Classes of harmonic starlike functions defined by Sălăgean-type q-differential operators

Jay Jahangiri ${ }^{* 1}$ (©), Gangadharan Murugusundaramoorthy ${ }^{2}$ (D), Kaliappan Vijaya ${ }^{2}$ (D)
${ }^{1}$ Mathematical Sciences, Kent State University, Kent, Ohio, U.S.A.
${ }^{2}$ Department of Mathematics,School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014,T.N., INDIA

Abstract

Sufficient and necessary coefficient bounds, extreme points of closed convex hulls, and distortion theorems are determined for a family of harmonic starlike functions of complex order involving Sălăgean-type q-differential operators.

Mathematics Subject Classification (2010). 30C45, 30C50.
Keywords. harmonic univalent functions, q-calculus, Sălăgean-type differential operators.

1. Introduction

Let \mathcal{A} denote the class of functions h of the form

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Also let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions that are univalent in \mathbb{U}.

We now recall the notion of q-operators or q-difference operators that play vital roles in the theory of hypergeometric series, quantum physics and operator theory. The application of q-calculus was initiated by Jackson [7] who have used the fractional q-calculus operators in investigations of certain classes of functions which are analytic in \mathbb{U}. For more details on q-calculus and its applications one can refer to $[1,5,7,13]$ and the references cited therein.

For $0<q<1$ the Jackson's q-derivative of a function $h \in \mathcal{S}$ is given as follows [7]

$$
\begin{gather*}
D_{q} h(z)=\left\{\begin{array}{lll}
\frac{h(z)-h(q z)}{(1-q) z} & \text { for } & z \neq 0, \\
h^{\prime}(0) & \text { for } & z=0,
\end{array}\right. \tag{1.2}\\
D_{q}^{2} h(z)=D_{q}\left(D_{q} h(z)\right) .
\end{gather*}
$$

From (1.2), we have $D_{q} h(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}$ where $[n]_{q}=\frac{1-q^{n}}{1-q}$ is sometimes called the basic number n. If $q \rightarrow 1^{-}$then $[n]_{q}=[n] \rightarrow n$. For $h \in \mathcal{A}, m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$

[^0]and $z \in \mathbb{U}$, Govindaraj and Sivasubramanian [5] considered the Sălăgean q-differential operators
\[

$$
\begin{align*}
D_{q}^{0} h(z) & =h(z) \\
D_{q}^{1} h(z) & =z D_{q} h(z), \ldots, \\
D_{q}^{m} h(z) & =z D_{q}\left(D_{q}^{m-1} h(z)\right)=z+\sum_{n=2}^{\infty}[n]_{q}^{m} a_{n} z^{n} . \tag{1.3}
\end{align*}
$$
\]

We note that if $q \rightarrow 1^{-}$then

$$
D^{m} h(z)=z+\sum_{n=2}^{\infty}[n]^{m} a_{n} z^{n} \quad\left(m \in \mathbb{N}_{0}, z \in \mathbb{U}\right)
$$

is the familiar Sălăgean derivative[15].
Let \mathcal{H} denote the family of harmonic functions $f=h+\bar{g}$ that are orientation preserving and univalent in \mathbb{U} with h as in (1.1) and g given by

$$
\begin{equation*}
g(z)=\sum_{n=1}^{\infty} b_{n} z^{n},\left|b_{1}\right|<1 . \tag{1.4}
\end{equation*}
$$

We note that the family \mathcal{H} of orientation preserving, normalized harmonic univalent functions reduces to the well known class \mathcal{S} of normalized univalent functions if the co-analytic part of f is identically zero, i.e. $g \equiv 0$. We let $\overline{\mathcal{H}}$ be the subfamily of \mathcal{H} consisting of harmonic functions $f=h+\bar{g}$ for which h and g are given by

$$
h(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}, a_{n} \geq 0 \text { and } b_{n} \geq 0 .
$$

