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1. Introduction
Let A denote the class of functions h of the form

h(z) = z +
∞∑

n=2
anzn (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} . Also let S denote the
subclass of A consisting of functions that are univalent in U.

We now recall the notion of q-operators or q-difference operators that play vital roles in
the theory of hypergeometric series, quantum physics and operator theory. The application
of q-calculus was initiated by Jackson [7] who have used the fractional q-calculus operators
in investigations of certain classes of functions which are analytic in U. For more details on
q-calculus and its applications one can refer to [1,5,7,13] and the references cited therein.

For 0 < q < 1 the Jackson’s q-derivative of a function h ∈ S is given as follows [7]

Dqh(z) =


h(z) − h(qz)

(1 − q)z
for z ̸= 0,

h′(0) for z = 0,
(1.2)

D2
qh(z) = Dq(Dqh(z)).

From (1.2), we have Dqh(z) = 1 +
∞∑

n=2
[n]qanzn−1 where [n]q = 1−qn

1−q is sometimes called

the basic number n. If q → 1− then [n]q = [n] → n. For h ∈ A, m ∈ N0 = {0, 1, 2, ...}
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and z ∈ U, Govindaraj and Sivasubramanian [5] considered the Sălăgean q-differential
operators

D0
qh(z) = h(z),

D1
qh(z) = zDqh(z), ... ,

Dm
q h(z) = zDq(Dm−1

q h(z)) = z +
∞∑

n=2
[n]mq anzn . (1.3)

We note that if q → 1− then

Dmh(z) = z +
∞∑

n=2
[n]manzn (m ∈ N0, z ∈ U)

is the familiar Sălăgean derivative[15].
Let H denote the family of harmonic functions f = h+g that are orientation preserving

and univalent in U with h as in (1.1) and g given by

g(z) =
∞∑

n=1
bnzn, |b1| < 1. (1.4)

We note that the family H of orientation preserving, normalized harmonic univalent func-
tions reduces to the well known class S of normalized univalent functions if the co-analytic
part of f is identically zero, i.e. g ≡ 0. We let H be the subfamily of H consisting of
harmonic functions f = h + g for which h and g are given by

h(z) = z −
∞∑

n=2
anzn, g(z) =

∞∑
n=1

bnzn, an ≥ 0 and bn ≥ 0.

The seminal work of Clunie and Sheil-Small [4] on harmonic mappings prompted many
research articles on classes of complex-valued harmonic univalent functions. In particu-
lar, [2, 6, 8, 9, 11, 12, 14, 16] have investigated properties of various subclasses of harmonic
univalent functions.

For harmonic functions f = h + g ∈ H where h and g are, respectively, given by (1.1)
and (1.4), let Dm

q h(z) be defined by (1.3) and Dm
q g(z) be defined by

D0
qg(z) = g(z),

D1
qg(z) = zDqg(z), ... ,

Dm
q g(z) = zDq(Dm−1

q g(z)) = z +
∞∑

n=2
[n]mq bnzn . (1.5)

Recently, Jahangiri [10] considered a generalized Sălăgean q− differential operator Hm
q (α)

defined by

ℜ
(

Dm+1
q f(z)

Dm
q f(z)

)
≥ α; 0 ≤ α < 1,

where, Dm
q h(z) and Dm

q g(z) are, respectively, defined by (1.3) and (1.5) and

Dm
q f(z) = Dm

q h(z) + (−1)mDm
q g(z), m > −1.

The subfamily H
m
q (α) ⊂ Hm

q (α) consists of harmonic functions fm = h + gm for which

h(z) = z −
∞∑

n=2
anzn, gm(z) = (−1)m

∞∑
n=1

bnzn, an ≥ 0 and bn ≥ 0. (1.6)
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For non-zero complex number b with |b|≤1, real number γ and 0 ≤ α < 1 we let
HSm

q (b, γ, α) be the subclass of H consisting of harmonic functions f = h + g satisfying

ℜ
(

1 + 1
b

(
(1 + eiγ)

Dm+1
q f(z)

Dm
q f(z)

− eiγ − 1
))

> α. (1.7)

We also let HS
m
q (b, γ, α) ≡ HSm

q (b, γ, α) ∩ H.
We note that HSm

q (1, γ, α) ≡ HRm
q (γ, α) is generalized class of Goodman-Ronning-type

harmonic starlike functions (see [14], Inequality (2), p. 46) satisfying

ℜ
(

(1 + eiγ)
Dm+1

q f(z)
Dm

q f(z)
− eiγ

)
> α

and HSm
q (b, 0, α) ≡ HRm

q (b, α) is the harmonic version of generalized starlike functions of
complex order (see [3], Definition 1) satisfying

ℜ
(

1 + 2
b

(
Dm+1

q f(z)
Dm

q f(z)
− 1

))
> α.

