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Abstract
We introduce the notion of generalized omni-Lie algebras from omni-Lie algebras con-
structed by Weinstein. We prove that there is a one-to-one correspondence between Dirac
structures of a generalized omni-Lie algebra and Lie structures on its linear space.
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1. Introduction
The notion of omni-Lie algebras was introduced by Weinstein[7], which is the lineariza-

tion of the Courant bracket. Let V be a linear space, and an omni-Lie algebra is the direct
sum space gl(V ) ⊕ V with a skew-symmetric bracket operation J·, ·K and a non-degenerate
symmetric bilinear pairing ⟨·, ·⟩ given by

JA + x, B + yK = [A, B] + 1
2

(Ay − Bx),

and
⟨A + x, B + y⟩ = 1

2
(Ay + Bx).

An omni-Lie algebra is not a Lie algebra, but its Dirac structures are Lie algebras.
Actually, an omni-Lie algebra is a Lie 2-algebra since Roytenberg and Weinstein proved
that every Courant algeboid gives rise to a Lie 2-algebra[5]. Recently, omni-Lie algebras
were generalized to omni-Lie superalgebras, omni-Lie color algebras and omni-Lie alge-
broids[1,8]. In[2], they generalized omni-Lie algebras from a linear space to a linear bundle
E in order to characterize all possible Lie algebroid structures on E. Dirac structures were
also studied from several aspects[2, 3, 6].

In this paper, we introduce the notion of a generalized omni-Lie algebra, which is the
(δ, α) omni-Lie algebra and discuss special situations when δ, α are fixed values. Then we
study Dirac structures of the generalized omni-Lie algebra in order to characterize all Lie
algebra structures on the linear space and prove that there is a one-to-one correspondence
between Dirac structures of the generalized omni-Lie algebra (Ω, J·, ·K, ⟨·, ·⟩) and Lie algebra
structures on subspaces of V if δ = 1

2 . Moreover, we prove that a generalized omni-Lie
algebra is a Leibniz algebra.
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2. Generalized omni-Lie algebras
Let V be a linear space over a field F. The set of all linear transformations on V is a

Lie algebra denoted by gl(V ), given by [A, B] = AB − BA, for any A, B ∈ gl(V ).

Definition 2.1. A generalized omni-Lie algebra is the linear space Ω = gl(V ) ⊕ V with a
skew-symmetric bilinear bracket operation J·, ·K and a non-degenerate symmetric bilinear
pairing ⟨·, ·⟩, for any A, B ∈ gl(V ), x, y ∈ V, and δ, α ∈ F,JA + x, B + yK = [A, B] + δ(Ay − Bx), (2.1)
and

⟨A + x, B + y⟩ = α(Ay + Bx). (2.2)
We call (Ω, J·, ·K, ⟨·, ·⟩) a generalized omni-Lie algebra.

Proposition 2.2. Let J denote the Jacobiator for the bracket J·, ·K of Ω, then for any
e1 = A + x, e2 = B + y, e3 = C + z ∈ Ω,

J(e1, e2, e3) = JJe1, e2K, e3K + JJe2, e3K, e1K + JJe3, e1K, e2K.
(i) If δ = 0, 1, (Ω, J·, ·K) is a Lie algebra.

(ii) If α = δ = 1
2 , (Ω, J·, ·K, ⟨·, ·⟩) is an omni-Lie algebra.

Proof. By a direct calculation, we get
J(e1, e2, e3)

= JJA + x, B + yK, C + zK + c.p.

= J[A, B] + δ(Ay − Bx), C + zK + c.p.

= [[A, B], C] + [[B, C], A] + [[C, A], B] + δ([A, B]z − δC(Ay − Bx))
+δ([B, C]x − δA(Bz − Cy)) + δ([C, A]y − δB(Cx − Az))

= [[A, B], C] + [[B, C], A] + [[C, A], B] + (δ − δ2)([A, B]z + [B, C]x + [C, A]y)
= (δ − δ2)([A, B]z + [B, C]x + [C, A]y).

