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Abstract

We introduce the notion of generalized omni-Lie algebras from omni-Lie algebras con-
structed by Weinstein. We prove that there is a one-to-one correspondence between Dirac
structures of a generalized omni-Lie algebra and Lie structures on its linear space.
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1. Introduction

The notion of omni-Lie algebras was introduced by Weinstein[7], which is the lineariza-
tion of the Courant bracket. Let V be a linear space, and an omni-Lie algebra is the direct
sum space gl(V) @V with a skew-symmetric bracket operation [-, -] and a non-degenerate
symmetric bilinear pairing (-,-) given by

1

and )
(A+x,B+y) = §(Ay+B:E).

An omni-Lie algebra is not a Lie algebra, but its Dirac structures are Lie algebras.
Actually, an omni-Lie algebra is a Lie 2-algebra since Roytenberg and Weinstein proved
that every Courant algeboid gives rise to a Lie 2-algebra[5]. Recently, omni-Lie algebras
were generalized to omni-Lie superalgebras, omni-Lie color algebras and omni-Lie alge-
broids[1,8]. In[2], they generalized omni-Lie algebras from a linear space to a linear bundle
FE in order to characterize all possible Lie algebroid structures on E. Dirac structures were
also studied from several aspects|2, 3, 6].

In this paper, we introduce the notion of a generalized omni-Lie algebra, which is the
(6, ) omni-Lie algebra and discuss special situations when 4, « are fixed values. Then we
study Dirac structures of the generalized omni-Lie algebra in order to characterize all Lie
algebra structures on the linear space and prove that there is a one-to-one correspondence
between Dirac structures of the generalized omni-Lie algebra (€, [, -], (-, -)) and Lie algebra
structures on subspaces of V if § = % Moreover, we prove that a generalized omni-Lie
algebra is a Leibniz algebra.
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2. Generalized omni-Lie algebras

Let V be a linear space over a field F. The set of all linear transformations on V is a
Lie algebra denoted by gl(V'), given by [A, B] = AB — BA, for any A, B € gl(V).

Definition 2.1. A generalized omni-Lie algebra is the linear space Q = gl(V) @V with a
skew-symmetric bilinear bracket operation [-,-] and a non-degenerate symmetric bilinear
pairing (-,-), for any A, B € gl(V),z,y € V,and §,a € F,
[A+z,B+y] =[A,B]+ d(Ay — Bx), (2.1)
and
(A+2z,B+y) = a(Ay + Bzx). (2.2)
We call (€2, [-,-], (-,-)) a generalized omni-Lie algebra.
Proposition 2.2. Let J denote the Jacobiator for the bracket [-,-] of Q, then for any
e1r=A+4+x,e0=B+y,e3=C+ 2z €,
J(e1,e2,e3) = [[e1, e2], es] + [[e2, es], ex] + [[es; e1], e2]-
(i) If 6 = 0,1, (2, [-,-]) is a Lie algebra.
(it) Ifa =6 =3, (0[], (") is an omni-Lie algebra.
Proof. By a direct calculation, we get
J(ela €2, 63)
= [[A+z,B+y],C+z] +cp.
= [[A,B]+0(Ay — Bx),C + z] + c.p.
+6([B,Clz — §A(Bz — Cy)) + ([C, Aly — 6 B(Cz — Az))
= [[A,B],C]+[[B,C], A + [[C, A], B + (¢ — 6°)([A, B]z + [B, Clz + [C, Aly)
If § = 0,1, J satisfies the Jocabi identity, so (€, [-,-]) is a Lie algebra. Especially if 6 = 1,
(Q, -, -]) is a semidirect product of gl(V') and V. O

Proposition 2.3. Let J denote the Jacobiator for the bracket [-,-] of Q, for any e; =
A+z,ea=B+y,es=CH+2z€Q, we set

T(e1, ez, e3) = ([er, e2]) e3) + ([ea, es], e1) + ([es, e, e2),

Tl(el €9 63) = 6_52 T(€1 €9 63)
Y a+ ad e
then we have
T,(€1,62,€3) = J(el,eg,eg). (2.3)

Proof. We have proved that for any ey = A+ x,e0 = B+y,e3=C+ 2z € Q,
J(ela €2, 63) = (5 - 52)([14’ B]Z + [B7 C]ﬂl‘ + [C’ A]y)
By Definition 2.1, we get

(61,62,63)
= ([e1,e2],e3) + cp.
= ([A,B]+6(Ay — Bx),C + z) + c.p.
= a([4,B]z+ 6C(Ay — Bz)) + o(|B,Clx + 0A(Bz — Cy))
+a([C, Aly + 6B(Cx — Az))
= (a4 ad)([4,B]z+ [B,Clz + [C, Aly),
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/ §— o2
T (61,62,63) = mT

Thus, Eq. (2.3) holds. O

(e1,e2,e3) = J(e1,e2,¢€3).

