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Abstract

In this paper, we consider a one-dimensional thermoelastic-Bresse system with a delay
term, where the heat conduction is given by Cattaneo’s law effective in the shear angle
displacement. We prove that the system is well-posed by using the semigroup method,
and show, using the multiplier method, that the dissipation induced by the heat is strong
enough to exponentially stabilize the system in the presence of a “small" delay when the
stable number is zero.
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1. Introduction

In this paper, we consider the following thermoelastic-Bresse system with a constant
internal delay:

p1ow — k(Y + o +lw)e — lho(we — lp) + ppe(2,t —70) =0, (2,t) € (0,1) x (0, +00),
p2ti — bibe + k(pz + 9 + lw) + 40, = 0, (z,t) € (0,1) x (0,+00),
p1wie — ko(we — 1)z + 1k(pe + 1 +lw) =0, (x,t) € (0,1) x (0, +00),
P30t + gz + Ytz = 0, (x,t) € (0,1) x (0, +00),
Tq + Bq+ 0, =0, (x,t) € (0,1) x (0,4+00),
o(,0) = pole), ¢u(, 0) = 1 (2),6(a, 0) = o(x). e 0].
(2,0 = Yo(2), $1(2, 0) = 12, 4(,0) = qo(e), e,
w(z,0) = wo(x),w(x,0) = wi(x), pe(x, —t) = fo(z,t), z € [0,1],¢ € (0,7),
o(0.0) = @u(L1) = 4 (0,8) = (1, 1) = [0, +00),
we(0,t) = w(1,t) = 6(0,t) = q(1,¢) =0, t € [0,400)

(1.1)
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This is a thermoelastic system of Bresse type ([3,12, 13]) which governs the mechanical
deformations in elastic structures of circular arch type, where the heat flux is given by
Cattaneo’s law. It is composed of five functions, three of which representing the mechanical
deformations: the longitudinal displacement w, the vertical displacement ¢ and the shear
angle displacement v; 0 is the difference temperature, ¢ is the heat flux ([15,20,21]). The
coefficients p;(i = 1,2, 3), k, [, ko, b, k,~y, T, 5 are positive constants, y is a real number, and
To > 0 represents the time delay.

With respect to asymptotic behavior of solutions for thermoelastic Bresse systems, some
results can be obtained. Fatori and Rivera [8] considered Bresse system with thermal
dissipation effective only in one equation wrote as

p1et — k(Y + 0p +1w)e — lko(wy — lp) =0, (x,t) € (0,1) x (0, +00),
pathst — bag + k(pr + 90 +lw) + 90, =0,  (,t) € (0,1) x (0, +00),
prwit — ko(wz — 1p)z +lk(pz + ¢ +1w) =0, (z,t) € (0,1) x (0, +00),
0y — k102 + mi)y: = 0, (x,t) € (0,1) x (0, +00),

and showed that there exist exponential stability if and only if the wave propagation is
equal. They also showed that, in general, the system is not exponentially stable but that
there exists polynomial stability with rates that depend on the wave propagations and
the regularity of the initial data. In [10], Keddi et al. studied the well-posedness and
the asymptotic stability of a one-dimensional thermoelastic Bresse system, where the heat
conduction is given by Cattaneo’s law effective in the shear angle displacement, wrote as

pros — k(1) + oo + lw)e — lko(we — lp) =0, (,t) € (0,1) x (0, +00),
p2ost — by + K@z + 9 +lw) +90, =0,  (x,t) € (0,1) x (0, +00),
prwe — ko(wz —1p)e +1k(pe + +1lw) =0, (z,t) € (0,1) x (0, +00),
P30t + @z + Y = 0, (x,t) € (0,1) x (0, +00),
Tq + Bq+ 0, =0, (z,t) € (0,1) x (0, +00).

They established the well-posedness of the system and proved that the system was expo-
nentially stable depending on the stable number of the system, and showed that in general,
the system was polynomially stable. If [ = 0, Bresse system reduces to the well-known
Timoshenko system (see [1,5-7,14,22]).