If δ = 0, 1, J satisfies the Jocabi identity, so (Ω, J·, ·K) is a Lie algebra. Especially if δ = 1,
(Ω, J·, ·K) is a semidirect product of gl(V ) and V . �
Proposition 2.3. Let J denote the Jacobiator for the bracket J·, ·K of Ω, for any e1 =
A + x, e2 = B + y, e3 = C + z ∈ Ω, we set

T (e1, e2, e3) = ⟨Je1, e2K, e3⟩ + ⟨Je2, e3K, e1⟩ + ⟨Je3, e1K, e2⟩,

T
′(e1, e2, e3) = δ − δ2

α + αδ
T (e1, e2, e3),

then we have
T

′(e1, e2, e3) = J(e1, e2, e3). (2.3)

Proof. We have proved that for any e1 = A + x, e2 = B + y, e3 = C + z ∈ Ω,

J(e1, e2, e3) = (δ − δ2)([A, B]z + [B, C]x + [C, A]y).
By Definition 2.1, we get

T (e1, e2, e3)
= ⟨Je1, e2K, e3⟩ + c.p.

= ⟨[A, B] + δ(Ay − Bx), C + z⟩ + c.p.

= α([A, B]z + δC(Ay − Bx)) + α([B, C]x + δA(Bz − Cy))
+α([C, A]y + δB(Cx − Az))

= (α + αδ)([A, B]z + [B, C]x + [C, A]y),
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T
′(e1, e2, e3) = δ − δ2

α + αδ
T (e1, e2, e3) = J(e1, e2, e3).

Thus, Eq. (2.3) holds. �

Let ω be a bilinear operation on V , and define the adjoint operator adω : V → gl(V )
by

adω(x)(y) := ω(x, y), ∀ x, y ∈ V,

then the graph of the adjoint operator

Fω = {adω(x) + x, ∀ x ∈ V }

is a subspace of Ω. F ⊥
ω denote the orthogonal complement of Fω with respect to the

bilinear form (2.2) of Ω.

Proposition 2.4. If δ = 1
2 , (V, ω) is a Lie algebra if and only if Fω is maximal isotropic,

i.e.,
Fω = F ⊥

ω ,

and is closed under the bracket J·, ·K.
Proof. First, for any adω(x) + x, adω(y) + y ∈ Fω,

⟨adω(x) + x, adω(y) + y⟩
= α(adω(x)(y) + adω(y)(x))
= α(ω(x, y) + ω(y, x)),

which means that ω(·, ·) is skew-symmetric if and only if its graph is isotropic and Fω =
F ⊥

ω . Then if δ = 1
2 and ω(·, ·) is skew-symmetric, let us checkJadω(x) + x, adω(y) + yK

= [adω(x), adω(y)] + 1
2

(adω(x)(y) − adω(y)(x))

= [adω(x), adω(y)] + 1
2

(ω(x, y) − ω(y, x))

= [adω(x), adω(y)] + ω(x, y).

Hence, the bracket is closed if and only if

[adω(x), adω(y)] = adω(ω(x, y)),

it follows that for any z ∈ V ,

[adω(x), adω(y)](z) − adω(ω(x, y))(z)
= adω(x)adω(y)(z) − adω(y)adω(x)(z) − adω(ω(x, y))(z)
= adω(x)ω(y, z) − adω(y)ω(x, z) − ω(ω(x, y), z)
= ω(x, ω(y, z)) − ω(y, ω(x, z)) − ω(ω(x, y), z),

it is clear that the bracket is closed if and only if the Jacobi identity of ω(·, ·) on V is
satisfied. Thus, the proof is completed. �

Definition 2.5. Let L be a maximal isotropic subspace of Ω = gl(V ) ⊕ V and closed
under the bracket J·, ·K, then we call L a Dirac structure of the generalized omni-Lie
algebra (Ω, J·, ·K, ⟨·, ·⟩).

Remark 2.6. By Proposition 2.3, for a Dirac structure L, we can get

T
′(e1, e2, e3) = J(e1, e2, e3) = 0, ∀ ei ∈ L, i = 1, 2, 3.

then a Dirac structure (L, J·, ·K) is a Lie algebra.
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According to the Definition 2.5, we can rewrite Proposition 2.4 that “ if δ = 1
2 , (V, ω)

is a Lie algebra if and only if Fω is a Dirac structure of the generalized omni-Lie algebra
(Ω, J·, ·K, ⟨·, ·⟩).”