Let w be a bilinear operation on V', and define the adjoint operator ad,, : V' — gl(V)
by
adw(x)(y) = W(.f,y), VJB,Z/ € Va
then the graph of the adjoint operator
F, ={ady(z) +x, Ve eV}

is a subspace of ). ﬁj denote the orthogonal complement of %, with respect to the
bilinear form (2.2) of €.

Proposition 2.4. If 6 = %, (V,w) is a Lie algebra if and only if %, is maximal isotropic,
i.€.,
T = F,
and is closed under the bracket [-,-].
Proof. First, for any ad,(z) + z,ad,(y) +y € Fu,
(ady(z) + 2z, ady(y) +y)
= a(ady(z)(y) +adu(y)(2))
= a(w(z,y) +wy, ),

which means that w(-,-) is skew-symmetric if and only if its graph is isotropic and %, =
ZFL. Then if § = 1 and w(-,-) is skew-symmetric, let us check

2
[ady, () + z,adw(y) + y]
= [adu(e), adu(y)] + 5 (adu(2)(y) — adu(y) ()

= [adu(a),adu ()] + 5 () — (3,2))
= fado(e), adu(u)] + ().

Hence, the bracket is closed if and only if

[ady (%), adw (y)] = adw (w(z,y)),
it follows that for any z € V,
[ady (%), adw (y)](2) — adw(w(,y))(2)
= ady(z)ady(y)(2) — adw(y)ady(z)(2) — adw(w(z, y))(2)
= ady(2)w(y, 2) — ady(y)w(z, 2) — w(w(z,y), 2)
= w(z,w(y,2) —wy,w(z,2) —ww(z,y),2),

it is clear that the bracket is closed if and only if the Jacobi identity of w(-,-) on V is
satisfied. Thus, the proof is completed. O

Definition 2.5. Let L be a maximal isotropic subspace of Q = gl(V) @ V and closed
under the bracket [-,-], then we call L a Dirac structure of the generalized omni-Lie

algebra (2, [, -], (-,))-
Remark 2.6. By Proposition 2.3, for a Dirac structure L, we can get
T,(el,eg,eg) = J(€1,€2,€3) =0, Ve; € L, 1=1,2,3.

then a Dirac structure (L, [-,-]) is a Lie algebra.
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According to the Definition 2.5, we can rewrite Proposition 2.4 that “ if § = %, (V,w)
is a Lie algebra if and only if .%, is a Dirac structure of the generalized omni-Lie algebra

(Qv [['7 ']]’ <'7 '>)'”
Then we want to know the concrete form of Dirac structures, for a maximal isotropic
subspace L, let D = LN gl(V), define D to be the kernel of D,

DV :={zxcV|X(x)=0,YX e€D}CV,
(D :={X € gl(V) | X(x) =0,Vx € D’} Cgl(V) = D.
Lemma 2.7. A subspace L is maximal isotropic if and only if
L=D& Zyp,={X+n(x)+2|VX €D, zeD, (2.4)
where m: V' — gl(V') is a skew-symmetric map.
Proof. First, suppose that L is given by (2.4), for any X + 7(z) + 2, Y +7(y) + y € L,
(X +7(z)+2,Y +7(y) +y)
= a(X(y) +7(x)(y) +Y(z) + 7(y)(z))

a(r(x)(y) + 7 (y)(x))
0.

Thus, L is isotropic, then we prove that L is maximal isotropic. For all B + z € L, we
have

0=(X,B+2z2)=aX(z),VX €D,
soz € DY,

0=(X+m(z)+z,B+=z)
a(X(z) +7(x)(2) + B(x))
a(B—7(2))(z), VX +n(z)+z €L,

let Z:= B —n(z) € D,

B4z=Z+n(z)+zelt =1,
therefore, L is maximal isotropic. The converse part is straightforward, so we omit the
details. ([l

Lemma 2.8. Let (D, ) be given above for a mazimal isotropic subspace L C Q. Then L
1s a Dirac structure if and only if the following conditions are satisfied:
(i) D is a subalgebra of gl(V');
(ii) w(n(z,y)) — [7(z),7(y)] € D,Yx,y € D%
(iii) 7(x,y) € D°,Vx,y € D°.
Such a pair (D, ) is called a characteristic pair of a Dirac structure L.
Proof. By Definition 2.5, L is a Dirac structure if and only if L is closed with respect
to the bracket (2.1). First, for any X + n(x) + z,Y + n(y) + y € L, by straightforward
calculation, we get
[X 4+ m(x) +2,Y +7(y) + y]
= [X+7(),Y +7(y)] +(r(z)(y) — 7(y)(z))
= [X,Y]+ [X,7(y)] + [7(2), Y] + [7(2), 7 (y)] + 207 (2, y).
If § = 3, L is closed under the bracket (2.1) if and only if 7(z,y) € D°, 7(n(z,y)) —
[7(x),7(y)] € D, Va,y € DY. Moreover for any X,Y € D,x,y,z € D% we have
[(X,Y](2) = XY(2) - YX(z) =0,
(X, m(y)l(z) = Xn(y)(z) — m(y) X (2) = 0,
[m(2),Y](2) = 7(2)Y () — Y7(x)(2) = 0,
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so [X,Y],[X,7(y)],[r(x),Y] € D, that is to say, D is a subalgebra of gl(V). O