Time delays so often arise in many physical, chemical, biological, thermal and econom-
ical phenomena (see [4,9,16-19,23-25,27,29-34]). The presence of delay may be a source
of instability. In recent years, the control of partial differential equations with time delay
effects has become an active area of research. For example, Kafini et al [9] studied the
Timoshenko system of thermoelasticity of type I1I with delay of the form

P11 — k(Pz + )z + page(,t) + pade(z,t —7) =0, (x,t
Pttt — oy + k(dz + ) + B0t = 0, (z,1
p3bu — 0055 + Yty — Kbizy = 0, (z,1
0(-,0) = 6o, 0:(-,0) = 61,9(-,0) = o,
Ye(+,0) = ¥1, ¢(-,0) = o, P¢ (-, 0) = ¢,
dr(z,t —7) = folz,t —7), te[0,7],
#(0,t) = ¢(1,t) = (0,t) = (1,t) = 0,(0,t) = 0,(1,¢t) = 0. t € [0,+00),

and proved that under suitable conditions on the initial data the energy decays expo-
nentially in the case of equal wave speeds in spite of the existence of the delay. And
they also got the result that the energy decays polynomially under different wave speeds
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assumption. In [2], Apalara and Messaoudi considered the following one-dimensional lin-
ear thermoelastic system of Timoshenko type with delay, where the heat flux is given by
Cattaneo’s law:

P11 — k(Y + oz )e + pepe(x,t —70) =0, (2,t) € (0,1) x (0, 400),

P2ttt — 0ua 4+ k(pe +90) + 902 =0, (z,t) € (0,1) x (0, +00),

P30 + gz + e =0, (2,t) € (0,1) x (0, +00),

T+ g+ 0, =0, (z,t)€(0,1)x (0,400),

¢(2,0) = po(z), pr(2,0) = 1(2),¥(z,0) = Yo(z), Ye(2,0) = ¢1(z), =z €][0,1],
0(z,0) = 0o(x),q(z,0) = qo(x), pt(z, —t) = fo(x,t), =z €]0,1],

0(0,t) = p(1,t) = 9¥(0,t) = ¥ (1,t) = 0(0,t) = 6(1,t) =0, ¢ € (0,400).

They proved an exponential decay result under a smallness condition on the delay and
a stability number, and reproduced the polynomial decay of Santos et al. [28] using the
multiplier method in the case of absence of delay.

Based on the above results, in this paper, we study the thermoclastic-Bresse system
(1.1) with second sound and delay. Introducing a delay term in the internal feedback of
thermoclastic-Bresse system with second sound makes our problem different from those
considered so far in the literature (such as [10]). For our purpose, we use the idea of
Apalara and Messaoudi in [2] to take into account the effect of the delay. We first use
the semigroup method to prove the well-posedness result of the system. Then, we show,
using the multiplier method, that the dissipation induced by the heat is strong enough to
stabilize the system in the presence of a “small" delay when the stable number is zero.

The remaining part of this paper is organized as follows. In Section 2, we establish the
well-posedness result of the system. In Section 3, we give the exponential decay result by
modifying some classical multipliers.

2. Well-posedness

In this section, we use the semigroup techniques to prove the well-posedness of problem
(1.1). In order to exhibit the dissipative nature of system (1.1), as in [23], we introduce
the new variable

z2(z, p,t) = pe(x,t — p1o) 2 €(0,1), p€ (0,1), t>0.

A simple differentiation shows that the variable satisfies

T02¢(z, p, ) + 2p(z,p, 1) =0 2 €(0,1), p€(0,1), t>0.
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Hence, problem (1.1) is equivalent to the following:

prow — k(Y + @r + lw)y — lko(we — 1) + pz(z,1,t) =0, (x,t) € (0,1) x (0, +00),
p2'(/1tt — by + k((ﬂx + Y+ lw) + 791 =0, (l‘,t) S (0, 1) X (O, +OO),
pwi — ko(we — o)y + k(pr + 9 + lw) =0, (z,t) € (0,1) x (0,400),
p3b + Gz + Yt = 0, (z,1) € (0,1) x (0, 400),
Tqt + 8q + 0, =0, (x,t) € (0,1) x (0, +00),
T02¢(x, p, ) + 25(x, p, t) = 0, (z,t) € (0,1) x (0, +00),
@(x70) - SOO($)7 <Pt<$> _t) = f()(l',t), 0('7;70) = GO(x)v TE [07 1]7
w(w 0) = ¢0(9C):¢t(33 0) = ¢1(9€ 7Q($70) = QO(:U)7 T e [07 1]7t € (07T)a
w(z,0) = wo(x),wi(x,0) = wi(z), 2(x,0,t) = vz, t), x €10,1],t € (0, +00),
©(0,t) = wz(1,t) = ¥ (0,t) = (1,t) =0, t €0, 400),
wz(0,t) = w(1,t) = 6(0,t) = q(1,t) =0, t € [0, +00).
(2.1)
Now, we let
@ = (907u7w7v7w7w707q7z)7
then system (2.1) can be written as an evolutionary equation:
{ O'(t)+(A+B)®(t)=0, t>0, 22)
®(0) = o = (0, 1, %0, 11, wo, wi, 00, qo, 20)” '
where A is a linear operator defined by
—u
k kol
vt T, ) 4 By By
1 P1 P1 P1
—v
b b
P2 P2 P2
AD v
- k kl :
= (wo = lp)e + —(pa + ¢ + L)
P1 P1
1
—(x + lvx
P3 P3
1
éq + =0,
T T
1
— 2z,