Then we want to know the concrete form of Dirac structures, for a maximal isotropic
subspace L, let D = L ∩ gl(V ), define D0 to be the kernel of D,

D0 := {x ∈ V | X(x) = 0, ∀ X ∈ D} ⊆ V,

(D0)0 := {X ∈ gl(V ) | X(x) = 0, ∀ x ∈ D0} ⊆ gl(V ) = D.

Lemma 2.7. A subspace L is maximal isotropic if and only if
L = D ⊕ Fπ|D0 = {X + π(x) + x | ∀ X ∈ D, x ∈ D0}, (2.4)

where π : V → gl(V ) is a skew-symmetric map.

Proof. First, suppose that L is given by (2.4), for any X + π(x) + x, Y + π(y) + y ∈ L,

⟨X + π(x) + x, Y + π(y) + y⟩
= α(X(y) + π(x)(y) + Y (x) + π(y)(x))
= α(π(x)(y) + π(y)(x))
= 0.

Thus, L is isotropic, then we prove that L is maximal isotropic. For all B + z ∈ L⊥, we
have

0 = ⟨X, B + z⟩ = αX(z), ∀ X ∈ D,

so z ∈ D0,

0 = ⟨X + π(x) + x, B + z⟩
= α(X(z) + π(x)(z) + B(x))
= α(B − π(z))(x), ∀ X + π(x) + x ∈ L,

let Z := B − π(z) ∈ D,

B + z = Z + π(z) + z ∈ L⊥ = L,

therefore, L is maximal isotropic. The converse part is straightforward, so we omit the
details. �
Lemma 2.8. Let (D, π) be given above for a maximal isotropic subspace L ⊂ Ω. Then L
is a Dirac structure if and only if the following conditions are satisfied:

(i) D is a subalgebra of gl(V );
(ii) π(π(x, y)) − [π(x), π(y)] ∈ D, ∀ x, y ∈ D0;

(iii) π(x, y) ∈ D0, ∀ x, y ∈ D0.
Such a pair (D, π) is called a characteristic pair of a Dirac structure L.

Proof. By Definition 2.5, L is a Dirac structure if and only if L is closed with respect
to the bracket (2.1). First, for any X + π(x) + x, Y + π(y) + y ∈ L, by straightforward
calculation, we get JX + π(x) + x, Y + π(y) + yK

= [X + π(x), Y + π(y)] + δ(π(x)(y) − π(y)(x))
= [X, Y ] + [X, π(y)] + [π(x), Y ] + [π(x), π(y)] + 2δπ(x, y).

If δ = 1
2 , L is closed under the bracket (2.1) if and only if π(x, y) ∈ D0, π(π(x, y)) −

[π(x), π(y)] ∈ D, ∀ x, y ∈ D0. Moreover for any X, Y ∈ D, x, y, z ∈ D0, we have
[X, Y ](z) = XY (z) − Y X(z) = 0,

[X, π(y)](z) = Xπ(y)(z) − π(y)X(z) = 0,

[π(x), Y ](z) = π(x)Y (z) − Y π(x)(z) = 0,
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so [X, Y ], [X, π(y)], [π(x), Y ] ∈ D, that is to say, D is a subalgebra of gl(V ). �
Theorem 2.9. There is a one-to-one correspondence between Dirac structures of the
generalized omni-Lie algebra (Ω, J·, ·K, ⟨·, ·⟩) and Lie algebra structures on subspaces of V
if δ = 1

2 .

Proof. First, by Lemmas 2.7, 2.8, if L is a Dirac structure, then L = D ⊕ Fπ|D0 and
satisfies three conditions in Lemma 2.8. Define operation [·, ·]D0 on D0 ⊆ V by

[x, y]D0 := π(x, y) ∈ D0, ∀ x, y ∈ D0,

[·, ·]D0 is a skew-symmetric operation because π is a skew-symmetric map. Then, we check
the Jacobi identity, for any x, y, z ∈ D0,

[[x, y]D0 , z]D0

= π([x, y]D0)(z)
= π(π(x, y))(z)
= [π(x), π(y)](z)
= π(x)π(y)(z) − π(y)π(x)(z)
= [x, [y, z]D0 ]D0 − [y, [x, z]D0 ]D0 .