The seminal work of Clunie and Sheil-Small [4] on harmonic mappings prompted many research articles on classes of complex-valued harmonic univalent functions. In particular, $[2,6,8,9,11,12,14,16]$ have investigated properties of various subclasses of harmonic univalent functions.
For harmonic functions $f=h+\bar{g} \in \mathcal{H}$ where h and g are, respectively, given by (1.1) and (1.4), let $D_{q}^{m} h(z)$ be defined by (1.3) and $D_{q}^{m} g(z)$ be defined by

$$
\begin{align*}
D_{q}^{0} g(z) & =g(z) \\
D_{q}^{1} g(z) & =z D_{q} g(z), \ldots \\
D_{q}^{m} g(z) & =z D_{q}\left(D_{q}^{m-1} g(z)\right)=z+\sum_{n=2}^{\infty}[n]_{q}^{m} b_{n} z^{n} \tag{1.5}
\end{align*}
$$

Recently, Jahangiri [10] considered a generalized Sălăgean q - differential operator $\mathcal{H}_{q}^{m}(\alpha)$ defined by

$$
\Re\left(\frac{D_{q}^{m+1} f(z)}{D_{q}^{m} f(z)}\right) \geq \alpha ; 0 \leq \alpha<1,
$$

where, $D_{q}^{m} h(z)$ and $D_{q}^{m} g(z)$ are, respectively, defined by (1.3) and (1.5) and

$$
D_{q}^{m} f(z)=D_{q}^{m} h(z)+(-1)^{m} \overline{D_{q}^{m} g(z)}, \quad m>-1 .
$$

The subfamily $\overline{\mathcal{H}}_{q}^{m}(\alpha) \subset \mathcal{H}_{q}^{m}(\alpha)$ consists of harmonic functions $f_{m}=h+\bar{g}_{m}$ for which

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, g_{m}(z)=(-1)^{m} \sum_{n=1}^{\infty} b_{n} z^{n}, \quad a_{n} \geq 0 \text { and } b_{n} \geq 0 . \tag{1.6}
\end{equation*}
$$

For non-zero complex number b with $|b| \leq 1$, real number γ and $0 \leq \alpha<1$ we let $\mathcal{H}_{q}^{m}(b, \gamma, \alpha)$ be the subclass of \mathcal{H} consisting of harmonic functions $f=h+\bar{g}$ satisfying

$$
\begin{equation*}
\Re\left(1+\frac{1}{b}\left(\left(1+e^{i \gamma}\right) \frac{D_{q}^{m+1} f(z)}{D_{q}^{m} f(z)}-e^{i \gamma}-1\right)\right)>\alpha \tag{1.7}
\end{equation*}
$$

We also let $\overline{\mathcal{H}} \delta_{q}^{m}(b, \gamma, \alpha) \equiv \mathcal{H} \mathcal{S}_{q}^{m}(b, \gamma, \alpha) \cap \overline{\mathcal{H}}$.
We note that $\mathcal{H} \bigotimes_{q}^{m}(1, \gamma, \alpha) \equiv \mathcal{H} \mathcal{R}_{q}^{m}(\gamma, \alpha)$ is generalized class of Goodman-Ronning-type harmonic starlike functions (see [14], Inequality (2), p. 46) satisfying

$$
\Re\left(\left(1+e^{i \gamma}\right) \frac{D_{q}^{m+1} f(z)}{D_{q}^{m} f(z)}-e^{i \gamma}\right)>\alpha
$$

and $\mathcal{H}_{q}^{m}(b, 0, \alpha) \equiv \mathcal{H}_{q}^{m}(b, \alpha)$ is the harmonic version of generalized starlike functions of complex order (see [3], Definition 1) satisfying

$$
\Re\left(1+\frac{2}{b}\left(\frac{D_{q}^{m+1} f(z)}{D_{q}^{m} f(z)}-1\right)\right)>\alpha .
$$

It is the aim of this paper to obtain sufficient coefficient conditions, extreme points, growth theorem, and distortion bounds for harmonic functions $f=h+\bar{g}$ in $\mathcal{H} S_{q}^{m}(b, \gamma, \alpha)$. Moreover, we show that those sufficient coefficient conditions for $f \in \mathcal{H} \mathcal{S}_{q}^{m}(b, \gamma, \alpha)$ are also necessary for $f \in \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$.