70
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and the operator B : D(B) = H — JH is defined by

0
—u
0
BD = Il o
Pl 0
0
0
We give the following spaces:
H(0,1) = {f € H'(0,1) : f(0) =0},
1,(0,1) = {f € H'(0,1) : f(1) =0},
H2(0,1) = H*(0,1) N H}(0,1),
72(0,1) = H*(0,1) N H}(0,1),

and the energy space:
H = HL0,1) x L?(0,1) x HL(0,1) x L*(0,1) x H(0,1)
x L2(0,1) x L*(0,1) x L*(0,1) x L*((0,1) x (0,1)),
equipped with the inner product

~ 1 - 1
(@, @)sc =k [ (o 40+ 1) (G0 + 9 +10) do ko [ (o — o), — 1) do
0 0
1 1 1
+ 1 / wadr + b/ WVphpdr + pa / vodr
0 0 0

1 1 1 1,1
+ p1 / wodx + p3/ 00dx + T/ qqdx + 1o|p| / / zZdpdz.
0 0 0 0o Jo

H is a Hilbert space for [ small enough. In this case, the above inner product is equivalent
to the natural inner product defined on H. To this end, the operator A with its domain is

T eH|pe HX0,1);¢,w € HX(0,1);u,0 € HX(0,1),
D(A) =14 wvw,q€ HI(0,1); ¢u(1) =0, 1:(0) = wy(0) =0,
z,2, € L*((0,1), L*(0,1)), 2(x,0) = ()
In what follows, we have the well-posedness result of problem (2.2).

Theorem 2.1. Assume that &g € H, then problem (2.2) exists a unique solution U €
C(RT,H). Moreover, if &g € D(A) then ® € C (R*, D(A)) N CY(RT, K).

Proof. 1t is easy to see that D(A) is dense in H. For & = (¢, u, ¥, v,w,w, 0, q,z)" € D(A),
a direct computation gives that

1 1 1 11
(AP, ®)g = \,u\/ u?dx + B/ ¢*dx + u/ uz(-, 1)dz + |p / / zzpdpd. (2.3)
0 0 0 0 Jo

By using Young’s inequality, the third term in the right hand side of (2.3) gives

l 1
—,u/uz(-,l)dm < ‘g‘/ 22(-,1)dx + ‘g‘/ u’dz,
0 0

which implies that

! [t s l [t
u/ uz(0,1)dz > ——/ z2°(, 1)dx — —/ u“dz.
0 2 0 2 0
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Also, using integration by parts and the fact that z(z,0) = u(x), the last term in the
right-hand side of (2.3) gives

[ [ tota =1 [ npaa = [

Consequently, (2.3) yields
1
(D, @)c = 5 [ oPda
0

Hence A is monotone. Next, we will prove that the operator J + A is surjective.
For all G = (g1, 92, 93, 94, 95, 96, 97, 98, 9o) " € H, we solve the equation

T+ A)® = G. (2.4)
That is
—u+ @ =g € H(0,1),
—k(pz + P+ 1w)e — kol(wz — 1) + (|| + p1)u + pz(-,1) = p1ga € L*(0,1),
v+ = g3 € H(0,1),
—bur + k(pz + ¢ + lw) + 702 + p2v = pags € L*(0,1),
—w+w=gs € H(0,1), (2.5)
—ko(we — 19)z + Ekl(@z + ¥ + lw) + prw = p1gs € L*(0,1),
G + Y0z + p30 = pagr € L*(0,1),
(B+71)g+ 60, = 7gs € L*(0,1),
2, + Tz = Togo € L*((0,1) x (0,1)).
From (2.5)g, we know that

o—r [ " gs(F)dy — (B+7) / " g(w)dy, (2.6)

which conclude 0(0,¢) = 0. Inserting u = ¢ — g1, v = 1) — g3, w = w — g5, the last equation
in (2.5) together with the fact that z(x,0) = u(z), one has

