOCV techniques respectively. In the ranking 
method, each algorithm is rated according to its 
accuracy score on the corresponding dataset. 
This process is performed by assigning rank 1 
to the most accurate algorithm, rank 2 to the 
second best and so on. In the case of tie, the 
average ranking is assigned to each algorithm. 
According to the comparative results, random 
forest has better performance according to 
others, because it generally has the lowest rank 
values. SVM has also good performances since 
its rank values are generally 1 or 2. This 
situation is valid for both 10-FCV and LOOCV 
techniques.  

 

 

 
Figure 4. Rank of ordinal classification algorithms for each dataset when 10-FCV technique is used 

 

 

Figure 5. Rank of ordinal classification algorithms for each dataset when LOOCV technique is used
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5. Conclusion and Future Work 

Software bug prediction is the process of 
developing predictive models to improve 
software quality and testing efficiency. This 
paper presents an approach that enables 
standard classification algorithms to make use 
of ordering information for software bug 
prediction. The approach converts the problem 
into a set of binary classification problems that 
exploit the ordering information. The approach 
was implemented on 38 software bug datasets 
to demonstrate its competitive superiority over 
the traditional classification. First, the bug 
values of the instances were updated according 
to their bug tendency: bug free (=0), less buggy 
(=1), and more buggy (>=2). Then, the 
classification performances of random forest, 
support vector machine, Naive Bayes and k-
nearest neighbor algorithms were compared 
with their ordinal versions. Based on the 
experimental studies, it is possible to say that 
ordinal classification methods provide better 
performance on software bug prediction than 
nominal ones. 

As future work; according to the results of this 
study, a stand-alone application may be 
developed for providing bug prediction to the 
basic users, when historical data are fed. This 
tool may run several ordinal classification 
algorithms on given dataset without any 
experience on “data mining” and may give some 
vision about development. In addition, this tool 
may provide more samples to the data 
repository and so this may strength the 
inferences of this work. Another future work 
may be conducted by increasing the number of 
features in the datasets. Because the current 
datasets don’t include any parameter about 
developer background, so the effect of personal 
characteristics doesn’t taken into account. 
However, a more extended dataset (with 
developer background information) may help 
for better prediction. 
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