2. Main results

The sufficient coefficient condition for $\mathcal{H} \mathcal{S}_{q}^{m}(b, \gamma, \alpha)$ is given in the following theorem.
Theorem 2.1. Let $f=h+\bar{g} \in \mathcal{H}$ where b is a non-zero complex number with $|b| \leq 1, \gamma$ is a real number and $0 \leq \alpha<1$. If

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]}{(1-\alpha)|b|}\left|a_{n}\right|+\frac{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]}{(1-\alpha)|b|}\left|b_{n}\right|\right) \leq 2, \tag{2.1}
\end{equation*}
$$

then f is harmonic univalent and orientation-preserving in \mathbb{U} and $f \in \mathcal{H}_{q}^{m}(b, \gamma, \alpha)$.
Proof. First we establish that f is orientation preserving in \mathbb{U}. In other words, we need to show that $\left|D_{q}^{m+1} h(z)\right| \geq\left|D_{q}^{m+1} g(z)\right|$. This is accomplished using the properties of absolute values and the coefficient inequality (2.1).

$$
\begin{aligned}
\left|D_{q}^{m+1} h(z)\right| & \geq 1-\sum_{n=2}^{\infty}[n]_{q}^{m+1}\left|a_{n}\right| r^{n-1}>1-\sum_{n=2}^{\infty}[n]_{q}^{m+1}\left|a_{n}\right| \\
& \geq 1-\sum_{n=2}^{\infty}\left[\frac{2[n]_{q}-2+(1-\alpha)|b|}{(1-\alpha)|b|}\right]_{n}[n]_{q}^{m}\left|a_{n}\right| \\
& \geq \sum_{n=1}^{\infty}\left[\frac{2[n]_{q}+2-(1-\alpha)|b|}{(1-\alpha)|b|}\right][n]_{q}^{m}\left|b_{n}\right| \\
& \geq \sum_{n=1}^{\infty}[n]_{q}^{m+1}\left|b_{n}\right| \geq \sum_{n=1}^{\infty}[n]_{q}^{m+1}\left|b_{n}\right| r^{n-1} \geq\left|D_{q}^{m+1} g(z)\right| .
\end{aligned}
$$

To show f is univalent in \mathbb{U} we use a method that was first used by Jahangiri [8]. We will show that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ when $z_{1} \neq z_{2}$. Consider z_{1} and z_{2} in \mathbb{U} so that $z_{1} \neq z_{2}$. Since the unit disc \mathbb{U} is simply connected and convex, we have $z(t)=(1-t) z_{1}+t z_{2}$ in \mathbb{U} for $0 \leq t \leq 1$. Then we may write

$$
D_{q}^{m+1} f\left(z_{2}\right)-D_{q}^{m+1} f\left(z_{1}\right)=\int_{0}^{1}\left[\left(z_{2}-z_{1}\right)\left(D_{q}^{m+1} h(z(t))+\overline{\left(z_{2}-z_{1}\right)\left(D_{q}^{m+1} g(z(t))\right.}\right] d t .\right.
$$

Dividing the above equation by $z_{2}-z_{1}$ and taking the real parts we obtain

$$
\begin{align*}
\Re\left(\frac{D_{q}^{m+1} f\left(z_{2}\right)-D_{q}^{m+1} f\left(z_{1}\right)}{z_{2}-z_{1}}\right) & =\int_{0}^{1} \Re\left[D_{q}^{m+1} h(z(t))+\frac{\overline{\left(z_{2}-z_{1}\right)}}{z_{2}-z_{1}} \overline{D_{q}^{m+1} g(z(t))}\right] d t \tag{2.2}\\
& >\int_{0}^{1}\left[\Re \left(D_{q}^{m+1} h(z(t))-\mid D_{q}^{m+1} g(z(t) \mid] d t\right.\right.
\end{align*}
$$