0
z(x,p) = p(x)e” ™" — e Pg(x) + T()e_TOp/ s7%gg(x, s)ds.
0
It can be easily shown that ¢, 1, w and ¢ satisfy
—k(r + ¥ + lw)y — kol(we — lp) + (|u + p1 + pe™ ™) = by € L*(0,1),
—bpae + k(pr + ¥ + lw) + potp — (B + 7)g = hy € L*(0,1),
—ko(we — l9)a + kl(@g + ¥ + lw) + prw = hg € L*(0,1),

o+ p3(B+7) /O " 4(y)dy — e = hy € L2(0, 1),

(2.7)

where
1
hi = (p1+ || + p)g1 + p1g2 — proe™ ™ /0 e™%gg(x, s)ds,

ha = pa(g3 + g4) — TY9s,
h3 = p1(95 + g6),

ha = =793z — p3 <g7 -7 /0 gs(y)dy) :

The variational formulation corresponding to (2.7) takes the form

B ((p,1,9,0), (5,9,3,0)) = F(,9,, ), (2:8)
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where B : [H}(0,1) x H}(0,1) x H}(0,1) x L?(0,1)]> = R is the bilinear form defined by
B ((p,v,w,q), (#,9,,4))
1 R 1 1
k[t V1) (4 D+ 18) dot (B+7) [ adde+d [ uide
0 0 0
1 1 1 1
bn [ wide 2@+ 7) [ adde o3+ 7) [ vade o [ epde

1 1
+ pl/ wodx + k‘o/ (wy — 1) (Or — Ip) dx
0 0

1 T T
o+ [ ([ oy [ away) o
and F: [H}(0,1) x HL(0,1) x H}(0,1) x L?(0,1)] — R is the linear functional given by

~ 1 1 . 1 1 T
P3.0.0,0) = [ ngdat [ habdo+ [ hoado+ (347) [ by [ aty)dyda.
0 0 0 0 0
Now, for V.= H(0,1) x H}(0,1) x H}(0,1) x L?*(0,1) equipped with the norm
(e, ¥, w,@)lv = [(pz + % + )3 + llwz = Loll3 + 19213 + llall3,

and combining with

[ (Brvtead)arse|

for [ small enough, it follows that B and F' are bounded. Furthermore, using the definition
of B, we get

1 1 1
B((¢,9,w,q), (¢, ¥,w,q)) :k/ (z + ¥ + lw)dx + (6 + T)/ ¢*dx + b/ Prda
0 0 0
1 1 1
+ pg/ Vidx 4+ py / ©’dx + py / widx
0 0 0
2

+ ko /Ol(wm —lo)2dx + p3(B + )2 /01 (/0r q(y)dy) dx

>\ (i, 4,0, )5
Thus, B is coercive. Consequently, Lax-Milgram Lemma provides that system (2.7) has a
unique solution ¢ € H}(0,1), ¥ € HL(0,1), w € H(0,1), ¢ € L?(0,1). Substituting ¢, 1,
w, ¢ into (2.5);, (2.5)5, (2.5)5 and (2.5)g respectively, we get u € H}(0,1), v € H(0,1),
w e HL0,1), 0 € HL(0,1).
If (@Z,@,d) = (0,0,0) € H}(0,1) x H}(0,1) x L?(0,1), then (2.8) reduces to

1
(2 + 1 + 1) + (wo — lp)* + ¥2) da,

1 1 1 1
k / (o + 0 + ) Gada — kol / (w — 10)@dz + p1 / od — / mgde,  (2.9)
0 0 0 0

for all ¢ in H}(0, 1), which implies

— ke = ktby +1(k + ko)ws — (kol® + p1)@ + hy € L*(0,1). (2.10)
Consequently, by the regularity theory for the linear elliptic equations, we obtain
©e H20,1).

