

RESEARCH ARTICLE

Almost L-Dunford-Pettis sets in Banach lattices and its applications

Abderrahman Retbi

Ibn Tofail University, Faculty of Sciences, Department of Mathematics, B.P. 133, Kenitra, Morocco

Abstract

We introduce and study the notion of almost L-Dunford-Pettis sets in Banach lattices and we give some characterizations of it in terms of sequences. As an application, we establish new properties of almost Dunford-Pettis completely continuous operators. Finally, by introducing the concept of aL-Dunford-Pettis property in Banach lattices, we investigate the weak compactness of almost Dunford-Pettis completely continuous operator.

Mathematics Subject Classification (2010). 46A40, 46B40

Keywords. Banach lattice, Dunford-Pettis set, relatively compact Dunford-Pettis property, Dunford-Pettis completely continuous operator

1. Introduction and notation

A norm bounded subset A of a Banach space X is said to be Dunford-Pettis set, if every weakly null sequence (f_n) in X' converges uniformly to zero on A, that is, $\lim_{n\to\infty} \sup_{x\in A} f_n(x) = 0$. Recall from [6] that a norm bounded subset A of a topological dual Banach space X' is an L-Dunford-Pettis if every weakly null sequence (x_n) , which is a Dunford-Pettis subset of X converges uniformly to zero on A, that is $\lim_{n\to\infty} \sup_{f\in A} f(x_n) = 0$.

A Banach space X has

- the relatively compact Dunford-Pettis property (DPrcP for short) if every weakly null sequence, which is a Dunford-Pettis set in X, is norm null [7].

- the L-Dunford-Pettis property if every L-Dunford-Pettis set in X' is relatively weakly compact [6].

A Banach lattice E has the positive relatively compact Dunford-Pettis property (PDPrcP for short) if every disjoint weakly null sequence, which is a Dunford-Pettis set in X, is norm null [4]. Note that if a Banach lattice E has the DPrcP then, it has PDPrcP but the converse is not true in general (see Example 3.4 of [4]).

An operator T from a Banach space X into a another Banach space Y is called Dunford-Pettis completely continuous (DPcc for short) if each weakly null sequence (x_n) , which is a Dunford-Pettis set in X, we have $||T(x_n)||_Y \to 0$, as $n \to \infty$ [7]. Recall from [4] that an operator T from a Banach lattice E into a Banach space Y is called almost Dunford-Pettis completely continuous (aDPcc for short) if each disjoint weakly null sequence (x_n) , which is a Dunford-Pettis set in E, we have $||T(x_n)||_Y \to 0$, as $n \to \infty$.

 $Email \ address: \ abderrahmanret bi@hotmail.com$

Received: 23.12.2016; Accepted: 30.01.2019

A. Retbi

Dunford-Pettis sets definition is given firstly by K.T. Andrews [2] as a norm bounded subset A of a Banach space X is a Dunford-Pettis set whenever every weakly compact operator from X to an arbitrary Banach space Y carries A to a norm totally bounded set. Then Andrew characterized the Dunford-Pettis sets by using sequences (f_n) in X'. Recently in [3], Bouras considered the disjoint version of the Dunford-Pettis sets and introduced the almost Dunford-Pettis sets in Banach lattices. Following Bouras, a bounded subset A of a Banach lattice E is said to be an almost Dunford-Pettis set if every disjoint weakly null sequence (f_n) in E' converges uniformly to zero on A. In this paper, using the disjoint sequence techniques we consider the disjoint version of L-Dunford-Pettis sets, that we call almost L-Dunford-Pettis property which is shared by those Banach lattice whose every almost L-Dunford-Pettis subset of his topological dual is relatively weakly compact (Definition 4.1).