It is the aim of this paper to obtain sufficient coefficient conditions, extreme points, growth
theorem, and distortion bounds for harmonic functions f = h + g in HSm

q (b, γ, α). More-
over, we show that those sufficient coefficient conditions for f ∈ HSm

q (b, γ, α) are also
necessary for f ∈ HS

m
q (b, γ, α).

2. Main results
The sufficient coefficient condition for HSm

q (b, γ, α) is given in the following theorem.

Theorem 2.1. Let f = h + g ∈ H where b is a non-zero complex number with |b|≤1, γ is
a real number and 0 ≤ α < 1 . If

∞∑
n=1

(
[n]mq [2[n]q − 2 + (1 − α)|b|]

(1 − α)|b|
|an| +

[n]mq [2[n]q + 2 − (1 − α)|b|]
(1 − α)|b|

|bn|
)

≤ 2, (2.1)

then f is harmonic univalent and orientation-preserving in U and f ∈ HSm
q (b, γ, α).

Proof. First we establish that f is orientation preserving in U. In other words, we need
to show that |Dm+1

q h(z)| ≥ |Dm+1
q g(z)|. This is accomplished using the properties of

absolute values and the coefficient inequality (2.1).

|Dm+1
q h(z)| ≥ 1 −

∞∑
n=2

[n]m+1
q |an|rn−1 > 1 −

∞∑
n=2

[n]m+1
q |an|

≥ 1 −
∞∑

n=2

[2[n]q − 2 + (1 − α)|b|
(1 − α)|b|

]
[n]mq |an|

≥
∞∑

n=1

[2[n]q + 2 − (1 − α)|b|
(1 − α)|b|

]
[n]mq |bn|

≥
∞∑

n=1
[n]m+1

q |bn| ≥
∞∑

n=1
[n]m+1

q |bn|rn−1 ≥ |Dm+1
q g(z)|.

To show f is univalent in U we use a method that was first used by Jahangiri [8]. We
will show that f(z1) ̸= f(z2) when z1 ̸= z2. Consider z1 and z2 in U so that z1 ̸= z2. Since
the unit disc U is simply connected and convex, we have z(t) = (1 − t)z1 + tz2 in U for
0 ≤ t ≤ 1. Then we may write

Dm+1
q f(z2) − Dm+1

q f(z1) =
1∫

0

[(z2 − z1)(Dm+1
q h(z(t)) + (z2 − z1)(Dm+1

q g(z(t))]dt.
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Dividing the above equation by z2 − z1 and taking the real parts we obtain

ℜ
(

Dm+1
q f(z2) − Dm+1

q f(z1)
z2 − z1

)
=

1∫
0

ℜ[Dm+1
q h(z(t)) + (z2 − z1)

z2 − z1
Dm+1

q g(z(t))]dt (2.2)

>

1∫
0

[ℜ (Dm+1
q h(z(t)) − |Dm+1

q g(z(t)|]dt.

On the other hand

ℜ (Dm+1
q h(z(t)) − |(Dm+1

q g(z(t))| ≥ ℜ (Dm+1
q h(z(t)) −

∞∑
n=1

[n]m+1
q |bn|

≥ 1 −
∞∑

n=2
[n]m+1

q |an| −
∞∑

n=1
[n]m+1

q |bn|

≥ 1 −
∞∑

n=2
[n]mq

[2[n]q − 2 + (1 − α)|b|
(1 − α)|b|

]
|an|

−
∞∑

n=1
[n]mq

[2[n]q + 2 − (1 − α)|b|
(1 − α)|b|

]
|bn|

≥ 0 by (2.1).