Moreover, (2.9) is also true for any ¢ € C1([0,1]), ¢(0) = 0 which is in H}(0,1). Hence,
taking any ¢ € C1(]0,1]), ¢(0) = 0, one has

1 1
k/ Y / (ktbo 4 10k + ko) — (Kol? + p1 ) o+ ha ) bz = 0.
0 0
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Thus, using integration by parts and taking into account (2.10), we get

px(1)¢(1) = 0, Vo € C*([0,1]), $(0) = 0.
Therefore,
pa(1) = 0.
Similarly, we get

b0 = —koy — (k+p—2)¢ — lkw —y(B + 7)q + hy € L*(0,1),
—hwey = —U(k + ko)pu — Ut + (p1 + IPko) w + hg € L*(0,1),

—Qz = Ve — (B+7)p3 /Ox q(y)dy + ha € L*(0,1).

Thus, we have

Y,w € H2(0,1), ¢ € HL(0,1), wy(0) = ,(0) = 0.
Hence, there exists a unique ® € D(A) such that (2.4) is satisfied, which conclude that
the operator A is maximal. With this, it is easy to obtain that A is a maximal monotone
operator. On the other hand, it is obvious that operator B is Lipschitz continuous. Con-

sequently, A 4+ B is the infinitesimal generator of a linear contraction Cy-semigroup on H.
This completes the proof (see [26] and [11]). O

3. Exponential stability

In this section, we state and prove our stability result for the solution of system (2.1)
by using the multiplier technique. We first introduce the following energy functional:

1 1
B(t) =5 /O [plgof + pat} + prwf + bF + psb® + ¢ + k(oo + 1+ lw)ﬂ dz

1 1 1
+5 [kowx—w)?ﬂmm / z2<x,p,t>d4 dz. (3.1)
0 0

Our main result of this section reads as follows.

Theorem 3.1. Let (p,1,w,0,q,z) be the solution of (2.1), assume that k = ko and

2
P1 P2 pP1 TpP1Y
(LY (P2 _prY _ —0. 2
e= (i) (5= %) - T =0 (32)
Then for |p| small enough, the energy functional (3.1) satisfies
E(t) < kre7®2t vt >0, (3.3)

where ki, ko are two positive constants.
We need the following lemmas to show that the associated energy non-increase in time.

Lemma 3.2. Let (¢, 9, w,0,q,z) be the solution of (2.1), the energy functional defined by

(3.1) satisfies
1 1
(t) :_5/ quwHM!/ pida
0 0

Proof. (2.1);, (2.1)5, (2.1)5, (2.1), and (2.1);, by multiplying ¢y, 1, wy, 6 and ¢ respec-
tively, then integrating over (0,1) and summing up, using the boundary conditions, we
get

1d 1 1 1 1 1 1
q {pl/o (p%dl‘erz/ @Z)fd:chpl/ wfdx+b/ ¢§d$+p3/ 02dx+7'/0 qzdx}
.
2

d{/ ko(w lchdx—Fk:/ (0r + 9 +lw) dx+\u\7’o// (z,p, )dpda:}
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1 1
=— B/ ¢dx + | ] / @,?dx. (3.4)
0 0

Now, multiplying (2.1); by |u|z and integrating over (0,1) x (0,1), bearing in mind
z(x,0,t) = ¢¢(z,t), we obtain

1
u;o dt/ / (2, p, t)dpda = |/‘|/ ‘g‘/ 22(x,1,t)dx. (3.5)
0

The result follows by the combination of (3.4)-(3.5) and Young’s inequality. O
Lemma 3.3. Let (p,9,w,0,q,z) be the solution of (2.1). The functional

1
Fit) = —p /0 (01 + wioy)d,

satisfies

1 1 1 1
Ft) <=1 [ dido—pi [ whde+C [ oty [ (1) da
0 0 0 0
1 1
+Cle) / (0o + 0+ lo)2dz + 1 / 2w, 1,t)da, (3.6)
0 0

for all ey > 0.

