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Abstract

In this paper, we give the boundedness of some parabolic multilinear commutators gener-
ated by a class of parabolic maximal and linear operators with rough kernel and parabolic
local Campanato functions on the parabolic generalized local Morrey spaces, respectively.
Indeed, the results in this paper are extensions of some known results.
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1. Introduction and main results

Let S"~1 = {x € R": |z| = 1} denote the unit sphere on R™ (n > 2) equipped with the
normalized Lebesgue measure do (2'), where 2’ denotes the unit vector in the direction of
x and ay, > ap—1 > - > a1 > 1 be fixed real numbers.

Note that for each fixed z = (x1,...,2,) € R, the function

n xQ

F(x,p):z !

2 .
o

is a strictly decreasing function of p > 0. Hence, there exists a unique p = p () such that
F (z,p) = 1. Tt is clear that for each fixed x € R™, the function F'(x,p) is a decreasing
function in p > 0. Fabes and Riviére [5] showed that (R",p) is a metric space which is
often called the mixed homogeneity space related to {c;};_ ;. For t > 0, we let A; be the
diagonal n x n matrix

o 0
Ay = diag [t ...t = )
0 o
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Let p € (0,00) and 0 < -1 < 271, 0 < ¢; <7, i =1,...,n—2. For any x =
(x1,22,...,2y) € R™, set

(0%
x1 = p*! COS Y] ...COSPYp_2COSPYy_1,

a .
Tg = P72 COS Q1 ...COSPp_2SiN ©Ynp_1,

a .
Tp—1 = p°"~1 cos ¢ sin 2,

n = p°"sin .

Thus dx = p®1J (2') dpdo(z'), where o = ZO‘“ e S J(x ZO‘Z )2, do is
i=1

the element of area of S"~! and p®~!J (2) is the Jacobian of the above transform. It is
easy to see that J (z/) € C*° (8" 1) with 1 < J (2/) < M and 2’ € S"~! for some M > 1.

Let P be a real n x n matrix, whose all the eigenvalues have positive real part. Let
Ay =tP (t > 0), and set y = trP. Then, there exists a quasi-distance p associated with P
such that (see [3])

(1—-1) p(Awz) =tp(x), t > 0, for every x € R",

(1-2)p(0)=0,p(x—y)=p(y—2)>0,and p(z —y) <k(p(x—2)+p(y - 2)),

(1 —3) dx = p*~'do (w)dp, where p = p(z), w = A -1z and do (w) is a measure on
the unit ellipsoid {w : p (w) = 1}.

Then, {R", p, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss
(see [3]) and a homogeneous group in the sense of Folland-Stein (see [6]).

Denote by E (x,r) the ellipsoid with center at x and radius r, more precisely, E (z,r) =
{y e R": p(x — y) < r}. Moreover, by the property of p and the polar coordinates trans-
form above, we have

o=

x,r)| = = v,r = ,r
Bar)= [ dy=vporte <,
plz—y)<r

where |E(x,r)| stands for the Lebesgue measure of E(x,r) and v, is the volume of the
unit ellipsoid on R™. By E®(z,7) = R"\ E (z,r), we denote the complement of E (x,r).

1

If we take o = = a, =1 and P = I, then obviously p(z) = |z| = <Za: ) , Y =n,

(R™, p) = (R, |"]), Er(, 7’) (
parabolic case Py = diag|[1,...,1

2/ + /|2 + 22
p (.CI?) = 9 ’

Note that we deal not exactly with the parabolic metric, but with a general anisotropic
metric p of generalized homogeneity, the parabolic metric being its particular case, but
we keep the term parabolic in the title and text of the paper, the above existing tradition,
see for instance [2].