This together with inequality (2.2) implies the univalence of f.
Next we show that if the condition (2.1) holds then f ∈ HSm

q (b, γ, α). In other words,
we need to show that the condition (1.7) is satisfied if (2.1) holds.

Using the fact that ℜ(w(z)) ≥ α if and only if |1 − α + w| ≥ |1 + α − w| for 0 ≤ α < 1
it suffices to show that

|(2b − αb − eiγ − 1)(Dm
q h(z) + (−1)mDm

q g(z)) + (1 + eiγ)(Dm+1
q h(z) − (−1)mDm+1

q g(z))|

−|(1 + αb + eiγ)(Dm
q h(z) + (−1)mDm

q g(z))| − (1 + eiγ)(Dm+1
q h(z) − (−1)mDm+1

q g(z))| ≥ 0.

Upon substituting for Dm
q h(z) and Dm

q g(z) we obtain

|(2b − αb − (1 + eiγ))
[
z +

∞∑
n=2

[n]mq anzn + (−1)m
∞∑

n=1
[n]mq bnzn

]

+ (1 + eiγ)
[
z +

∞∑
n=2

[n]m+1
q anzn − (−1)m

∞∑
n=1

[n]m+1
q bnzn

]
|

− |(1 + αb + eiγ)
[
z +

∞∑
n=2

[n]mq anzn + (−1)m
∞∑

n=1
[n]mq bnzn

]

− (1 + eiγ)
[
z +

∞∑
n=2

[n]m+1
q anzn − (−1)m

∞∑
n=1

[n]m+1
q bnzn

]
|
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≥ (2 − α)|b||z| −
∞∑

n=2
|(2 − α)b + (1 + eiγ)([n]q − 1)|[n]mq |an||z|n

−
∞∑

n=1
|(1 + eiγ)([n]q + 1) − (2 − α)b|[n]mq |bn| |z|n

−α|b||z| −
∞∑

n=2
|([n]q − 1)(1 + eiγ) − αb|[n]mq |an| |z|n

−
∞∑

n=1
|([n]q + 1)(1 + eiγ) + αb|[n]mq |bn| |z|n

≥ 2(1 − α)|b||z|
(

1 −
∞∑

n=2
[n]mq

[2[2[n]q − 2 + (1 − α)|b|]
2(1 − α)|b|

|an|
])

− 2(1 − α)|b||z|
∞∑

n=1
[n]mq

[2[2[n]q + 2 − (1 − α)|b|]
2(1 − α)|b|

|bn|
]

≥ 0, by (2.1).

�

The functions

f(z) = z +
∞∑

n=2

[
(1 − α)|b|

2[n]q − 2 + (1 − α)|b|

]
xnzn +

∞∑
n=1

[
(1 − α)|b|

2[n]q + 2 − (1 − α)|b|

]
ynzn,

where
∞∑

n=2
|xn| +

∞∑
n=1

|yn| = 1, shows that the coefficient bound given by (2.1) is sharp.

The next theorem shows that condition (2.1) is also necessary for f ∈ HS
m
q (b, γ, α).

Theorem 2.2. Let fm = h + gm be given by (1.6) where b is a non-zero complex number
with |b|≤1, γ is a real number and 0 ≤ α < 1 . Then fm is harmonic univalent and
orientation-preserving in U and fm ∈ HS

m
q (b, γ, α) if and only if

∞∑
n=1

(
[n]mq [2[n]q − 2 + (1 − α)|b|]

(1 − α)|b|
an +

[n]mq [2[n]q + 2 − (1 − α)|b|]
(1 − α)|b|

bn

)
≤ 2. (2.3)

Proof. Since HS
m
q (b, γ, α) ⊂ HSm

q (b, γ, α), the if part of the Theorem 2.2 follows from
Theorem 2.1 . To prove the only if part, we will show that if (2.3) does not hold then fm

is not in HS
m
q (b, γ, α).