Proof. By differentiating /7 and using (2.1); and (2.1),, we conclude that
Fi(t)

1 1 1
=—p /0 widr — p /0 widzr — /0 o(k(pz + 1V +lw)y + lko(wg — lp) — pz(z,1,t))dx
1
b | wlkolws — bp) — Uhlps + 4+ lw))da
0
1 1 1 1
:—pl/ go?da:—pl/ wfdx—i—k‘/ (gom—i-w—I—lw)zda:—k/ V(g + 9 + lw)dx
0 0 0 0
1 1
+ ko/ (we — lp)?dx — ,u/ vz(z,1,t)dx.
0 0

Using Young’s and Poincaré inequalities, (3.6) is established. U
Lemma 3.4. Let (p,9,w,0,q,z) be the solution of (2.1). The functional

1
Fy(t) = pa /0 N

satisfies the estimate

b 1 1
Fi(t) < —5/0 wgd:sz/O wtdaH——/ (2 + 9 — lw) dm—i—C’/ 62dz. (3.7)

Proof. Taking the derivative of F» with respect to ¢t and using (2.1),, it follows that

1 1
Fy(t) = p2/0 Yide — /0 P(0ez — k(pe — ¥ +1w) — 0, )dz.
Using Young’s and Poincaré inequalities, we obtain (3.7). O

Lemma 3.5. Let (p,9,w,0,q,z) be the solution of (2.1). The functional

_ P203/ /1/11& \dydz,
satisfies

1 1 1 1
Fi(t) < — %2/0 Yide + 63/0 (¢ + ¢ + lw)dx + 53/0 Yidx + C’(sg)/o 62dx
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1
+ C/o ¢’da. (3.8)
for all e3 > 0.

Proof. By differentiating F3 and using (2.1), and (2.1),, we get

F3(t) = ’i;/((h‘i"ywtm / Vi (y d@/dﬂ«“—*/ / (Dze — k(g + ¥ + lw))dydz
—— / yide — 22 /O ads + p3 / 02 - / o +bp3 / e

k
—I-ﬁ/ ( x—l—iﬁ—l—lw)/ 0(y)dydz.
Y Jo 0
The result thanks to Young’s inequality. ([l
Lemma 3.6. Let (p,1,w,0,q,z2) be the solution of (2.1). The functional

Fy(t) = Tp3/ / y)dydz,

1 1 1
i) < -2 /0 6%de + 4 /0 W2dz + C(eq) /0 Qde, (3.9)

satisfies

for all eq > 0.

Proof. Differentiating F; with respect to ¢, using (2.1), and (2.1);, one has
1 T 1 T
Fy(t) :r/o (— e —wtx)/o Q(y)dyda:+p3/0 9/0 (—Bq — 0)dydx
1 1 1 1
:—pg/ 62dx+7'/ qzd:c+7"y/ qwtdx—ﬁpg/ 6/ qydydzx.
0 0 0 o Jo

Then, we use Cauchy-Schwarz and Young’s inequalities with €4 > 0 to obtain (3.9). O
Lemma 3.7. Let (p,9,w,0,q,z) be the solution of (2.1). The functional

1 1
Fs(t) = —p1 /0 or(ws — lp)dz — p1 /0 wi(@a + 1 + lw)dz

satisfies

Fl(t) <— — (wx—lgo)Zd:L‘ l,;1/ da:+lp1/ @tdx—i-lk‘/ (¢ + 1 + lw)?d

/ wtdx—i—?lko/ p?22(x,1,t)d (3.10)
for all e5 > O.
Proof. Differentiating Fs with respect to t, using (2.1); and (2.1),, it follows that

1
FL(t) = — /0 (k(pz + 0+ 1w)y + lko(w — lp) — pz(x,1,t)) (wy — lp)dx
1
- / (ko(ws — 1g)e — Us(pe + 1 + 10)) (0 + ¥ + lw)da
0
1 1
- P /0 pr(we — lp)idz — p1 /0 wi(pz + ¥ + lw)id
1 1 1 1
=— lk:o/ (wp — lp)?dx + lk‘/ (02 + 1 + lw)?dx — pl/ widz + lpl/ ©ldx
0 0 0 0

1 1
—p1 / Yrwrdx + / pz(z, 1,t) (wy — lo)dx.
0 0
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(3.10) follows Young’s inequality with the fact that k = ko. O
Lemma 3.8. Let (p,1,w,0,q,z) be the solution of (2.1). The functional

1 1
t):To/ / e Pz(x, p,t)dpdx
0o Jo
satisfies

1 11 1
Fi(t) < —m (/ 22(x,1,t)dz + To/ / ZQ(x,p,t)dpdx) —|—/ 2d, (3.11)
0 0 JO 0

where m = min{e~ ", e 0P},

Proof. Similarly computation, using (2.1)5, we have

Fi(t dp/ / P22z, p, t dpdx—To/ / “T0P22(x, p, t)dpda

—/ [e 222, 1,t) — 22(x,0, t)} d(E—To/ / 10022, p, t)dpda.