Suppose that € (z) is a real-valued and measurable function defined on R™. Suppose
that S™~! is the unit sphere on R™ (n > 2) equipped with the normalized Lebesgue
surface measure do. Let Q € Ls(S™ 1) with 1 < s < oo be homogeneous of degree zero
with respect to A; (Q (x) is A;-homogeneous of degree zero), that is, Q(A;x) = Q(z), for
any t >0,z € R". We define s’ = %5 for any s > 1. One of the important problems on
parabolic homogeneous spaces investigates the boundedness of parabolic linear operators
satisfying the following size conditions ((1.1) and (1.2)). Therefore, in this paper, we
consider parabolic linear operators Tg and 7, 512:: os @ € (0,7) satisfying the size conditions

z,7), Ay = tI and J (2') = 1. Moreover, in the standard
, 2] we have

z= (2, 2) .
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for any f € Li(R™) with compact support and x ¢ suppf, respectively

sl < [ 0 e sl dy (1)
15,0 < e [ m| (), (12)

Rn
where ¢y is independent of f and x.

We point out that the conditions (1.1) and (1.2) in the case @ =1, « =0and P =1
was first introduced by Soria and Weiss in [11]. Indeed, in 1944, Soria and Weiss devel-
oped Stein’s result [12] in the above shape. The conditions (1.1) and (1.2) are satisfied by
many interesting operators in harmonic analysis, such as the parabolic Calderén—Zygmund
operators, parabolic Carleson’s maximal operator, parabolic Hardy—Littlewood maximal
operator, parabolic C. Fefferman’s singular multipliers, parabolic R. Fefferman’s singular
integrals, parabolic Ricci—Stein’s oscillatory singular integrals, parabolic the Bochner—
Riesz means, the parabolic fractional integral operator(parabolic Riesz potential), para-
bolic fractional maximal operator, parabolic fractional Marcinkiewicz operator and so on
(see [7,8,11] for details).

The parabolic fractional maximal function Mg’ of and Tg, of by with rough kernels,
0 < a < 7, of a function f € L*¢ (R™) are defined by

ME o (@) = sup B [ 10 @ =yl 17 0)dy.
E(x,t)

Tt = [ S

R

satisfy condition (1.2). It is obvious that when = 1, Mfa = M? and Tfa = TF are
the parabolic fractional maximal operator and the parabolic fractional integral operator,
respectively. If P = I, then MQ = Mg, and TQ = T, are the fractional maximal
operator with rough kernel and fractional integral operator with rough kernel, respectively.
It is well known that the parabolic fractional maximal and integral operators play an
important role in harmonic analysis (see [2,6,8]).

We notice that when o = 0, the above operators become the parabolic Calderén—
Zygmund singular integral operator with rough kernel T = Tg; o and the corresponding

parabolic maximal operator with rough kernel MSI{ 0= Mg :

P — oo Qz —y)
T8 () =p. .R[ o Wi,

MEf(a) = swp B0 [ 19 =)l 1fW)ldy

E(z,t)

satisfy condition (1.1). It is obvious that when Q = 1, TY = T¥ and ML = M?* are the
parabolic singular operator and the parabolic maximal operator, respectively. If P = I,
then Mé = Mg is the Hardy-Littlewood maximal operator with rough kernel, and Té =1Tq
is the homogeneous singular integral operator. It is well known that the parabolic maximal
and singular operators play an important role in harmonic analysis (see [2,6,7,14]).

On the other hand let b be a locally integrable function on R”, then for 0 < o < 7,
we define commutators generated by parabolic fractional maximal and integral operators
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with rough kernel and b as follows, respectively.

MEyo (1) @) = sup B0 5 [ 10@) = b @126 = )] 5y
E(xz,t)

Q(z —y)

[0, T o) f () = b(2) TG o f () — T o (bF) () = / [b(a) — b(y)] — "5 f(y)dy.
p(z—y)

Rn
Similarly, for o = 0, we define commutators generated by parabolic maximal and sin-
gular integral operators by with rough kernels and b as follows, respectively.

