

RESEARCH ARTICLE

Generalized omni-Lie algebras

Chang Sun^(D), Liangyun Chen^{*}^(D)

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

Abstract

We introduce the notion of generalized omni-Lie algebras from omni-Lie algebras constructed by Weinstein. We prove that there is a one-to-one correspondence between Dirac structures of a generalized omni-Lie algebra and Lie structures on its linear space.

Mathematics Subject Classification (2010). 17B99, 55U15

Keywords. omni-Lie algebras, generalized omni-Lie algebras, Dirac structures

1. Introduction

The notion of omni-Lie algebras was introduced by Weinstein[7], which is the linearization of the Courant bracket. Let V be a linear space, and an omni-Lie algebra is the direct sum space $gl(V) \oplus V$ with a skew-symmetric bracket operation $[\![\cdot, \cdot]\!]$ and a non-degenerate symmetric bilinear pairing $\langle \cdot, \cdot \rangle$ given by

$$\llbracket A + x, B + y \rrbracket = [A, B] + \frac{1}{2}(Ay - Bx),$$

and

$$\langle A+x, B+y \rangle = \frac{1}{2}(Ay+Bx).$$

An omni-Lie algebra is not a Lie algebra, but its Dirac structures are Lie algebras. Actually, an omni-Lie algebra is a Lie 2-algebra since Roytenberg and Weinstein proved that every Courant algeboid gives rise to a Lie 2-algebra[5]. Recently, omni-Lie algebras were generalized to omni-Lie superalgebras, omni-Lie color algebras and omni-Lie algebroids[1,8]. In[2], they generalized omni-Lie algebras from a linear space to a linear bundle E in order to characterize all possible Lie algebroid structures on E. Dirac structures were also studied from several aspects[2,3,6].

In this paper, we introduce the notion of a generalized omni-Lie algebra, which is the (δ, α) omni-Lie algebra and discuss special situations when δ , α are fixed values. Then we study Dirac structures of the generalized omni-Lie algebra in order to characterize all Lie algebra structures on the linear space and prove that there is a one-to-one correspondence between Dirac structures of the generalized omni-Lie algebra $(\Omega, [\cdot, \cdot], \langle \cdot, \cdot \rangle)$ and Lie algebra structures on subspaces of V if $\delta = \frac{1}{2}$. Moreover, we prove that a generalized omni-Lie algebra is a Leibniz algebra.

^{*}Corresponding Author.

Email addresses: sunc015@nenu.edu.cn (C. Sun), chenly640@nenu.edu.cn (L. Chen)

Received: 22.06.2017; Accepted: 20.12.2018

2. Generalized omni-Lie algebras

Let V be a linear space over a field F. The set of all linear transformations on V is a Lie algebra denoted by gl(V), given by [A, B] = AB - BA, for any $A, B \in gl(V)$.

Definition 2.1. A generalized omni-Lie algebra is the linear space $\Omega = gl(V) \oplus V$ with a skew-symmetric bilinear bracket operation $[\![\cdot, \cdot]\!]$ and a non-degenerate symmetric bilinear pairing $\langle \cdot, \cdot \rangle$, for any $A, B \in gl(V), x, y \in V$, and $\delta, \alpha \in F$,

$$[\![A+x, B+y]\!] = [A, B] + \delta(Ay - Bx), \tag{2.1}$$

and

$$\langle A+x, B+y \rangle = \alpha (Ay+Bx). \tag{2.2}$$

We call $(\Omega, \llbracket \cdot, \cdot \rrbracket, \langle \cdot, \cdot \rangle)$ a generalized omni-Lie algebra.

Proposition 2.2. Let J denote the Jacobiator for the bracket $[\cdot, \cdot]$ of Ω , then for any $e_1 = A + x, e_2 = B + y, e_3 = C + z \in \Omega$,

$$J(e_1, e_2, e_3) = \llbracket \llbracket e_1, e_2 \rrbracket, e_3 \rrbracket + \llbracket \llbracket e_2, e_3 \rrbracket, e_1 \rrbracket + \llbracket \llbracket e_3, e_1 \rrbracket, e_2 \rrbracket$$

- (i) If $\delta = 0, 1, (\Omega, \llbracket, \cdot\rrbracket)$ is a Lie algebra.
- (ii) If $\alpha = \delta = \frac{1}{2}$, $(\Omega, \llbracket \cdot, \cdot \rrbracket, \langle \cdot, \cdot \rangle)$ is an omni-Lie algebra.