0

It is obvious that result (3.11). O
Lemma 3.9. Let (p,9,w,0,q,z2) be the solution of (2.1). The functional

Erlt) = —p1 [ (oo 10) [ iyt —p1 [0 [((oa 0+ 1))y

satisfies
P1 2 ! 2 1 ! 2
Fi(t) g——/ gptda:—k:o/ (wg — lp)“dx + <k+2>/ (P2 + ¢ + lw)“dx
0 0 0
1
,u2/ 22(z,1,t)dx. (3.12)
0
Proof. Differentiating F7 with respect to ¢, using (2.1); and (2.1),, we get
1 T 1 1
i) == [ (e =t | rlwddyda—pn [ or [ (on v+ w)(v)dydo
1 T
— [ o= 1) [ (ol — 1g)e = k(s + ¥ + ) dyda
0 0

€T

1
— [ ko Lo+ o = L) = el 1.0) [ (0 46+ ) @)y
1 1 T
:pl/ wide + | pz(z, 1,t)/ (P2 + ¢ + lw)(y)dydz
0 0 0
1 1 T
— ko [ (= lpPda 1k = ko) [ (o= 10) [ (o + v+ 1) () dyde

1 1 1 x
+ k‘/o (0z + 1 + lw)?dz — p1/0 ©2dr — p1/0 gpt/o U (y)dydz.
The result follows Young’s and Cauchy-Schwarz inequalities with the fact that k = kg. O
Lemma 3.10. Let (p,9,w,0,q,z) be the solution of (2.1). The functional

1 b
=2 [ (a0 + 1) dm+f/ radz +p3(p1—)/ Bprd
0

—b<p1—p2) /OIQ(¢x+¢+lw)da:—blkp2/ Yepda +b]l€p1/ witpdz

satisfies

y k rl 9 2b2l2 1 9 1 9 1 9
Fs(t)§—§/0 (0 + 1+ lw) dw—i—T/O wl,dx—i-C(a)/O ¢td$+58/0 widz
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1 1 1 1
+ C(Eg)/ ¢dx + C’(sg)/ 02 dx + Eg/ (wy — lp)?dx + C/ w2’ (z,1,t)dz,
0 0 0 0
(3.13)
for all eg > 0.

Proof. A differentiation of above functional gives
Fy(t)
1
= [ 0hea = k(o 6+ 1) = 700+ 6 + )
0
1 bl
tpn [ nlpa+ v+ e+ 3 [ (ks + 0+ e+ ho(ws = 1) = px(a, 1, ) uda
0
bp1 b (p Pz)/l
+ /w/o Pa(—psby — qz)dz + (k ; O( Gz — VWta)prd
b
p3<,01_)/ O(k(pz + 0 + lw)z + lko(wy — lp) — pz(x,1,t))dx
vp1 \ k
b (p1 pz)/ b (p1 p2>/1
(2 gy -0 lw)de — - (22— P2 lw).d
vr(k , 0( Bq —02)(pz + ¢ + lw)dx A% ")) q(pz + ¢ + lw)ed

b2 bi? 1
o | e — k(oo 0+ 1) =0 )pdn - S22 [y
0 JO

bl 1 bl
+f/ (ko(ws — 10)s — lk(pp + ) + 1) )bz + ”1/ witbhydz
ko Jo ko Jo
! 2 bl2p2
:—k/(gox—l—zﬂ—i—lw) dr + | p2 — /wtdx—i— lpg—i—— /wtwtd:p
0
p3kb b
G5 (7)) Lot
Yp1 b 7 \ k
1
53 ) Lo (2 2) 5222 2) s
b/ Jo rp1
bl? 1 b212
7 /Q%d +<p1—pb2)/ q(wz+w+1w)dx+k—/ W2dz
0 0

b 1 b
+bl(—1>/ Yol —lp)dz = 7 | uz(x,l,tmdx—p?’(’“—)/ Oz, 1,1)d
k Jo Yp1

Noting that £ = kg and £ = 0, the above equation turns into
Fy(t)