The article is organized as follows. In Section 2 we establish some characterizations of almost L-Dunford-Pettis set in terms of sequences (Proposition 2.2), and we show that each order interval in a dual Banach lattice is an almost L-Dunford-Pettis set (Proposition 2.4). Also, we give some equivalent condition for T'(A) to be almost L-Dunford-Pettis set where A is a norm bounded solid subset of E and $T : E \to F$ is an order bounded operator between two Banach lattices (Theorem 2.7). In Section 3, using the notion of almost L-Dunford-Pettis set, we give characterizations of aDPcc operator and PDPrcP (Theorem 3.1 and Corollary 3.2). After that, we characterize Banach lattice E such that each almost L-Dunford-Pettis set of E' is L-Dunford-Pettis (Theorem 3.12), and we derive some sufficient conditions such that the PDPrcP coincide with the DPrcP (Corollary 3.13). In Section 4, we prove that a Banach lattice E has the aL-Dunford-Pettis property if and only if each aDPcc operator from a Banach lattice E into any Banach space Y is weakly compact (Theorem 4.2), and we deduce an important result about the reflexive space (Corollary 4.3).

To state our results, we need to fix some notations and recall some definitions. A Banach lattice is a Banach space $(E, \|\cdot\|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x, y \in E$ such that $|x| \leq |y|$, we have $||x|| \leq ||y||$. If E is a Banach lattice, its topological dual E', endowed with the dual norm, is also a Banach lattice. The sequence (x_n) of a Banach lattice E is disjoint if $|x_n| \wedge |x_m| = 0, n \neq m$ (we denote by $x_n \perp x_m$).

Recall that a nonzero element x of a vector lattice G is discrete if the order ideal generated by x equals the subspace generated by x. The vector lattice G is discrete, if it admits a complete disjoint system of discrete elements. The lattice operations of a Banach lattice E are weakly sequentially continuous, whenever $x_n \to 0$ for $\sigma(E, E')$ as $n \to \infty$ imply $|x_n| \to 0$ for $\sigma(E, E')$, as $n \to \infty$. We will use the term operator $T: X \longrightarrow Y$ between two Banach space to mean a bounded linear mapping, its dual operator T' is defined from Y' into X' by T'(f)(x) = f(T(x)) for each $f \in Y'$ and for each $x \in X$. We refer the reader to [1] for unexplained terminology of Banach lattice theory and operators.

2. Almost L-Dunford-Pettis set in a topological dual of Banach lattice

We start this work by a definition of almost L-Dunford-Pettis set, which is a disjoint version of L-Dunford-Pettis set.

Definition 2.1. Let *E* be a Banach lattice. A norm bounded subset *A* of *E'* is called an almost L-Dunford-Pettis set, if every disjoint weakly null sequence (x_n) , which is a DP set in *E* converge uniformly to zero on *A*, that is, $\lim_{n\to\infty} \sup_{f\in A} |f(x_n)| = 0$.

Now, for a norm bounded subset of a topological dual Banach lattice, we give a characterization of an almost L-Dunford-Pettis sets. **Proposition 2.2.** Let E be a Banach lattice and let A be a norm bounded subset of E'. The following statements are equivalent:

- (1) A is an almost L-Dunford-Pettis set in E'.
- (2) For every sequence (f_n) in A and every disjoint weakly null sequence (x_n) , which is a Dunford-Pettis set in E, we have $f_n(x_n) \to 0$ as $n \to \infty$.

Proof. (2) \Rightarrow (1) Assume by way of contradiction that A is not an almost L-Dunford-Pettis set in E'. Then, there exists a disjoint weakly null sequence (x_n) , which is a Dunford-Pettis subset of E such that $\sup_{f \in A} |f(x_n)| > \epsilon > 0$ for some $\epsilon > 0$ and each n. Hence, for every n there exists some f_n in A such that $|f_n(x_n)| > \epsilon$, which is impossible from our hypothesis (2). This prove that A is an almost L-Dunford-Pettis set in E'.

 $(1) \Rightarrow (2)$ Let (f_n) be a sequence in A and (x_n) be a disjoint weakly null sequence, which is a Dunford-Pettis set in E. Since

$$|f_n(x_n)| \le \sup_{f \in A} |f(x_n)|,$$

for every n, and A is an almost L-Dunford-Pettis set in E' then, $f_n(x_n) \to 0$ as $n \to \infty$. This completes the proof.