Theorem 2.9. There is a one-to-one correspondence between Dirac structures of the
generalized omni-Lie algebra (2, [-, -], (-,-)) and Lie algebra structures on subspaces of V
ifé6=13.
Proof. First, by Lemmas 2.7, 2.8, if L is a Dirac structure, then L = D &  p, and
satisfies three conditions in Lemma 2.8. Define operation [-,-]po on D° C V by

[x7y]DO = 7T((E,y) S D07 mey € D07

[-, -] po is a skew-symmetric operation because 7 is a skew-symmetric map. Then, we check
the Jacobi identity, for any z,y,z € DY,

[[IL‘,y]Do,Z]Do
= 7([z,y]po)(2)
= 7(m(z,9))(2)
= [7(2),7(y)l(z)
= 7(x)m(y)(z) — w(y)m(z)(z)
= [,[y,2]polpo — [y, [z, 2] po] po-

Thus, (D, [-,]po) is a Lie algebra.
Conversely, W is a subspace of V, for any Lie algebra (W, [-,-]Jw), and define D by

D:=W'={Xegl(V)| X(z) =0,V € W},
DY = W9 =w.
Let ad : W — gl(W) represents the limitation of 7 : V' — gl(V) on W,
ads(y) = [z, ylw,
then we get a maximal isotropic subspace
L=D& Fw.

Next is to prove that L is closed under the bracket [-,-], if § = %, for X +ad; +z,Y +
ady, +y € L,

[X +ady +2,Y + ady + y]
= [X+ade, Y +ady] + (X +ad)(y) — (V +ady)(2))

= [X,Y]+[X, ady] + [ad,, Y] + [ady, ady] + %(adm(y) — ady(z))
= [X,Y]+[X,ady] + [ads, Y] + [ads, ady] + [z, y]w.
For any X, Y € D and z,y € W,
[X,Y](z) = XY (z) = YX(z) =0,
which means [X,Y] € D, D is a subalgebra of gl(V).
(X, ads](y) = X([z, ylw) — [z, X(y)] = 0,

[ade, Y](y) = [, Y ()] = Y ([z, ylw) = 0,
so [X,ad,], [ad,, Y] € D.
Since [-, -]y satisfies the Jacobi identity, we obtain

ladg,ad,] = ad(z )y

[[X+7T($)+$,Y+7T(y)—|—y]] € D@jﬂw
Thus, L is a Dirac structure. ]
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Let A denotes the family of all Lie structures on the subspaces of V, and T' denotes
the family of all Dirac structures of the generalized omni-Lie algebra ), then according to
Theorem 2.9, there exists a bijective

U:A->T,

and an embedding
ow W —=>L VYWeALeT.

Definition 2.10. [4] Let L be a linear space over a field F together with a bilinear
operation o: L x L — L satisfying

((xoy)oz)=(xo(yoz))—(yo(roz)),Va,y,z€L,
then we call (L, o) a Leibniz algebra.
We define another bilinear operation “o” on Q = gi(V) @ V' by
(A+z)o(B+y)=[A,B]+6Ay,VA+z,B+yeQ,deF.
Proposition 2.11. (2,0) is a Leibniz algebra.

Proof. We check if the Leibniz identity is satisfied, for any e; = A+ x,e9 = B+ y,e3 =
C+zeQ,
(e1oeg)oez —ejo(egoes)+eyo(egoes)
= ([A,B]+0Ay)o(C+2)— (A+z)o([B,C]+éBz)+ (B+y)o([A,C]+0Az)
[[A,B],C]—[A,[B,C]] + [B,[A,C]] + 0(ABz — BAz) — 0ABz + 6 BAz
= 0.
By Definition 2.10, it holds. O

Proposition 2.12. Let V' be a Lie algebra. D is a derivation of V that satisfies
Dlz,y] = [Dz,y] + [z,Dy], Va,y € V
if and only if Z,, is an invariant subspace of D under the operation “o” if § =1, i.e.,
Do %, C Z,.
Proof. 1f § =1, for ad,(x) + = € F,,y €V,
D o (ad,(z) + x) = [D, ad,(z)] + Dz.
The right side belongs to .%,, if and only if
[D,ady(x)] = ad,(Dx),
for convenience, we denote w(x,y) := [z, ],

[D, ady,(2)](y) — adw (Dx)(y)
= Dady(z)(y) — ady(x)D(y) — adu,(Dz)(y)
= D[.%',y] - [J},Dy] - [vay]

Thus, D is a derivation of V if and only if D o %, C %,,. ]
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