Proof. By a direct calculation, we get

$$\begin{aligned} J(e_1, e_2, e_3) \\ &= \llbracket [\![A + x, B + y]\!], C + z \rrbracket + c.p. \\ &= \llbracket [\![A, B] + \delta(Ay - Bx), C + z]\!] + c.p. \\ &= \llbracket [\![A, B], C] + \llbracket [\![B, C], A] + \llbracket [\![C, A], B] + \delta([A, B]z - \delta C(Ay - Bx))) \\ &+ \delta([B, C]x - \delta A(Bz - Cy)) + \delta([C, A]y - \delta B(Cx - Az))) \\ &= \llbracket [\![A, B], C] + \llbracket [B, C], A] + \llbracket [C, A], B] + (\delta - \delta^2)(\llbracket A, B]z + \llbracket B, C]x + \llbracket C, A]y) \\ &= (\delta - \delta^2)(\llbracket A, B]z + \llbracket B, C]x + \llbracket C, A]y). \end{aligned}$$

If $\delta = 0, 1, J$ satisfies the Jocabi identity, so $(\Omega, \llbracket \cdot, \cdot \rrbracket)$ is a Lie algebra. Especially if $\delta = 1$, $(\Omega, \llbracket \cdot, \cdot \rrbracket)$ is a semidirect product of gl(V) and V.

Proposition 2.3. Let J denote the Jacobiator for the bracket $[\![\cdot, \cdot]\!]$ of Ω , for any $e_1 = A + x, e_2 = B + y, e_3 = C + z \in \Omega$, we set

$$T(e_1, e_2, e_3) = \langle \llbracket e_1, e_2 \rrbracket, e_3 \rangle + \langle \llbracket e_2, e_3 \rrbracket, e_1 \rangle + \langle \llbracket e_3, e_1 \rrbracket, e_2 \rangle,$$
$$T'(e_1, e_2, e_3) = \frac{\delta - \delta^2}{\alpha + \alpha \delta} T(e_1, e_2, e_3),$$

then we have

$$T'(e_1, e_2, e_3) = J(e_1, e_2, e_3).$$
 (2.3)

Proof. We have proved that for any $e_1 = A + x$, $e_2 = B + y$, $e_3 = C + z \in \Omega$,

$$J(e_1, e_2, e_3) = (\delta - \delta^2)([A, B]z + [B, C]x + [C, A]y).$$

By Definition 2.1, we get

$$T(e_1, e_2, e_3)$$

$$= \langle \llbracket e_1, e_2 \rrbracket, e_3 \rangle + c.p.$$

$$= \langle [A, B] + \delta(Ay - Bx), C + z \rangle + c.p.$$

$$= \alpha([A, B]z + \delta C(Ay - Bx)) + \alpha([B, C]x + \delta A(Bz - Cy))$$

$$+ \alpha([C, A]y + \delta B(Cx - Az))$$

$$= (\alpha + \alpha \delta)([A, B]z + [B, C]x + [C, A]y),$$

$$T'(e_1, e_2, e_3) = \frac{\delta - \delta^2}{\alpha + \alpha \delta} T(e_1, e_2, e_3) = J(e_1, e_2, e_3).$$

Thus, Eq. (2.3) holds.

Let ω be a bilinear operation on V, and define the adjoint operator $\operatorname{ad}_{\omega}: V \to gl(V)$ by

$$\operatorname{ad}_{\omega}(x)(y) := \omega(x, y), \ \forall x, y \in V$$

then the graph of the adjoint operator

$$\mathscr{F}_{\omega} = \{ \mathrm{ad}_{\omega}(x) + x, \, \forall \, x \in V \}$$

is a subspace of Ω . $\mathscr{F}_{\omega}^{\perp}$ denote the orthogonal complement of \mathscr{F}_{ω} with respect to the bilinear form (2.2) of Ω .