As a consequence of Proposition 2.2, we obtain the following result.

Proposition 2.3. Let E be a Banach lattice and let (f_n) be a norm bounded sequence in E'. The following statements are equivalent:

- (1) The subset $\{f_n, n \in N\}$ is an almost L-Dunford-Pettis set in E'.
- (2) For every disjoint weakly null sequence (x_n) , which is a Dunford-Pettis set in E, we have $f_n(x_n) \to 0$ as $n \to \infty$.

The following proposition shows that every order interval in a topological dual Banach lattice is an almost L-Dunford-Pettis set.

Proposition 2.4. Let E be a Banach lattice. Then, for every $f \in (E')^+$, [-f, f] is an almost L-Dunford-Pettis set in E'.

Proof. Let (x_n) be a disjoint weakly null sequence, which is a Dunford-Pettis set in E, and put $W = \{x_n : n \in N\}$. Then, W is a relatively weakly compact set of E and $(|x_n|)$ is a disjoint sequence in the solid hull of W. Now, by Theorem 4.34 of [1], we see that $(|x_n|)$ is a weakly null sequence of E. Since

$$f(|x_n|) = \sup \{|g(x_n)| : g \in [-f, f]\} \to 0$$

as $n \to \infty$ for all $f \in (E')^+$, it follows that [-f, f] is an almost L-Dunford-Pettis set in E' for all $f \in (E')^+$, and this ends the proof.

From Proposition 2.4 and Theorem 1.73 of [1], we get

Corollary 2.5. Let T be an order bounded operator from a Banach lattice E into another Banach lattice F. Then, T'([-f, f]) is an almost L-Dunford-Pettis set in E' for every $f \in (F')^+$.

Proof. Since T be an order bounded operator from a Banach lattice E into another Banach lattice F, by Theorem 1.73 of [1], we obtain that $T' : F' \to E'$ is also order bounded. Thus, T'([-f, f]) is an order bounded subset of E' for all $f \in (F')^+$, and so there exists $g \in (E')^+$ such that $T'([-f, f]) \subset [-g, g]$. Now, from Proposition 2.4, we conclude that T'([-f, f]) is an almost L-Dunford-Pettis set in E' for every $f \in (F')^+$, as desired.

In order to prove the next theorem, we need the following lemma.

Lemma 2.6. Let E be a Banach lattice, and let (g_n) be a norm bounded sequence in E^+ . Then the sequence defined for $n \ge 2$ by

$$f_n = \left(g_n - 4^n \sum_{i=1}^{n-1} g_i - 2^{-n} \sum_{i=1}^{\infty} 2^{-i} g_i\right)^+,$$

is a disjoint sequence of E^+ .

Proof. Let $n > m \ge 2$, then

$$0 \le f_n \le (g_n - 4^n g_m)^+,$$

and

$$0 \le 4^n f_m \le 4^n (g_m - 4^{-n} g_n)^+ = (4^n g_m - g_n)^+ = (g_n - 4^n g_m)^-.$$

Since $(g_n - 4^n g_m)^+ \perp (g_n - 4^n g_m)^-$, we deduce that $f_n \perp f_m$, as desired.

Theorem 2.7. Let T be an order bounded operator from a Banach lattice E into another Banach lattice F, and let A be a norm bounded solid subset of F'. The following statements are equivalent:

- (1) T'(A) is an almost L-Dunford-Pettis set in E'.
- (2) $\{T'(f_n), n \in N\}$ is an almost L-Dunford-Pettis set in E', for each disjoint sequence $(f_n) \subset A^+ = A \cap (F')^+$.

Proof. $(1) \Rightarrow (2)$ Obvious.