My (f) () = sup Bz, 1) / [b(x) =0 ()] 12 (x =)l (y)ldy,
E(xz,t)

Qz —y)

b, TE)f(2) = b(2)TE f(z) — TE (bf) () = pov. /[b(af) - b(y)]m

R”

Because of the need for the study of partial differential equations (PDEs), Morrey [10]
introduced Morrey spaces M), y which naturally are generalizations of Lebesgue spaces.
We also refer to [1] for the latest research on the theory of Morrey spaces associated with
harmonic analysis.

A measurable function f € L, (R"), p € (1,00), belongs to the parabolic Morrey spaces

M, . p (R™) with X € [0,) if the following norm is finite:
1/p
1 / »
= su — d ,
I I

(z,r)

where E(x,r) stands for any ellipsoid with center at x and radius r. When A = 0,
M, . p (R™) coincides with the parabolic Lebesgue space L, p (R™).

If P =1, then M, » ;(R") = M, A\(R") and L, ; (R") = L, (R") are the classical Morrey
and the Lebesgue spaces, respectively.

We now recall the definition of parabolic generalized local (central) Morrey space
LM;?; in the following.

Definition 1.1 (parabolic generalized local (central) Morrey space, [7,8]). Let
@(x,r) be a positive measurable function on R” x (0,00) and 1 < p < co. For any fixed

xo € R™ we denote by LMI;{pr} = LM;ZE;’}I;(R”) the parabolic generalized local Morrey

space, the space of all functions f € LLOC(R”) with finite quasinorm
_1
1£1l, ypteor = sup@(ao, m) " E(zo, )|~ # | fllL, (B@ory) < o
p,p, P r>0

According to this definition, we recover the local parabolic Morrey space LM;;K?}; and
A—
weak local parabolic Morrey space WLMZ;{’?}; under the choice ¢(xg,r) = rr

IMih =Mk | e, WIMSL=WIMES|

p(xo,r)=r P

plwo,r)=r "7

Now, let us recall the defination of the space of LC’;’:&O’ p (parabolic local Campanato

space).
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Definition 1.2 ([7,8]). Let 1 <p < ococand 0 < A < % A parabolic local Campanato
function b € Léoc (R™) is said to belong to the LC;,:EAO}D (R™), if

v
¥ty =500 | e [ p0) e[y | < oo,
LCP,)\,P r>0 ‘E (1}0,1")| + pE(a:o ") ’
where
1
b = b(y)dy.
E(zo,r) |E (IO’ T')| / (y) Yy
E(zo,r)
Define

L), (") = {b € L @)+ bl 00 < oo} .

Let b; (i =1,...,m) be locally integrable functions on R™, then the fractional type
parabolic multilinear commutators generated by parabolic fractional maximal and integral

operators with rough kernel and b = (by,...,by,) (parabolic local Campanato functions)
are given as follows, respectively:
= P r Qz —y)
V15 @) = [T @)~ bl =L ) dy,  0<a<n,
R i=1 p (l’ - y)
Mg f (@)= Sup B, )|~ / [I i (z) = b )12z = )| 1 f(W)ldy,  0<a <7,
E(z,t) =1

We notice that when o = 0, the above operators become the parabolic multilinear commu-
tators generated by parabolic singular integral operators and the corresponding parabolic

maximal operators with rough kernel and b = (by,...,by,,) as follows, respectively:
— O Qz—y
.11 @) = [T i) 2L )
il p(z—y)
M f (@) =swp B~ [ T (b @) - b )] 126 - 0)]1£(w)ldy
B(z,t) =1

In [7,8] the boundedness of a class of parabolic sublinear operators with rough kernel
and their commutators on the parabolic generalized local Morrey spaces under generic
size conditions which are satisfied by most of the operators in harmonic analysis has been
investigated, respectively.