Proposition 2.4. If $\delta = \frac{1}{2}$, (V, ω) is a Lie algebra if and only if \mathscr{F}_{ω} is maximal isotropic, *i.e.*,

$$\mathscr{F}_{\omega} = \mathscr{F}_{\omega}^{\perp},$$

and is closed under the bracket $\llbracket \cdot, \cdot \rrbracket$.

Proof. First, for any $\operatorname{ad}_{\omega}(x) + x$, $\operatorname{ad}_{\omega}(y) + y \in \mathscr{F}_{\omega}$,

$$\langle \mathrm{ad}_{\omega}(x) + x, \mathrm{ad}_{\omega}(y) + y \rangle$$

= $\alpha(\mathrm{ad}_{\omega}(x)(y) + \mathrm{ad}_{\omega}(y)(x))$
= $\alpha(\omega(x, y) + \omega(y, x)),$

which means that $\omega(\cdot, \cdot)$ is skew-symmetric if and only if its graph is isotropic and $\mathscr{F}_{\omega} = \mathscr{F}_{\omega}^{\perp}$. Then if $\delta = \frac{1}{2}$ and $\omega(\cdot, \cdot)$ is skew-symmetric, let us check

$$\begin{aligned} \|\mathrm{ad}_{\omega}(x) + x, \mathrm{ad}_{\omega}(y) + y\| \\ &= [\mathrm{ad}_{\omega}(x), \mathrm{ad}_{\omega}(y)] + \frac{1}{2}(\mathrm{ad}_{\omega}(x)(y) - \mathrm{ad}_{\omega}(y)(x)) \\ &= [\mathrm{ad}_{\omega}(x), \mathrm{ad}_{\omega}(y)] + \frac{1}{2}(\omega(x, y) - \omega(y, x)) \\ &= [\mathrm{ad}_{\omega}(x), \mathrm{ad}_{\omega}(y)] + \omega(x, y). \end{aligned}$$

Hence, the bracket is closed if and only if

$$[\mathrm{ad}_{\omega}(x), \mathrm{ad}_{\omega}(y)] = \mathrm{ad}_{\omega}(\omega(x, y)),$$

it follows that for any $z \in V$,

$$\begin{aligned} & [\mathrm{ad}_{\omega}(x), \mathrm{ad}_{\omega}(y)](z) - \mathrm{ad}_{\omega}(\omega(x, y))(z) \\ &= \mathrm{ad}_{\omega}(x)\mathrm{ad}_{\omega}(y)(z) - \mathrm{ad}_{\omega}(y)\mathrm{ad}_{\omega}(x)(z) - \mathrm{ad}_{\omega}(\omega(x, y))(z) \\ &= \mathrm{ad}_{\omega}(x)\omega(y, z) - \mathrm{ad}_{\omega}(y)\omega(x, z) - \omega(\omega(x, y), z) \\ &= \omega(x, \omega(y, z)) - \omega(y, \omega(x, z)) - \omega(\omega(x, y), z), \end{aligned}$$

it is clear that the bracket is closed if and only if the Jacobi identity of $\omega(\cdot, \cdot)$ on V is satisfied. Thus, the proof is completed.

Definition 2.5. Let *L* be a maximal isotropic subspace of $\Omega = gl(V) \oplus V$ and closed under the bracket $[\![\cdot, \cdot]\!]$, then we call *L* a Dirac structure of the generalized omni-Lie algebra $(\Omega, [\![\cdot, \cdot]\!], \langle \cdot, \cdot \rangle)$.

Remark 2.6. By Proposition 2.3, for a Dirac structure L, we can get

$$T'(e_1, e_2, e_3) = J(e_1, e_2, e_3) = 0, \forall e_i \in L, i = 1, 2, 3.$$

then a Dirac structure $(L, \llbracket \cdot, \cdot \rrbracket)$ is a Lie algebra.

411

According to the Definition 2.5, we can rewrite Proposition 2.4 that " if $\delta = \frac{1}{2}$, (V, ω) is a Lie algebra if and only if \mathscr{F}_{ω} is a Dirac structure of the generalized omni-Lie algebra $(\Omega, \llbracket, \cdot, \rrbracket, \langle \cdot, \cdot \rangle)$."