 $(2) \Rightarrow (1)$ Let (x_n) be a disjoint weakly null sequence, which is a Dunford-Pettis set in E. To finish the proof, we have to prove that $\sup_{g \in A} |T'(g)(x_n)| \to 0$ as $n \to \infty$. Assume by way of contradiction that $\sup_{g \in A} |T'(g)(x_n)|$ does not converge to 0 as $n \to \infty$. So there exists some $\epsilon > 0$ such that $\sup_{g \in A} |T'(g)(x_n)| > \epsilon$ for each n. Hence, there exists $g_n \in A^+$ such that $g_n(|T(x_n)|) > \epsilon$ for all natural number n. Let $g \in A^+$. Then from Corollary 2.5, we see that T'([g,g]) is an almost L-Dunford-Pettis sets in E', and we have $g(|T(x_n)|) \to 0$ as $n \to \infty$. Let $n_1 = 1$. Since $g_{n_1}(T(x_n)) \to 0$ as $n \to \infty$, there exists some natural number n_2 such that $n_2 > n_1 = 1$ and $g_{n_1}(|T(x_{n_2})|) < \frac{\epsilon}{2^{2\times 2+2}}$. Also, because $\sum_{k=1}^2 g_{n_k}(|T(x_n)|) \to 0$ as $n \to \infty$, there exists some natural number n_3 such that $n_3 > n_2 > n_1 = 1$ and $\sum_{k=1}^2 g_{n_k}(|T(x_{n_3})|) < \frac{\epsilon}{2^{2\times 3+2}}$. By induction, we get a strictly increasing subsequence (n_k) of N such that

$$(\sum_{k=1}^{m-1} g_{n_k})(|T(x_{n_m})|) < \frac{\epsilon}{2^{2m+2}}$$
 for all $m \ge 2$.

Now, let

$$h = \sum_{k=1}^{\infty} 2^{-k} g_{n_k}$$

and

$$f_m = (g_{n_m} - 4^m \sum_{k=1}^{m-1} g_{n_k} - 2^{-m}h)^+$$
 for all $m \ge 2$.

So by Lemma 2.6, we see that (f_m) is a disjoint sequence in $(F')^+$, as $0 \leq f_m \leq g_{n_m}$, $g_{n_m} \in A$ and A is a solid subset of F' then, $f_m \in A^+$. Hence, we have

$$f_m(|T(x_{n_m})|) = (g_{n_m} - 4^m \sum_{k=1}^{m-1} g_{n_k} - 2^{-m}h)^+ (|T(x_{n_m})|)$$

$$\geq (g_{n_m} - 4^m \sum_{k=1}^{m-1} g_{n_k} - 2^{-m}h)(|T(x_{n_m})|)$$

$$\geq \epsilon - \frac{\epsilon}{4} - 2^{-m}h(|T(x_{n_m})|).$$

This prove that $f_m(|T(x_{n_m})|) > \frac{\epsilon}{2}$ for m sufficiently large (because $2^{-m}h(|T(x_{n_m})|) \to 0$). Since $f_m(|T(x_{n_m})|) = \sup \{|T'(y)(x_{n_m})|, |y| \le f_m\}$, for m sufficiently large there exists some $y_m \in F'$ such that $|y_m| \le f_m$ and $|T'(y_m)(x_{n_m})| > \frac{\epsilon}{2}$. It is clear that (y_m^+) and (y_m^-) are norm bounded disjoint sequences in A^+ and so, by our hypothesis we obtain

$$\frac{\epsilon}{2} < |T'(y_m)(x_{n_m})|
\leq |T'(y_m^+)(x_{n_m})| + |T'(y_m^-)(x_{n_m})|
\leq \sup_{k \in N} |T'(y_k^+)(x_{n_m})| + \sup_{k \in N} |T'(y_k^-)(x_{n_m})| \to 0,$$

as $m \to \infty$. This leads to a contradiction, and we are done.

As a consequence of Theorem 2.7, we obtain the following result.