Inspired by [7,8], our main purpose in this paper is to consider the boundedness of

Q Q
Morrey spaces, respectively. But, the techniques and non-trivial estimates which have

been used in the proofs of our main results are quite different from [7,8]. For example,
using inequality about the weighted Hardy operator H,, in [7,8], in this paper we will only
use the following relationship between essential supremum and essential infimum

above operators ([ b,Tq], M, e (b, Taa, M e a) on the parabolic generalized local

<egscseiJIE1f f (az)) = es:CsESEp @ (1.3)

where f is any real-valued nonnegative function and measurable on E (see [13], page 143).
Our main results can be formulated as follows.
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Theorem 1.3. Let z9 € R", Q € Ly(S" 1), 1 < s < oo, be As-homogeneous of degree
1

1
m —
zero. Let also, 1 < q,p;, p < 0o with % = —,+% and b € LC;;&EP(R") for0 <\ < %,

1=1,...,m.
For s' < q, if functions ¢1,p2 : R™ x Ry— Ry satisfy the inequality

1+1In-

r m
t i=1

and for p < s, if functions 1,02 : R" x Ry — Ry satisfy the inequality

i 4\ m essinf gOl(aj(),T)T%
/( ) SRS < Cpa(xg, 1), (1.4)

1+In- dtSsz(xo,r)T%,

r

m
r (1250
t i=1

%
where C' does not depend on r, then the commutators [ b ,TSI;] and MSI;? are bounded from

LM;?E:P to LM} Moreover,

W
o) : -
[(1omtyr a0

q,p2,P"
st S | (T (15)
e G M e '
— —
b, MP H < b , _ L6
05205305 yger, S TIE gty 1o, (16)

Corollary 1.4 ([7]). Let 79 € R"*, Q € Ly(S™ 1), 1 < s < o0, be Ai-homogeneous of
degree zero. Let Téj be a parabolic linear operator satisfying condition (1.1), bounded on

L,(R™) for p > 1, and bounded from Li(R™) to WL{(R"). Let also, b € LC’;:OA}P (R™),
1 1_ 1, 1
OS)\<§ and};—pl—{—pz.
For ' < p, if functions o1,p2 : R" x Ry — Ry satisfy the inequality

.,
00 inf 1 (xg, 7)TP1
0y Sal er (oo
Z <
/ (1 +In T) R dt < Cpa(zo, 1),

and for p1 < s, if functions p1,p92 : R™ x Ry — Ry satisfy the inequality

.
0o .
" es§1nf o1(xo, T)TP1
/ (1 +1n ) IsT<eo dt < C py(zo,7)r7,

r g s HITA

T
where C' does not depend on r, then the commutators [b,Tg] and MKIZD,b are bounded from

LM, p to LM, ) p. Moreover,

b, 151 | <ol e .

b 78511 IR LU L
MPfH vy SOl oty I 3 a0
M T P

Theorem 1.5. Let zg € R", Q € Ly(S" 1), 1 < s < 00, be A;-homogeneous of degree

m
. Y oanith 1 — 1,1 1 _1_ «a
zero. Let also, 0 < a <y and 1 < q,q1,p;,p < wzthq—g:lpi—i-p, a7 and

- .
b e LC L@ for0<ni< i i=1,....m.



Some parabolic multilinear commutators 623

For s' < q, if functions ¢1,p2 : R™ x Ry — R satisfy the inequality

® P\ §<SSl<nf o1(w0, T)TP
TR0
/<1+1HT) m SCSDQ(:EOvr% (17)
t i=1  i=1

and for q1 < s, if functions p1,p2 : R™ x Ry— Ry satisfy the inequality

ol

o0
A\ essinf o1 (g, 7)7P
/ (1 +1In ) fer<oo dt < C py(zo, 7)™,

) TR

_>
where C does not depend on r, then the commutators [ b anlzj,a] and Mg_b> are bounded

from LM o parted Moreover,

) e

D1, P q1,p2,P"

- mo_
b Tl | STIe N, e . 1.8
|00 28]y S TINE ey, WA (L8)

m

%
I, oo STIE et 110 - 1.9
L IS | (LI P ey (19)