On the other hand

$$
\begin{aligned}
\Re\left(D_{q}^{m+1} h(z(t))-\mid\left(D_{q}^{m+1} g(z(t)) \mid\right.\right. & \geq \Re\left(D_{q}^{m+1} h(z(t))-\sum_{n=1}^{\infty}[n]_{q}^{m+1}\left|b_{n}\right|\right. \\
& \geq 1-\sum_{n=2}^{\infty}[n]_{q}^{m+1}\left|a_{n}\right|-\sum_{n=1}^{\infty}[n]_{q}^{m+1}\left|b_{n}\right| \\
& \geq 1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left[\frac{2[n]_{q}-2+(1-\alpha)|b|}{(1-\alpha)|b|}\right]\left|a_{n}\right| \\
& -\sum_{n=1}^{\infty}[n]_{q}^{m}\left[\frac{2[n]_{q}+2-(1-\alpha)|b|}{(1-\alpha)|b|}\right]\left|b_{n}\right| \\
& \geq 0 \text { by } \\
& (2.1)
\end{aligned}
$$

This together with inequality (2.2) implies the univalence of f.
Next we show that if the condition (2.1) holds then $f \in \mathcal{H} S_{q}^{m}(b, \gamma, \alpha)$. In other words, we need to show that the condition (1.7) is satisfied if (2.1) holds.

Using the fact that $\Re(w(z)) \geq \alpha$ if and only if $|1-\alpha+w| \geq|1+\alpha-w|$ for $0 \leq \alpha<1$ it suffices to show that

$$
\begin{aligned}
& \left|\left(2 b-\alpha b-e^{i \gamma}-1\right)\left(\mathcal{D}_{q}^{m} h(z)+(-1)^{m} \overline{\mathcal{D}_{q}^{m} g(z)}\right)+\left(1+e^{i \gamma}\right)\left(\mathcal{D}_{q}^{m+1} h(z)-(-1)^{m} \overline{\mathcal{D}_{q}^{m+1} g(z)}\right)\right| \\
& -\left|\left(1+\alpha b+e^{i \gamma}\right)\left(\mathcal{D}_{q}^{m} h(z)+(-1)^{m} \overline{\mathcal{D}_{q}^{m} g(z)}\right)\right|-\left(1+e^{i \gamma}\right)\left(\mathcal{D}_{q}^{m+1} h(z)-(-1)^{m} \overline{\mathcal{D}_{q}^{m+1} g(z)}\right) \mid \geq 0
\end{aligned}
$$

Upon substituting for $\mathcal{D}_{q}^{m} h(z)$ and $\mathcal{D}_{q}^{m} g(z)$ we obtain

$$
\begin{aligned}
& \mid\left(2 b-\alpha b-\left(1+e^{i \gamma}\right)\right)\left[z+\sum_{n=2}^{\infty}[n]_{q}^{m} a_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m} \overline{b_{n} z^{n}}\right] \\
& +\left(1+e^{i \gamma}\right)\left[z+\sum_{n=2}^{\infty}[n]_{q}^{m+1} a_{n} z^{n}-(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m+1} \overline{b_{n} z^{n}}\right] \mid \\
& -\mid\left(1+\alpha b+e^{i \gamma}\right)\left[z+\sum_{n=2}^{\infty}[n]_{q}^{m} a_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m} \overline{b_{n} z^{n}}\right] \\
& -\left(1+e^{i \gamma}\right)\left[z+\sum_{n=2}^{\infty}[n]_{q}^{m+1} a_{n} z^{n}-(-1)^{m} \sum_{n=1}^{\infty}[n]_{q}^{m+1} \overline{b_{n} z^{n}}\right] \mid
\end{aligned}
$$