Corollary 2.8. Let T be an order bounded operator from a Banach lattice E into another Banach lattice F, and let A be a norm bounded solid subset of F'. The following statements are equivalent:

- (1) T'(A) is an almost L-Dunford-Pettis set in E'.
- (2) $f_n(T(x_n)) \to 0$ as $n \to \infty$, for every disjoint weakly null sequence (x_n) , which is a Dunford-Pettis set in E^+ and for each disjoint sequence (f_n) in A^+ .

Next, we derive another consequence of Theorem 2.7.

Corollary 2.9. Let E be a Banach lattice and let A be a norm bounded solid subset of E'. The following statements are equivalent:

- (1) A is an almost L-Dunford-Pettis set in E'.
- (2) $\{f_n, n \in N\}$ is an almost L-Dunford-Pettis set in E', for each disjoint sequence $(f_n) \subset A^+ = A \cap (F')^+$.

3. Almost L-Dunford-Pettis set, aDPcc operator and PDPrcP

The following theorem gives a new characterization of order bounded aDPcc operator from a Banach lattice E into another F in term of almost L-Dunford-Pettis sets in E'.

Theorem 3.1. For an order bounded operator T from a Banach lattice E into another F. The following statements are equivalent:

- (1) T is an aDPcc operator.
- (2) $T'(B_{F'})$ is an almost L-Dunford-Pettis set in E'.
- (3) $\{T'(f_n), n \in N\}$ is an almost L-Dunford-Pettis set in E', for each disjoint sequence $(f_n) \subset B_{F'}^+$.
- (4) $f_n(T(x_n)) \to 0$ as $n \to \infty$, for every disjoint weakly null sequence (x_n) , which is a Dunford-Pettis set in E^+ and for each disjoint sequence $(f_n) \subset B^+_{E'}$.

Proof. (1) \Leftrightarrow (2) Let (x_n) be a disjoint weakly null sequence, which is a Dunford-Pettis subset of E'. Since

$$||T(x_n)|| = \sup_{f \in T'(B_{F'})} |f(x_n)|,$$

then, it is clear that T is an aDPcc operator if and only if $T'(B_{F'})$ is an almost L-Dunford-Pettis in E'.

 $(2) \Leftrightarrow (3)$ Follows from Theorem 2.7.

(3) \Leftrightarrow (4) Follows from Proposition 2.3.

As a simple consequence of Theorem 3.1, we get a characterization of PDPrcP in Banach lattices.

Corollary 3.2. Let E be a Banach lattice. The following statements are equivalent:

- (1) E has the PDPrcP.
- (2) $B_{E'}$ is an almost L-Dunford-Pettis set.
- (3) $\{f_n, n \in N\}$ is an almost L-Dunford-Pettis set in E', for each disjoint sequence $(f_n) \subset B_{E'}^+$.
- (4) $f_n(x_n) \to 0$ as $n \to \infty$, for every disjoint weakly null sequence (x_n) , which is a Dunford-Pettis set in E^+ and for each disjoint sequence $(f_n) \subset B_{E'}^+$.

In the next result, we obtain a new characterization of PDPrcP in Banach lattices in term of almost L-Dunford-Pettis sets.

Theorem 3.3. A Banach lattice E has the PDPrcP if and only if every bounded subset of E' is an almost L-Dunford-Pettis set.

Proof. For the "if" part, since $B_{E'}$ is an almost L-Dunford-Pettis set, by Corollary 3.2 we conclude that E has the PDPrcP.

For the "only if" part, assume by way of contradiction that there exists a bounded subset A, which is not an almost L-Dunford-Pettis set of E'. Then, there exists a disjoint weakly null sequence (x_n) , which is a Dunford-Pettis set of E such that $\sup_{f \in A} |f(x_n)| > \epsilon > 0$ for some $\epsilon > 0$ and each n. Hence, for every n there exists some f_n in A such that $|f_n(x_n)| > \epsilon$.