Thus, (D0, [·, ·]D0) is a Lie algebra.
Conversely, W is a subspace of V , for any Lie algebra (W, [·, ·]W ), and define D by

D := W 0 = {X ∈ gl(V ) | X(x) = 0, ∀x ∈ W},

D0 = (W 0)0 = W.

Let ad : W → gl(W ) represents the limitation of π : V → gl(V ) on W ,
adx(y) = [x, y]W ,

then we get a maximal isotropic subspace
L = D ⊕ Fπ|W .

Next is to prove that L is closed under the bracket J·, ·K, if δ = 1
2 , for X + adx + x, Y +

ady + y ∈ L, JX + adx + x, Y + ady + yK
= [X + adx, Y + ady] + 1

2
((X + adx)(y) − (Y + ady)(x))

= [X, Y ] + [X, ady] + [adx, Y ] + [adx, ady] + 1
2

(adx(y) − ady(x))

= [X, Y ] + [X, ady] + [adx, Y ] + [adx, ady] + [x, y]W .

For any X, Y ∈ D and x, y ∈ W ,
[X, Y ](x) = XY (x) − Y X(x) = 0,

which means [X, Y ] ∈ D, D is a subalgebra of gl(V ).
[X, adx](y) = X([x, y]W ) − [x, X(y)] = 0,

[adx, Y ](y) = [x, Y (y)] − Y ([x, y]W ) = 0,

so [X, ady], [adx, Y ] ∈ D.
Since [·, ·]W satisfies the Jacobi identity, we obtain

[adx, ady] = ad[x,y]W ,JX + π(x) + x, Y + π(y) + yK ∈ D ⊕ Fπ|W .

Thus, L is a Dirac structure. �
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Let Λ denotes the family of all Lie structures on the subspaces of V , and Γ denotes
the family of all Dirac structures of the generalized omni-Lie algebra Ω, then according to
Theorem 2.9, there exists a bijective

Ψ : Λ → Γ,

and an embedding
φW : W → L, ∀ W ∈ Λ, L ∈ Γ.

Definition 2.10. [4] Let L be a linear space over a field F together with a bilinear
operation ◦: L × L → L satisfying

((x ◦ y) ◦ z) = (x ◦ (y ◦ z)) − (y ◦ (x ◦ z)), ∀ x, y, z ∈ L,

then we call (L, ◦) a Leibniz algebra.

We define another bilinear operation “ ◦” on Ω = gl(V ) ⊕ V by

(A + x) ◦ (B + y) = [A, B] + δAy, ∀ A + x, B + y ∈ Ω, δ ∈ F.

Proposition 2.11. (Ω, ◦) is a Leibniz algebra.

Proof. We check if the Leibniz identity is satisfied, for any e1 = A + x, e2 = B + y, e3 =
C + z ∈ Ω,

(e1 ◦ e2) ◦ e3 − e1 ◦ (e2 ◦ e3) + e2 ◦ (e1 ◦ e3)
= ([A, B] + δAy) ◦ (C + z) − (A + x) ◦ ([B, C] + δBz) + (B + y) ◦ ([A, C] + δAz)
= [[A, B], C] − [A, [B, C]] + [B, [A, C]] + δ(ABz − BAz) − δABz + δBAz

= 0.

By Definition 2.10, it holds. �

Proposition 2.12. Let V be a Lie algebra. D is a derivation of V that satisfies

D[x, y] = [Dx, y] + [x, Dy], ∀ x, y ∈ V

if and only if Fω is an invariant subspace of D under the operation “ ◦” if δ = 1, i.e.,

D ◦ Fω ⊆ Fω.

Proof. If δ = 1, for adω(x) + x ∈ Fω, y ∈ V,

D ◦ (adω(x) + x) = [D, adω(x)] + Dx.

The right side belongs to Fω if and only if

[D, adω(x)] = adω(Dx),

for convenience, we denote ω(x, y) := [x, y],

[D, adω(x)](y) − adω(Dx)(y)
= Dadω(x)(y) − adω(x)D(y) − adω(Dx)(y)
= D[x, y] − [x, Dy] − [Dx, y].

Thus, D is a derivation of V if and only if D ◦ Fω ⊆ Fω. �
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