$$
\begin{aligned}
\geq & (2-\alpha)|b||z|-\sum_{n=2}^{\infty}\left|(2-\alpha) b+\left(1+e^{i \gamma}\right)\left([n]_{q}-1\right)\right|[n]_{q}^{m}\left|a_{n}\right||z|^{n} \\
& -\sum_{n=1}^{\infty}\left|\left(1+e^{i \gamma}\right)\left([n]_{q}+1\right)-(2-\alpha) b\right|[n]_{q}^{m}\left|b_{n}\right||z|^{n} \\
& -\alpha|b||z|-\sum_{n=2}^{\infty}\left|\left([n]_{q}-1\right)\left(1+e^{i \gamma}\right)-\alpha b\right|[n]_{q}^{m}\left|a_{n}\right||z|^{n} \\
& -\sum_{n=1}^{\infty}\left|\left([n]_{q}+1\right)\left(1+e^{i \gamma}\right)+\alpha b\right|[n]_{q}^{m}\left|b_{n}\right||z|^{n} \\
\geq & 2(1-\alpha)|b||z|\left(1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left[\frac{2\left[2[n]_{q}-2+(1-\alpha)|b|\right]}{2(1-\alpha)|b|}\left|a_{n}\right|\right]\right) \\
- & 2(1-\alpha)|b||z| \sum_{n=1}^{\infty}[n]_{q}^{m}\left[\frac{2\left[2[n]_{q}+2-(1-\alpha)|b|\right]}{2(1-\alpha)|b|}\left|b_{n}\right|\right] \\
\geq & 0, \text { by }(2.1) .
\end{aligned}
$$

The functions

$$
f(z)=z+\sum_{n=2}^{\infty}\left[\frac{(1-\alpha)|b|}{2[n]_{q}-2+(1-\alpha)|b|}\right] x_{n} z^{n}+\sum_{n=1}^{\infty}\left[\frac{(1-\alpha)|b|}{2[n]_{q}+2-(1-\alpha)|b|}\right] \bar{y}_{n} \bar{z}^{n},
$$

where $\sum_{n=2}^{\infty}\left|x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n}\right|=1$, shows that the coefficient bound given by (2.1) is sharp.
The next theorem shows that condition (2.1) is also necessary for $f \in \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$.
Theorem 2.2. Let $f_{m}=h+\bar{g}_{m}$ be given by (1.6) where b is a non-zero complex number with $|b| \leq 1, \gamma$ is a real number and $0 \leq \alpha<1$. Then f_{m} is harmonic univalent and orientation-preserving in \mathbb{U} and $f_{m} \in \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]}{(1-\alpha)|b|} a_{n}+\frac{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]}{(1-\alpha)|b|} b_{n}\right) \leq 2 . \tag{2.3}
\end{equation*}
$$

Proof. Since $\overline{\mathcal{H}}{ }_{q}^{m}(b, \gamma, \alpha) \subset \mathcal{H}_{q}^{m}(b, \gamma, \alpha)$, the if part of the Theorem 2.2 follows from Theorem 2.1. To prove the only if part, we will show that if (2.3) does not hold then f_{m} is not in $\overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$.

For $f_{m} \in \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$ we must have

$$
\Re\left(1+\frac{1}{b}\left(\left(1+e^{i \gamma}\right) \frac{D_{q}^{m+1} h(z)-(-1)^{m} \overline{D_{q}^{m+1} g_{m}(z)}}{D_{q}^{m} h(z)+(-1)^{m} \overline{D_{q}^{m} g_{m}(z)}}-\left(e^{i \gamma}+1\right)\right)\right) \geq \alpha
$$