Then we want to know the concrete form of Dirac structures, for a maximal isotropic subspace L, let $D = L \cap gl(V)$, define D^0 to be the kernel of D,

$$D^{0} := \{ x \in V \mid X(x) = 0, \forall X \in D \} \subseteq V, (D^{0})^{0} := \{ X \in gl(V) \mid X(x) = 0, \forall x \in D^{0} \} \subseteq gl(V) = D$$

Lemma 2.7. A subspace L is maximal isotropic if and only if

$$L = D \oplus \mathscr{F}_{\pi|D_0} = \{X + \pi(x) + x \mid \forall X \in D, x \in D^0\},$$
(2.4)

where $\pi: V \to gl(V)$ is a skew-symmetric map.

Proof. First, suppose that L is given by (2.4), for any $X + \pi(x) + x, Y + \pi(y) + y \in L$,

$$\langle X + \pi(x) + x, Y + \pi(y) + y \rangle = \alpha(X(y) + \pi(x)(y) + Y(x) + \pi(y)(x)) = \alpha(\pi(x)(y) + \pi(y)(x)) = 0.$$

Thus, L is isotropic, then we prove that L is maximal isotropic. For all $B + z \in L^{\perp}$, we have

$$0 = \langle X, B + z \rangle = \alpha X(z), \, \forall X \in D,$$

so $z \in D^0$,

$$0 = \langle X + \pi(x) + x, B + z \rangle$$

= $\alpha(X(z) + \pi(x)(z) + B(x))$
= $\alpha(B - \pi(z))(x), \forall X + \pi(x) + x \in L$

let $Z := B - \pi(z) \in D$,

$$B + z = Z + \pi(z) + z \in L^{\perp} = L,$$

therefore, L is maximal isotropic. The converse part is straightforward, so we omit the details. $\hfill \Box$

Lemma 2.8. Let (D, π) be given above for a maximal isotropic subspace $L \subset \Omega$. Then L is a Dirac structure if and only if the following conditions are satisfied:

- (i) D is a subalgebra of gl(V);
- (*ii*) $\pi(\pi(x, y)) [\pi(x), \pi(y)] \in D, \forall x, y \in D^0;$
- (iii) $\pi(x,y) \in D^0, \forall x, y \in D^0.$

Such a pair (D,π) is called a characteristic pair of a Dirac structure L.

Proof. By Definition 2.5, L is a Dirac structure if and only if L is closed with respect to the bracket (2.1). First, for any $X + \pi(x) + x, Y + \pi(y) + y \in L$, by straightforward calculation, we get

$$\begin{split} & [\![X + \pi(x) + x, Y + \pi(y) + y]\!] \\ &= [X + \pi(x), Y + \pi(y)] + \delta(\pi(x)(y) - \pi(y)(x)) \\ &= [X, Y] + [X, \pi(y)] + [\pi(x), Y] + [\pi(x), \pi(y)] + 2\delta\pi(x, y) \end{split}$$

If $\delta = \frac{1}{2}$, L is closed under the bracket (2.1) if and only if $\pi(x, y) \in D^0$, $\pi(\pi(x, y)) - [\pi(x), \pi(y)] \in D$, $\forall x, y \in D^0$. Moreover for any $X, Y \in D, x, y, z \in D^0$, we have

$$[X, Y](z) = XY(z) - YX(z) = 0,$$

$$[X, \pi(y)](z) = X\pi(y)(z) - \pi(y)X(z) = 0,$$

$$[\pi(x), Y](z) = \pi(x)Y(z) - Y\pi(x)(z) = 0.$$

so $[X, Y], [X, \pi(y)], [\pi(x), Y] \in D$, that is to say, D is a subalgebra of gl(V).

Theorem 2.9. There is a one-to-one correspondence between Dirac structures of the generalized omni-Lie algebra $(\Omega, \llbracket, \cdot \rrbracket, \langle \cdot, \cdot \rangle)$ and Lie algebra structures on subspaces of V if $\delta = \frac{1}{2}$.