On the other hand, since $(f_n) \subset A$, there exists some K > 0 such that $||f_n||_{E'} \leq K$ for all n. Thus,

$$|f_n(x_n)| \le K \, \|x_n\|,$$

for each n, so by our hypothesis, $|f_n(x_n)| \to 0$ as $n \to \infty$, which is impossible. This completes the proof.

Let us define the following.

Definition 3.4. Let *E* be a Banach lattice, *E* has the property (*a*) if for every weakly null sequence (x_n) , which is a Dunford-Pettis set in *E* we have $|x_n| \to 0$ for $\sigma(E, E')$ as $n \to \infty$.

Remark 3.5. Let *E* be a Banach lattice. Note that *E* is discrete with order continuous norm \Rightarrow the lattice operations of *E* are weakly sequentially continuous (see Proposition 2.5.23 of [5]) \Rightarrow *E* has the property (*a*).

We need to recall of the following characterization of aDPcc operators, which is established in Theorem 3.9 of [4].

Theorem 3.6. An operator T from a Banach lattice E into a Banach space Y is aDPcc if and only if $||T(x_n)|| \to 0$ as $n \to \infty$ for every weakly null sequence (x_n) , which is a Dunford-Pettis set in E^+ .

In the following result, we establish a sufficient condition such that the class of aDPcc operators and the class of DPcc operators coincide.

Theorem 3.7. Let E be a Banach lattice and Y be a Banach space such that E has the property (a), then each aDPcc operator from E into Y is DPcc.

Proof. Let T be an aDPcc operator from E into Y. We prove that T is DPcc, let (x_n) be a weakly null sequence, which is a Dunford-Pettis set in E. Since E has the property (a)then (x_n^+) and (x_n^-) be weakly null sequences in E^+ , and it is clear that are Dunford-Pettis sets. Now, it follows from Theorem 3.6 that $||T(x_n^+)|| \to 0$ and $||T(x_n^-)|| \to 0$ as $n \to \infty$. Thus,

$$|T(x_n)|| = ||T(x_n^+) - T(x_n^-)|| \le ||T(x_n^+)|| + ||T(x_n^-)|| \to 0 \text{ as } n \to \infty,$$

and we are done.

Now, from Theorem 3.7 and Corollary 3.20 of [4], we derive

Corollary 3.8. Let E and F be two Banach lattices such that E has the property (a) or F is discrete with order continuous norm, then each positive aDPcc operator from E into F is DPcc.

The following result give a necessary and sufficient condition such that each order interval in a topological dual Banach lattice is an L-Dunford-Pettis set.

Proposition 3.9. Let E be a Banach lattice. The following statements are equivalent:

- (1) For every $f \in (E')^+$, [-f, f] is an L-Dunford-Pettis set in E'.
- (2) E has the property (a).

Proof. Let (x_n) be a weakly null sequence, which is a Dunford-Pettis set of E, then the result follows from the equality:

$$f(|x_n|) = \sup \{ |g(x_n)| : g \in [-f, f] \}$$

for every $f \in (E')^+$ and every n.

We need the following proposition.

Proposition 3.10. A Banach space X has the DPrcP if and only if the closed unit ball $B_{X'}$ of X' is L-Dunford-Pettis.

Proof. Let (x_n) be a weakly null sequence, which is a Dunford-Pettis set of X, then the result follows from the equality:

$$||x_n|| = \sup_{f \in B_{X'}} |f(x_n)|$$

for every n.

Remark 3.11. It is clear that every L-Dunford-Pettis set in a dual Banach lattice is almost L-Dunford-Pettis, but the converse is not true in general. In fact, if we put $E = L^1[0,1] \oplus L^2[0,1]$ then, E has the PDPrcP but does not have the DPrcP (see Example 3.4 of [4]), hence from Corollary 3.2 and Proposition 3.10, we see that the closed unit ball $B_{E'}$ is an almost L-Dunford-Pettis set but it is not L-Dunford-Pettis.

Now, we are in a position to give our major result, and we characterize Banach lattice E such that each almost L-Dunford-Pettis set of E' is L-Dunford-Pettis.