Or equivalently

$$
\begin{aligned}
& \Re\left(\frac{(1-\alpha) b z-\sum_{n=2}^{\infty}\left[(1-\alpha) b+\left([n]_{q}-1\right)\left(1+e^{i \gamma}\right)\right][n]_{q}^{m}\left|a_{n}\right| z^{n}}{b\left(z-\sum_{n=2}^{\infty}[n]_{q}^{m}\left|a_{n}\right| z^{n}+(-1)^{2 m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left|b_{n}\right| \bar{z}^{n}\right)}\right) \\
& -\Re\left(\frac{(-1)^{2 m} \sum_{n=1}^{\infty}\left[\left([n]_{q}+1\right)\left(1+e^{i \gamma}\right)-(1-\alpha) b\right][n]_{q}^{m}\left|b_{n}\right| \bar{z}^{n}}{b\left(z-\sum_{n=2}^{\infty}[n]_{q}^{m}\left|a_{n}\right| z^{n}+(-1)^{2 m} \sum_{n=1}^{\infty}[n]_{q}^{m}\left|b_{n}\right| \bar{z}^{n}\right)}\right) \\
& =\Re\left(\frac{(1-\alpha)|b|^{2}-\sum_{n=2}^{\infty}\left[(1-\alpha) b+\left([n]_{q}-1\right)\left(1+e^{i \gamma}\right)\right] \bar{b}[n]_{q}^{m}\left|a_{n}\right| z^{n-1}}{|b|^{2}\left(1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left|a_{n}\right| z^{n-1}+\frac{\bar{z}}{z} \sum_{n=1}^{\infty}[n]_{q}^{m}\left|b_{n}\right| \bar{z}^{[n]_{q}-1}\right)}\right) \\
& -\Re\left(\frac{\frac{\bar{z}}{z} \sum_{n=1}^{\infty}\left[\left([n]_{q}+1\right)\left(1+e^{i \gamma}\right)-(1-\alpha) b\right] \bar{b}[n]_{q}^{m}\left|b_{n}\right| \bar{z}^{n-1}}{|b|^{2}\left(1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left|a_{n}\right| z^{n-1}+\frac{\bar{z}}{z} \sum_{n=1}^{\infty}[n]_{q}^{m}\left|b_{n}\right| \bar{z}^{n-1}\right)}\right) \geq 0 .
\end{aligned}
$$

The above condition must hold for all values of $\gamma,|z|=r<1$ and $0<|b|<1$. For $\gamma=0$ and $|b|=b$ let $z=r<1$ be on the positive real axis. Then the above condition becomes

$$
\begin{gather*}
\frac{(1-\alpha)|b|^{2}-\sum_{n=2}^{\infty}\left[\left(2[n]_{q}-2\right)+(1-\alpha) b\right]|b|[n]_{q}^{m}\left|a_{n}\right| r^{n-1}}{|b|^{2}\left(1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left|a_{n}\right| r^{n-1}+\sum_{n=1}^{\infty}[n]_{q}^{m}\left|b_{n}\right| r^{n-1}\right)} \\
-\frac{\sum_{n=1}^{\infty}\left[\left(2[n]_{q}+2\right)-(1-\alpha) b\right]|b|[n]_{q}^{m}\left|b_{n}\right| r^{n-1}}{|b|^{2}\left(1-\sum_{n=2}^{\infty}[n]_{q}^{m}\left|a_{n}\right| r^{n-1}+\sum_{n=1}^{\infty}[n]_{q}^{m}\left|b_{n}\right| r^{n-1}\right)} \geq 0 \tag{2.4}
\end{gather*}
$$

Now we observe that the numerator in the above required inequality (2.4) is negative if condition (2.3) does not hold. Thus, there exists a point $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in the above inequalities are negative. This contradicts the required condition (1.7) for $f_{m} \in \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$. Hence the proof is complete.

The following theorem is a consequence of the above Theorem 2.2.

Theorem 2.3. Let $f_{m}=h+\bar{g}_{m}$ be given by (1.6). Then $f_{m} \in \overline{\mathcal{H}} S_{q}^{m}(\gamma, \alpha)$ if and only if

$$
\sum_{n=1}^{\infty}\left(\frac{\left.[n]_{q}^{m}\left[2[n]_{q}-1-\alpha\right)\right]}{1-\alpha} a_{n}+\frac{\left.[n]_{q}^{m}\left[2[n]_{q}+1+\alpha\right)\right]}{1-\alpha} b_{n}\right) \leq 2
$$

The extreme points of closed convex hull of $\overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$, denoted by $c l c o \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$, are determined in the following theorem.

Theorem 2.4. Let $f_{m} \in \operatorname{clco} \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$ if and only if

$$
\begin{equation*}
f_{m}(z)=\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{m_{n}}\right) \tag{2.5}
\end{equation*}
$$

where

$$
h_{1}(z)=z, h_{n}(z)=z-\frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]} z^{n}, \quad n=2,3, \ldots
$$

$$
g_{m_{n}}(z)=z+(-1)^{m} \frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]} \bar{z}^{n}, \quad n=1,2, \ldots ;
$$