Corollary 1.6 ([8]). Let 29 € R", Q € Ly(S™1), 1 < s < o0, be Ai-homogeneous of
degree zero. Let Té::a be a parabolic linear operator satisfying condition (1.2) and bounded

from Ly(R™) to Ly(R™). Let also, 0 <o <7, 1<p< 2, be LOYY, (R, 0< A< L,
1 1 1 1 _1 a 1 1 a

P m P2’ q P Y@
For s' < p, if functions o1,ps : R” x Ry— Ry satisfy the inequality

Y
0 f p1(xo, 7)TP1
¢y st e, 7
/(1 + In 7‘> T dt < C po(xo,1),

tan

and for q1 < s, if functions p1,p2 : R™ x Ry— Ry satisfy the inequality

l
o0 f (2o, T)TP1
) s o T 1
/<1+lnr> 7_7+1_ At < Cpa(xo,m)r=,

where C does not depend on r, then the commutators [b,T&a] and Mﬁib,a are bounded
from LM o LM{zO} Moreover,

p1,1, P
|b. 7801, wteor, S Wl Il
ME fH w0y SOI Atwor LIS o0
M8t e, S Wl 1 pgce

At last, let F,G > 0. Here and henceforth, the symbol F' &~ G means that F' < G and
G < F happen simultaneously; while /' < G and G S F mean that there exists a constant
C > 0 such that F' < CG.
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2. Some lemmas

To prove the main results (Theorems 1.3 and 1.5), we need the following lemmas.

Lemma 2.1 ([7,8]). Let b be a parabolic local Campanato function in LC’{xO} (R™), 1
p<oo,0§)\<% and 0 < re < ri. Then

P

1 1
d < 14+In—)|b 20} 2.1
3/ ~ C( ’)"2) H ”[CIE,)\O,} ( )

b (y) - bE(:p re)
E T+Xp / ’ 0,72
|E (w0,71)] Blanira)

p

where C' > 0 is independent of b, 1 and ro.
From this inequality (2.1), we have

‘bE(ﬂﬁoﬂ“l) B bE(mo,rz) <C (1 +In ) ‘E (x07T1)| Hb”LC}E;\O} ) (2'2)
and it is easy to see that
1 Ty
b—1b ) < C In — b 2} - 2.3
b= bl ey < € (141072 ) 734 bl (23

Lemma 2.2. Suppose that z9 € R", Q € Ly(S™ 1), 1 < s < oo, is As-homogeneous
of degree zero. Let TP be a parabolic linear operator satisfying condition (1.1). Let also

1< q,pi,p < oo with 1 = Z —I—f and b ELC{%} p(R™) for 0 < \; < %, 1=1,...,m.
Then, for s’ < q the mequalzty

[e.o]

= n : 115, o
I8 T N eanrn S TPt 7 [ (14w D)" SRR gy ()
i=1 PirXi) 7<1 ZA)JA
t

2kr

holds for any ellipsoid E (xo,r) and for all f € Lg’c(R"). Also, for p < s the inequality

m

[e.e]
b v 1-2 Ny (ot
||[ b )TSIQD]fHLq(E(xO,r)) S_, H” b HLC{?(&}_ R ra s / (1 +1n r> p(E(x0,t)) dt
i=1 PiAis 2kr V(;—i—Z/\z) 11
t =1

holds for any ellipsoid E (zo,7) and for all f € LI*°(R™).

Proof. Without loss of generality, it is sufficient to show that the conclusion holds for
_>

[0, TEf = [(b1,b2), TL]f. Let 1 < q,p;,p < oo with o 1 Z —|— and b € LC’;:EO/\}P(R”)
for0 < \; < %, i=1,...,m. Set E = E (xg,r) for the parabohc ball (ellipsoid) centered at

xo and of radius r and for £ > 0, we denote 2kE = E (z¢, 2kr) = {y € R" : p(z — y) < 2kr}.
We represent f as

f=h+fe  h@=FWxae®),  L@)=FfWXeurnc W), r>0(25)
and thus have
10102y 781, < 0sb2) TEVR 00 0) TEVR |, ) = F 4G