- —k/1(90z+¢+lw)2dx+ (p - blp?)/ Yida + (lﬂ2+>/ Yrwrde

() [ (5 ) [ (2 5) [
b/ Jo YP1
bl2 1 b2[2
7 /eszd +(—p;>/OQ(¢x+¢+lw)dx+0/O Yidx
- E /‘Lz(x’ 1’t)¢w - bp3 <p1 - ) / QMZ €z, 1’t

YP1
Using Young’s inequality, we get (3.13). O

Now, we are ready to prove an exponential decay result under a smallness condition on
the delay.
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Proof of Theorem 3.1

We define a Lyapunov functional
8
L(t) == NE(t) + Y _ NiFi(t), (3.14)
i=1

which it is equivalent to the energy functional E. Now, gathering the estimates in Lemmas
3.3-3.10, we obtain

L) < - <N101 + %N7 — p1lNs — Ng — #N> /@?dm

Ip1 ! 2
— Nlpl + 7N5 — p1N7 — 88Ng 0 Wy dx

b 26212 1
5N2 — CNj — e3N3 — p N7> / Vidx
0

P1 P1 ! 2
N3 — p2N2 — E4N4 — 7N5 — 5N7 — C(Eg)Ng) ‘/0 1/Jt dzx

E
-~ <”23N4 — CNy — C(e3)Ns — C(es) Ng> /0 ' 02
(Pz

2 21
(

Ik 1
- 70N5 — koNy + koN7 — 58N8> / (wa — lp)?da
0

1
_ (NB = CNy — C(ea)Ni — Cleg) Ns) /0 QPdx

k k? 1 1
§Ng — C(z’;‘l)Nl — ?NQ —e3N3 — kN5 — (k + 2> N7> / ((,0;5 ++ lw)Qd.%'
0

2 1
- <mN6 — Nyey — 2kou®Ns — %M - CMN8> / 22(2,1,t)dx
0

1 1
- NGmTo/ / 22(x, p,t)dpdz.
o Jo

Then, we let

3
Neg=1, Ny = N7y =[Ns=—,

the choices yield

1 1 1
L'(t) < — (2 - Nu) /0 idr — (; - Ng&g) /0 wida
b 26%1%\ 3 1
Ny — <C+ )—63]\73)/ Vidx
2 k p1 0

1 3k 1
N3 — poNg —egNy — 3 — C(Eg)Ng) / ib?dx — (2/)0 — EgNs) / (wx — l(p)de
0 1 0

S
N

3 |

1 1
Ny — CNy — C(e3)N3 — C’(sg)Ng> / 0dx — mT(]/ 22(x, p,t)dpdx
0 0

N o

/N7 N N N

1 3 k2 1
Ny — <C’(E1) + <k + 2) + k:) N 53N3> / (0o + 1 + lw)2de
1 0

1
— (NB = CNs — Cea) Ny — Cle5)Ng) /0 Qde

1 3 1
— <m — (61 + 2kou® + 2u2> o C’uNg) /0 22(z,1,t)dx.
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As follows, we need to choose our constants carefully. we let e; = £X and choose Nj large,

— 6m
such that
b 26212\ 3
—Ny — [C + — >a; > 0.
2 k P1
At this point, we take Ng large enough so that
k 1 3 k?
—Ng—(C kE+ = k] — ——Ny > 0
5 Vs ((61)+<+2>+)p1 b 2 > ag >0,
and then select g such that g < min {ﬁ, 23112({,8 } We choose N3 large enough so that

%Ng — p3Ny — 4Ny — 3 — C(es)Ng > ag > 0,
and choose €3 such that a; — e3N3 > 0 and ags — e3N3 > 0. We then choose N, large
enough so that
%M — ONy — C(e3)N3 — C(eg)Ns > 0,
and choose ¢4 such that ag — 4Ny > 0. We set IV so large to satisfies
NB — CN3s — C(eq) Ny — C(eg)Ng > 0.
Finally, by taking |u| so small that
% — <2k0u2 + ;;ﬁ) 51 — CuNg > 0.
Utilizing the definition of E(t), we have
L'(t) < —c1 E(t).
On the other hand, exploiting (3.14), we get
(N —co)E(t) < L(t) < (N + 2)E(t),
which deduces that
L'(t) < —koL(t), Vt > 0.
A simple integration over (0, 1) leads to

L(t) < L(0)e k2,

It gives the desired result in Theorem 3.1 when combined with the equivalence of £(¢) and
E(t).
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