$\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1, X_{n} \geq 0$ and $Y_{n} \geq 0$.
In particular, the extreme points of clco $\overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$ are $\left\{h_{n}\right\}$ and $\left\{g_{m_{n}}\right\}$.
Proof. For functions of the form (2.5), we have

$$
\begin{aligned}
f_{m}(z) & =\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{m_{n}}\right) \\
& =\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right) z-\sum_{n=2}^{\infty} \frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]} X_{n} z^{n} \\
+(-1)^{m} & \sum_{n=1}^{\infty} \frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]} Y_{n} \bar{z}^{n} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]}{(1-\alpha)|b|}\left(\frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]}\right) X_{n} \\
& \quad+\sum_{n=1}^{\infty} \frac{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]}{(1-\alpha)|b|}\left(\frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]}\right) Y_{n} \\
& =\sum_{n=2}^{\infty} X_{n}+\sum_{n=1}^{\infty} Y_{n}=1-X_{1} \leq 1 .
\end{aligned}
$$

Thus, $f_{m} \in \operatorname{clco} \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$. Conversely, suppose that $f_{m} \in \operatorname{clco} \overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$. Set

$$
X_{n}=\frac{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]}{(1-\alpha)|b|}\left|a_{n}\right|, n=2,3, \ldots,
$$

and

$$
Y_{n}=\frac{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]}{(1-\alpha)|b|}\left|b_{n}\right|, n=1,2, \ldots,
$$

where $\sum_{n=1}^{\infty}\left(X_{n}+Y_{n}\right)=1$. Then

$$
\begin{aligned}
f_{m}(z) & =z-\sum_{n=2}^{\infty} a_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty} b_{n} \bar{z}^{n} \\
& =z-\sum_{n=2}^{\infty} \frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]} X_{n} z^{n}+(-1)^{m} \sum_{n=1}^{\infty} \frac{(1-\alpha)|b|}{[n]_{q}^{m}\left[2[n]_{q}+2-(1-\alpha)|b|\right]} Y_{n} \bar{z}^{n} \\
& =z-\sum_{n=2}^{\infty}\left[X_{n}\left(h_{n}(z)-z\right)\right]+\sum_{n=1}^{\infty}\left[Y_{n}\left(g_{m_{n}}(z)-z\right)\right] \\
& =\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{m_{n}}\right) .
\end{aligned}
$$

Now from Theorem 2.2, we can deduce that $0 \leq X_{n} \leq 1,(n \geq 2)$ and $0 \leq Y_{n} \leq 1,(n \geq 1)$. Therefore $X_{1}=1-\sum_{n=2}^{\infty} X_{n}-\sum_{n=1}^{\infty} Y_{n} \geq 0$. Thus $\sum_{n=1}^{\infty}\left(X_{n} h_{n}+Y_{n} g_{m_{n}}\right)=f_{m}(z)$ as required in the theorem.

Finally, we determine the distortion theorem for the family $\overline{\mathcal{H}} S_{q}^{m}(b, \gamma, \alpha)$.

Theorem 2.5. Let $f_{m} \in \overline{\mathcal{H}} \delta_{q}^{m}(b, \gamma, \alpha)$ where $|z|=r<1$. Then

$$
\left|f_{m}(z)\right| \leq\left(1+b_{1}\right) r+\left(\frac{(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}-\frac{4-(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}\left|b_{1}\right|\right) r^{2}
$$

and

$$
\left|f_{m}(z)\right| \geq\left(1-b_{1}\right) r-\left(\frac{(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}-\frac{4-(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}\left|b_{1}\right|\right) r^{2}
$$

Proof. We will prove the right hand inequality. The proof for the left hand inequality will be similar and is omitted. Let $f_{m}(z) \in \overline{\mathcal{H}} \mathcal{S}_{q}^{m}(b, \gamma, \alpha)$. Upon taking the absolute value of f_{m}, we obtain