Theorem 3.12. Let E be a Banach lattice. The following statements are equivalent:

- (1) Each almost L-Dunford-Pettis set of E' is L-Dunford-Pettis.
- (2) E has the property (a).
- (3) Each aDPcc operator from E to any Banach lattice F is DPcc.
- (4) Each aDPcc operator from E to ℓ^{∞} is DPcc.

Proof. (1) \Rightarrow (2) Let $f \in (E')^+$ then, [-f, f] is an almost L-Dunford-Pettis set in E' (see Proposition 2.4), and by our hypothesis, we have that [-f, f] is an L-Dunford-Pettis set in E'. Now, from Proposition 3.9, we see that E has the property (a).

 $(2) \Rightarrow (3)$ Let T be an aDPcc operator from E to any Banach lattice F, since E has the property (a) then, by Theorem 3.7, T is DPcc operator.

 $(3) \Rightarrow (4)$ Obvious.

 $(4) \Rightarrow (1)$ Suppose by way of contradiction that there exist an almost L-Dunford-Pettis set A in E' which is not L-Dunford-Pettis. As A is not L-Dunford-Pettis subst of E', so there exists a weakly null sequence (x_n) , which is a Dunford-Pettis subset of E such that $\sup_{f \in A} |f(x_n)| > \epsilon > 0$ for some $\epsilon > 0$ and each n. Hence, for every n there exists some f_n in A such that $|f_n(x_n)| > \epsilon$.

On the other hand, consider the operator $T: E \to \ell^{\infty}$ defined by

A. Retbi

$$T(x) = (f_n(x))_{n=0}^{\infty}$$
 for all $x \in E$.

We show that T is aDPcc operator. Since A is almost L-Dunford-Pettis subst of E', then for every disjoint weakly null sequence (y_m) , which is a Dunford-Pettis of E, we obtain

$$\|T(y_m)\|_{\infty} = \|(f_n(y_m))_{n=0}^{\infty}\|_{\infty} \\ = \sup_{n \in N} |f_n(y_m)| \\ \le \sup_{f \in A} |f(y_m)| \to 0,$$

as $m \to \infty$, this prove that T is a DPcc, and by our hypothesis we see that T is DPcc. Now, we have

$$\epsilon < |f_n(x_n)| \le ||T(x_n)||_{\infty} \to 0$$
, as $n \to \infty$

which is impossible, and this ends the proof.

Consequently, we obtain some sufficient conditions such that the PDPrcP and DPrcP in Banach lattice conicide.

Corollary 3.13. Let E be a Banach lattice. Suppose that one of the following assertions is valid:

- (1) Each almost L-Dunford-Pettis set of E' is L-Dunford-Pettis.
- (2) E has the property (a).
- (3) The lattice operations of E are weakly sequentially continuous.
- (4) E is discrete.
- (5) Each aDPcc operator from E to ℓ^{∞} is DPcc.

Then, E has the PDPrcP if and only if E has the DPrcP.

Proof. (1), (2) and (5) Follows from Theorem 3.12, in particular, we put in assertion (3) of this Theorem F = E and $T = Id_E : E \to E$ the identity operator.

(3) Follows from Remark 3.5 and (2).

(4) If E has the PDPrcP, then, its norm is order continuous, and as E is discrete so by Remark 3.5 and assertion (3), we deduce that E has the DPrcP, and this completes the proof.

4. aL-Dunford-Pettis property in Banach lattices

Let E be a Banach lattice, note that each relatively weakly compact subset A of a dual topological Banach lattice E' is L-Dunford-Pettis (see Proposition 2.3 of [6]), and hence A is almost L-Dunford-Pettis. The converse of this property is not true in general, in fact, the closed unit ball $B_{\ell^{\infty}}$ of ℓ^{∞} is almost L-Dunford-Pettis set (see Corollary 3.2), but it is not relatively weakly compact.

Now, we give the following definition.