For fm ∈ HS
m
q (b, γ, α) we must have

ℜ

1 + 1
b

(1 + eiγ)
Dm+1

q h(z) − (−1)mDm+1
q gm(z)

Dm
q h(z) + (−1)mDm

q gm(z)
− (eiγ + 1)

 ≥ α .
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Or equivalently

ℜ

(1 − α)bz −
∞∑

n=2
[(1 − α)b + ([n]q − 1)(1 + eiγ)][n]mq |an|zn

b

(
z −

∞∑
n=2

[n]mq |an|zn + (−1)2m
∞∑

n=1
[n]mq |bn|zn

)


− ℜ

(−1)2m
∞∑

n=1
[([n]q + 1)(1 + eiγ) − (1 − α)b][n]mq |bn|zn

b

(
z −

∞∑
n=2

[n]mq |an|zn + (−1)2m
∞∑

n=1
[n]mq |bn|zn

)


= ℜ

(1 − α)|b|2 −
∞∑

n=2
[(1 − α)b + ([n]q − 1)(1 + eiγ)]b[n]mq |an|zn−1

|b|2
(

1 −
∞∑

n=2
[n]mq |an|zn−1 + z

z

∞∑
n=1

[n]mq |bn|z[n]q−1
)



− ℜ


z
z

∞∑
n=1

[([n]q + 1)(1 + eiγ) − (1 − α)b]b[n]mq |bn|zn−1

|b|2
(

1 −
∞∑

n=2
[n]mq |an|zn−1 + z

z

∞∑
n=1

[n]mq |bn|zn−1
)
 ≥ 0.

The above condition must hold for all values of γ, |z| = r < 1 and 0 < |b| < 1. For γ = 0
and |b| = b let z = r < 1 be on the positive real axis. Then the above condition becomes

(1 − α)|b|2 −
∞∑

n=2
[(2[n]q − 2) + (1 − α)b]|b|[n]mq |an|rn−1

|b|2
(

1 −
∞∑

n=2
[n]mq |an|rn−1 +

∞∑
n=1

[n]mq |bn|rn−1
)

−

∞∑
n=1

[(2[n]q + 2) − (1 − α)b]|b|[n]mq |bn|rn−1

|b|2
(

1 −
∞∑

n=2
[n]mq |an|rn−1 +

∞∑
n=1

[n]mq |bn|rn−1
) ≥ 0. (2.4)

Now we observe that the numerator in the above required inequality (2.4) is negative if
condition (2.3) does not hold. Thus, there exists a point z0 = r0 in (0, 1) for which the
quotient in the above inequalities are negative. This contradicts the required condition
(1.7) for fm ∈ HS

m
q (b, γ, α). Hence the proof is complete. �

The following theorem is a consequence of the above Theorem 2.2.

Theorem 2.3. Let fm = h + gm be given by (1.6).Then fm ∈ HS
m
q (γ, α) if and only if

∞∑
n=1

(
[n]mq [2[n]q − 1 − α)]

1 − α
an +

[n]mq [2[n]q + 1 + α)]
1 − α

bn

)
≤ 2.

The extreme points of closed convex hull of HS
m
q (b, γ, α), denoted by clcoHS

m
q (b, γ, α),

are determined in the following theorem.

Theorem 2.4. Let fm ∈ clcoHS
m
q (b, γ, α) if and only if

fm(z) =
∞∑

n=1
(Xnhn + Yngmn) (2.5)

where
h1(z) = z, hn(z) = z − (1 − α)|b|

[n]mq [2[n]q − 2 + (1 − α)|b|]
zn, n = 2, 3, . . . ;



422 Jay Jahangiri, G. Murugusundaramoorthy, K. Vijaya

gmn(z) = z + (−1)m (1 − α)|b|
[n]mq [2[n]q + 2 − (1 − α)|b|]

zn, n = 1, 2, . . . ;

∞∑
n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

In particular, the extreme points of clcoHS
m
q (b, γ, α) are {hn} and {gmn}.

Proof. For functions of the form (2.5), we have

fm(z) =
∞∑

n=1
(Xnhn + Yngmn)

=
∞∑

n=1
(Xn + Yn) z −

∞∑
n=2

(1 − α)|b|
[n]mq [2[n]q − 2 + (1 − α)|b|]

Xnzn

+(−1)m
∞∑

n=1

(1 − α)|b|
[n]mq [2[n]q + 2 − (1 − α)|b|]

Ynzn.