Proof. First, by Lemmas 2.7, 2.8, if L is a Dirac structure, then $L = D \oplus \mathscr{F}_{\pi|D_0}$ and satisfies three conditions in Lemma 2.8. Define operation $[\cdot, \cdot]_{D^0}$ on $D^0 \subseteq V$ by

$$[x, y]_{D^0} := \pi(x, y) \in D^0, \, \forall \, x, y \in D^0,$$

 $[\cdot, \cdot]_{D^0}$ is a skew-symmetric operation because π is a skew-symmetric map. Then, we check the Jacobi identity, for any $x, y, z \in D^0$,

$$\begin{split} & [[x,y]_{D^0},z]_{D^0} \\ &= \pi([x,y]_{D^0})(z) \\ &= \pi(\pi(x,y))(z) \\ &= [\pi(x),\pi(y)](z) \\ &= \pi(x)\pi(y)(z) - \pi(y)\pi(x)(z) \\ &= [x,[y,z]_{D^0}]_{D^0} - [y,[x,z]_{D^0}]_{D^0} \end{split}$$

Thus, $(D^0, [\cdot, \cdot]_{D^0})$ is a Lie algebra.

Conversely, W is a subspace of V, for any Lie algebra $(W, [\cdot, \cdot]_W)$, and define D by

$$D := W^{0} = \{ X \in gl(V) \mid X(x) = 0, \forall x \in W \},\$$
$$D^{0} = (W^{0})^{0} = W.$$

Let ad : $W \to gl(W)$ represents the limitation of $\pi : V \to gl(V)$ on W,

$$\mathrm{ad}_x(y) = [x, y]_W,$$

then we get a maximal isotropic subspace

$$L = D \oplus \mathscr{F}_{\pi|W}.$$

Next is to prove that L is closed under the bracket $[\![\cdot, \cdot]\!]$, if $\delta = \frac{1}{2}$, for $X + \operatorname{ad}_x + x, Y + \operatorname{ad}_y + y \in L$,

$$\begin{split} & [X + \mathrm{ad}_x + x, Y + \mathrm{ad}_y + y]] \\ = & [X + \mathrm{ad}_x, Y + \mathrm{ad}_y] + \frac{1}{2}((X + \mathrm{ad}_x)(y) - (Y + \mathrm{ad}_y)(x)) \\ = & [X, Y] + [X, \mathrm{ad}_y] + [\mathrm{ad}_x, Y] + [\mathrm{ad}_x, \mathrm{ad}_y] + \frac{1}{2}(\mathrm{ad}_x(y) - \mathrm{ad}_y(x)) \\ = & [X, Y] + [X, \mathrm{ad}_y] + [\mathrm{ad}_x, Y] + [\mathrm{ad}_x, \mathrm{ad}_y] + [x, y]_W. \end{split}$$

For any $X, Y \in D$ and $x, y \in W$,

$$[X, Y](x) = XY(x) - YX(x) = 0,$$

which means $[X, Y] \in D$, D is a subalgebra of gl(V).

$$[X, \mathrm{ad}_x](y) = X([x, y]_W) - [x, X(y)] = 0,$$

$$[\mathrm{ad}_x, Y](y) = [x, Y(y)] - Y([x, y]_W) = 0,$$

so $[X, \mathrm{ad}_y], [\mathrm{ad}_x, Y] \in D.$

Since $[\cdot, \cdot]_W$ satisfies the Jacobi identity, we obtain

$$[\mathrm{ad}_x, \mathrm{ad}_y] = \mathrm{ad}_{[x,y]_W},$$
$$\llbracket X + \pi(x) + x, Y + \pi(y) + y \rrbracket \in D \oplus \mathscr{F}_{\pi|W}$$

Thus, L is a Dirac structure.

Let Λ denotes the family of all Lie structures on the subspaces of V, and Γ denotes the family of all Dirac structures of the generalized omni-Lie algebra Ω , then according to Theorem 2.9, there exists a bijective

$$\Psi: \Lambda \to \Gamma,$$

and an embedding

$$\varphi_W : W \to L, \, \forall \, W \in \Lambda, L \in \Gamma.$$

Definition 2.10. [4] Let L be a linear space over a field F together with a bilinear operation $\circ: L \times L \to L$ satisfying

$$((x \circ y) \circ z) = (x \circ (y \circ z)) - (y \circ (x \circ z)), \forall x, y, z \in L,$$

then we call (L, \circ) a Leibniz algebra.