Definition 4.1. A Banach lattice E has the aL-Dunford-Pettis property, if every almost L-Dunford-Pettis set in E' is relatively weakly compact.

Note that an aDPcc operator is not weakly compact in general. In fact, Id_{ℓ^1} is aDPcc, but it is not weakly compact.

Used the idea of aL-Dunford-Pettis property in Banach lattice, we establish the weak compactness of aDPcc operators.

Theorem 4.2. Let E be a Banach lattice, then, the following assertions are equivalent:

- (1) E has the aL-Dunford-Pettis property,
- (2) for each Banach space Y, every aDPcc operator from E into Y is weakly compact,
- (3) every aDPcc operator from E into ℓ^{∞} is weakly compact.

Proof. (1) \Rightarrow (2) Suppose that *E* has the aL-Dunford-Pettis property and $T: E \to Y$ is aDPcc operator. Thus $T'(B_{Y'})$ is an almost L-Dunford-Pettis set in *E'*. So by hypothesis, it is relatively weakly compact and *T* is a weakly compact operator.

 $(2) \Rightarrow (3)$ Obvious.

 $(3) \Rightarrow (1)$ If E does not have the aL-Dunford-Pettis property, there exists an almost L-Dunford-Pettis subset A of E' which is not relatively weakly compact. So there is a sequence $(f_n) \subseteq A$ with no weakly convergent subsequence. Now, we show that the operator $T : E \to \ell^{\infty}$ defined by $T(x) = (f_n(x))$ for all $x \in E$ is aDPcc but it is not weakly compact. As $(f_n) \subseteq A$ is almost L-Dunford-Pettis set, then for every disjoint weakly null sequence (x_m) , which is a Dunford-Pettis set in E we have

$$||T(x_m)|| = \sup_n |f_n(x_m)| \to 0$$
, as $m \to \infty$,

so T is aDPcc operator. Hence $T'((\lambda_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \lambda_n f_n$ for every $(\lambda_n)_{n=1}^{\infty} \in \ell^1 \subset (\ell^{\infty})'$. If e'_n is the usual basis element in ℓ^1 then $T'(e'_n) = f_n$, for all $n \in N$. Thus, T' is not a weakly compact operator and neither is T. This finishes the proof.

As a consequence of Theorem 4.2, we derive the following result.

Corollary 4.3. A PDPrc space has the aL-Dunford-Pettis property if and only if it is reflexive.

Proof. (\Rightarrow) If a Banach lattice E has the PDPrcP, then the identity operator Id_E on E is aDPcc. As E has the aL-Dunford-Pettis property, it follows from Theorem 4.2 that Id_E is weakly compact, and hence E is reflexive.

 (\Leftarrow) Obvious.

Remark 4.4. Note that the Banach lattice ℓ^1 is not reflexive and has the PDPrcP, then from Corollary 4.3, we conclude that ℓ^1 does not have the aL-Dunford-Pettis property.

Acknowledgment. The author would like to thank the referee for his comments which have improved this paper.

References

- C.D. Aliprantis and O. Burkinshaw, *Positive operators*, Reprint of the 1985 original. Springer, Dordrecht, 2006.
- [2] K.T. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241, 35-41, 1979.
- [3] K. Bouras, Almost Dunford-Pettis sets in Banach lattices, Rend. Circ. Mat. Palermo. 62, 227-236, 2013.
- [4] K. El Fahri, N. Machrafi and M. Moussa, Banach Lattices with the Positive Dunford-Pettis Relatively Compact Property, Extracta Math. 30 (2), 161-179, 2015.
- [5] P. Meyer-Nieberg, *Banach lattices*, Universitext, Springer-Verlag, Berlin, 1991.
- [6] A. Retbi and B. El Wahbi, *L-Dunford-Pettis property in Banach spaces*, Methods Funct. Anal. Topology, accepted.
- [7] Y. Wen and J. Chen, Characterizations of Banach Spaces With Relatively Compact Dunford-Pettis Sets, Advances in Mathematics (China), 45 (1), 122-132, 2016.