$$
\begin{aligned}
\left|f_{m}(z)\right| \leq & \left.\left(1+\left|b_{1}\right|\right) r+\sum_{n=2}^{\infty}\left[\left|a_{n}\right|+\left|b_{n}\right|\right][n]_{q}^{m}\right) r^{n} \\
\leq & \left(1+\left|b_{1}\right|\right) r+r^{2} \sum_{n=2}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)[n]_{q}^{m} \\
= & \left(1+\left|b_{1}\right|\right) r+\frac{(1-\alpha)|b| r^{2}}{[2]_{q}^{m}\left[2[n]_{q}-2+(1-\alpha)|b|\right]} \\
& \times \sum_{n=2}^{\infty}[2]_{q}^{m}\left(\frac{2[2]_{q}-2+(1-\alpha)|b|}{(1-\alpha)|b|}\left|a_{n}\right|+\frac{2[2]_{q}-2+(1-\alpha)|b|}{(1-\alpha)|b|}\left|b_{n}\right|\right) \\
& \quad\left(1+\left|b_{1}\right|\right) r+\frac{(1-\alpha)|b| r^{2}}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]} \\
& \quad \times \sum_{n=2}^{\infty}[n]_{q}^{m}\left(\frac{2[n]_{q}-2+(1-\alpha)|b|}{(1-\alpha)|b|}\left|a_{n}\right|+\frac{2[n]_{q}+2-(1-\alpha)|b|}{(1-\alpha)|b|}\left|b_{n}\right|\right) \\
\leq & \left(1+\left|b_{1}\right|\right) r+\frac{(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}\left(1-\frac{[4-(1-\alpha)|b|]}{(1-\alpha)|b|}\left|b_{1}\right|\right) r^{2} \\
\leq & \left(1+\left|b_{1}\right|\right) r+\left(\frac{(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}-\frac{4-(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}\left|b_{1}\right|\right) r^{2} .
\end{aligned}
$$

The result is sharp for

$$
f(z)=z+\left|b_{1}\right| \bar{z}+\left(\frac{(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}-\frac{4-(1-\alpha)|b|}{[2]_{q}^{m}\left[2[2]_{q}-2+(1-\alpha)|b|\right]}\left|b_{1}\right|\right) \bar{z}^{2},
$$

where $\left|b_{1}\right| \leq \frac{(1-\alpha)|b|}{4-(1-\alpha)|b|}$.

References

[1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.
[2] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie- Sklodowska Sect. A, 44, 1-7, 1990.
[3] T. Bulboaca, M.A. Nasr and G.F. Sălăgean, A generalization of some classes of starlike functions of complex order, Mathematica (Cluj), 34 (57), 113-118, 1992.
[4] J. Clunie and T. Sheil-Small, Harmonic univalent Functions, Ann. Acad. Aci. Fenn. Ser. A.I. Math. 9, 3-25, 1984.
[5] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43(3)(5), 475-487, 2017.
[6] S.A. Halim and A. Janteng, Harmonic functions starlike of complex order, Proc. Int. Symp. on New Development of Geometric function Theory and its Applications, 132-140, 2008.
[7] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46, 253-281, 1908.
[8] J.M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 5 (2), 5766, 1998.
[9] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235, 470-477, 1999.
[10] J.M. Jahangiri, Harmonic univalent functions defined by q-calculus operators, Inter. J. Math. Anal. Appl. 5 (2), 39-43, 2018.
[11] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Sălăgean-Type harmonic univalent functions, Southwest J. Pure Appl. Math. 2, 77-82, 2002.
[12] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Starlikeness of Rucheweyh type harmonic univalent functions, J. Indian Acad. Math. 26, 191-200, 2004.
[13] S. Kanas, and D. Răducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64 (5), 1183-1196, 2014.
[14] T. Rosy, B.A. Stephen, K.G. Subramanian and J.M. Jagangiri, Goodman-Rønning type harmonic univalent functions, Kyungpook Math. J. 41, 45-54, 2001.
[15] G.F. Sălăgean, Subclasses of univalent functions, Springers-Verlog 1013, 362-372, 1983.
[16] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220, 283-289, 1998.

[^0]: * Corresponding Author.

 Email addresses: jjahangi@kent.edu (J. Jahangiri), gmsmoorthy@yahoo.com (G. Murugusundaramoorthy), kvijaya@vit.ac.in (K. Vijaya)
 Received: 05.07.2018; Accepted: 21.12.2018