Therefore
∞∑

n=2

[n]mq [2[n]q − 2 + (1 − α)|b|]
(1 − α)|b|

(
(1 − α)|b|

[n]mq [2[n]q − 2 + (1 − α)|b|]

)
Xn

+
∞∑

n=1

[n]mq [2[n]q + 2 − (1 − α)|b|]
(1 − α)|b|

(
(1 − α)|b|

[n]mq [2[n]q + 2 − (1 − α)|b|]

)
Yn

=
∞∑

n=2
Xn +

∞∑
n=1

Yn = 1 − X1 ≤ 1.

Thus, fm ∈ clcoHS
m
q (b, γ, α). Conversely, suppose that fm ∈ clcoHS

m
q (b, γ, α). Set

Xn =
[n]mq [2[n]q − 2 + (1 − α)|b|]

(1 − α)|b|
|an|, n = 2, 3, . . . ,

and

Yn =
[n]mq [2[n]q + 2 − (1 − α)|b|]

(1 − α)|b|
|bn|, n = 1, 2, . . . ,

where
∞∑

n=1
(Xn + Yn) = 1. Then

fm(z) = z −
∞∑

n=2
anzn + (−1)m

∞∑
n=1

bnzn

= z −
∞∑

n=2

(1 − α)|b|
[n]mq [2[n]q − 2 + (1 − α)|b|]

Xnzn + (−1)m
∞∑

n=1

(1 − α)|b|
[n]mq [2[n]q + 2 − (1 − α)|b|]

Ynzn

= z −
∞∑

n=2
[Xn(hn(z) − z)] +

∞∑
n=1

[Yn(gmn(z) − z)]

=
∞∑

n=1
(Xnhn + Yngmn

) .

Now from Theorem 2.2, we can deduce that 0 ≤ Xn ≤ 1, (n ≥ 2) and 0 ≤ Yn ≤ 1, (n ≥ 1).
Therefore X1 = 1 −

∞∑
n=2

Xn −
∞∑

n=1
Yn ≥ 0. Thus

∞∑
n=1

(Xnhn + Yngmn) = fm(z) as required in the

theorem. �

Finally, we determine the distortion theorem for the family HS
m
q (b, γ, α).
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Theorem 2.5. Let fm ∈ HS
m
q (b, γ, α) where |z| = r < 1. Then

|fm(z)| ≤ (1 + b1)r +
(

(1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

− 4 − (1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

|b1|
)

r2

and

|fm(z)| ≥ (1 − b1)r −
(

(1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

− 4 − (1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

|b1|
)

r2.

Proof. We will prove the right hand inequality. The proof for the left hand inequality
will be similar and is omitted. Let fm(z) ∈ HS

m
q (b, γ, α). Upon taking the absolute value

of fm, we obtain

|fm(z)| ≤ (1 + |b1|)r +
∞∑

n=2
[|an| + |bn|] [n]mq )rn

≤ (1 + |b1|)r + r2
∞∑

n=2
(|an| + |bn|)[n]mq

= (1 + |b1|)r + (1 − α)|b|r2

[2]mq [2[n]q − 2 + (1 − α)|b|]

×
∞∑

n=2
[2]mq

(
2[2]q − 2 + (1 − α)|b|

(1 − α)|b|
|an| + 2[2]q − 2 + (1 − α)|b|

(1 − α)|b|
|bn|
)

≤ (1 + |b1|)r + (1 − α)|b|r2

[2]mq [2[2]q − 2 + (1 − α)|b|]

×
∞∑

n=2
[n]mq

(
2[n]q − 2 + (1 − α)|b|

(1 − α)|b|
|an| + 2[n]q + 2 − (1 − α)|b|

(1 − α)|b|
|bn|
)

≤ (1 + |b1|)r + (1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

(
1 − [4 − (1 − α)|b|]

(1 − α)|b|
|b1|
)

r2

≤ (1 + |b1|)r +
(

(1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

− 4 − (1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

|b1|
)

r2.

The result is sharp for

f(z) = z + |b1|z +
(

(1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

− 4 − (1 − α)|b|
[2]mq [2[2]q − 2 + (1 − α)|b|]

|b1|
)

z2,

where |b1| ≤ (1−α)|b|
4−(1−α)|b| . �
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