We define another bilinear operation " \circ " on $\Omega = gl(V) \oplus V$ by

$$(A+x) \circ (B+y) = [A, B] + \delta Ay, \,\forall A+x, B+y \in \Omega, \delta \in \mathbf{F}.$$

Proposition 2.11. (Ω, \circ) is a Leibniz algebra.

Proof. We check if the Leibniz identity is satisfied, for any $e_1 = A + x$, $e_2 = B + y$, $e_3 = C + z \in \Omega$,

 $\begin{aligned} &(e_1 \circ e_2) \circ e_3 - e_1 \circ (e_2 \circ e_3) + e_2 \circ (e_1 \circ e_3) \\ &= ([A, B] + \delta Ay) \circ (C + z) - (A + x) \circ ([B, C] + \delta Bz) + (B + y) \circ ([A, C] + \delta Az) \\ &= [[A, B], C] - [A, [B, C]] + [B, [A, C]] + \delta (ABz - BAz) - \delta ABz + \delta BAz \\ &= 0. \end{aligned}$

By Definition 2.10, it holds.

Proposition 2.12. Let V be a Lie algebra. D is a derivation of V that satisfies

$$D[x,y] = [Dx,y] + [x,Dy], \,\forall x,y \in V$$

if and only if \mathscr{F}_{ω} is an invariant subspace of D under the operation " \circ " if $\delta = 1$, i.e.,

 $D \circ \mathscr{F}_{\omega} \subseteq \mathscr{F}_{\omega}.$

Proof. If $\delta = 1$, for $\operatorname{ad}_{\omega}(x) + x \in \mathscr{F}_{\omega}, y \in V$,

$$D \circ (\mathrm{ad}_{\omega}(x) + x) = [D, \mathrm{ad}_{\omega}(x)] + Dx$$

The right side belongs to \mathscr{F}_{ω} if and only if

$$[D, \mathrm{ad}_{\omega}(x)] = \mathrm{ad}_{\omega}(Dx),$$

for convenience, we denote $\omega(x, y) := [x, y]$,

$$[D, \mathrm{ad}_{\omega}(x)](y) - \mathrm{ad}_{\omega}(Dx)(y)$$

= $D\mathrm{ad}_{\omega}(x)(y) - \mathrm{ad}_{\omega}(x)D(y) - \mathrm{ad}_{\omega}(Dx)(y)$
= $D[x, y] - [x, Dy] - [Dx, y].$

Thus, D is a derivation of V if and only if $D \circ \mathscr{F}_{\omega} \subseteq \mathscr{F}_{\omega}$.

Acknowledgment. This work was supported by NNSF of China (No. 11771069), NSF of Jilin province (No. 20170101048JC) and the project of Jilin province Department of Education (No. JJKH20180005K).

References

- [1] Z. Chen and Z. Liu, *Omni-Lie algeboids*, J. Geom. Phys. **60** (5), 799–808, 2010.
- [2] Z. Chen, Z. Liu and Y. Sheng, Dirac structures of omni-Lie algeboids, Int. J. Math. 22 (8), 1163–1185, 2008.
- [3] Z. Liu, Some remarks on Dirac structures and Possion reductions, Poisson Geometry Banach Center Publ. 51, 165–173, 2000.
- [4] J. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (2), 269–293, 1993.
- [5] D. Roytenberg and A. Weinstein, Courant algeboids and strongly homotopy Lie algebras, Lett. Math. Phys. 46 (1), 81–93, 1998.
- [6] Y. Sheng, Z. Liu and C. Zhu, Omni-Lie 2-algebras and their Dirac structures, J. Geom. Phys. 61 (2), 560–575, 2010.
- [7] A. Weinstein, Omni-Lie algebras, RIMS Kôkyûroku, 1176, 95–102, 2000.
- [8] T. Zhang and Z. Liu, Omni-Lie superalgebras and Lie 2-superalgebras, Front Math. China, 9 (5), 1195–1210, 2014.