Let us estimate F' + G, respectively.
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For [(b1,b2),TE]f1 (z), we have the following decomposition,

[(b1,b2) , T51f1 () = (b1 (2) — (b1) ) (b2 (2) — (b2) p) Ti5 f1 ()
= (b1 () = (b)) T& (b2 (-) = (b2)) f1) (2)
+ (b2 (2) = (b2) p) T8, (b1 (2) — (b1)p) i) ()
=T (b1 () = (1)) (b2 (-) = (b2) ) f1) ().

Hence, we get
F= [0 02), 8112, S0 = 00p) G2 @) = o)) TER]

][ = ) TE (02 = o)) 1],

+ [z = G2 ) T (0 = G0 1),

|78 (= b)) (0o = D) 1],
EF1+F2+F3—|-F4. (26)

One observes that the estimate of Fy is analogous to that of F3. Thus, we will only
estimate FY, 5 and Fy.

To estimate Fi, let 1 < ¢,7 < oo, such that & —|— 5, ; = p%
Holder’s inequality and by Theorem 1.2. in [7] it follovvs that:

+ p%' Then, using

F = H(bl — (b1)g) (b2 (x) — (b2) ) T Lq(E)

S b= @0)p) (2 2) = ) 1) | TE 1],y

S by — (bl)EHLp1 (E) [b2 — (b2)E”Lp2(E) ”fHLp(%E)

2 T dt
S o1 — (bl)EHLp1 (F) [b2 — (b2)E”Lp2(E) re / HfHLp(E(xo,t))tzH'
P

2kr

From Lemma 2.1, it is easy to see that

Ly
6 = gl ) < O bl ey (2.7)
and
1bi — (bi)EHLPi(ZkE) < b - (bi)QkEHLpi(QkE) +(bi) g = (bi)2kEHLm(2kE)
LN
S il (2.8)
PisAis
for i = 1, 2. Hence, by (2.7) we get
[e.o]
oY (T B t
ﬂ<mwcm}MmCM}r@lwpf/Q+m)tp“M“2\m% (o)t
rah2- 2kr
i 2 111
X Ly (E(zo,t
< Y Ly (E(xo,t)
Sl Mol 17 [ (14100) s

2kr



626 F. Guirbiiz

To estimate Fb, let 1 < 7 < oo, such that % =
F1, we have

p% + % Then, similar to the estimates for
Fy % Nl = 00 gl s |8 (02 () = B2)) 1,

Sbr = )l (g 102 () = (b2) ) fillp (i)

Sor = G0 gl () 102 = 02) gl L, o) 1L, @rE) -

where 1 < k < oo, such that %— L

= -+ 3 =1 By (2.7) and (2.8), we get

1
p

(o)
By S bl el ri [ (1+mE ZWHLP—%J)dt
2 1 LC{zo} 2 LC;;O}QP r) It

kr

In a similar way, F3 has the same estimate as above, so we omit the details. Then we have
that

Fy < [[ba| [|ba2 ]| %OO 14+In- QWHL?—E(’JDOJ))dt
35 0l ot 02 LC;E:?A}Q,pT F) Gt
2kr

Now let us consider the term Fy. Let 1 < ¢, 7 < oo, such that % = % +

1
p7
Then by Theorem 1.2. in [7], Holder’s inequality and (2.8), we obtain

Fy = |18 (b = (1)) (b2 = (b)) 1),
S = (1)) (b2 = (52)g) Fil )
S 1161 = (1)) (b = (82) ) 1, 1y 1l
S b = B0l ormy b2 = 025l ok 1112, )

i 2 A1
X Lp wo,t)
Sl Mooy 17 [ (1+100) s dhar

kr

Combining all the estimates of Fi, Fy, F3, Fy; we get

T 2N Lot
F = ||[(b1,b2) , TG ] f1 S bl ey lb2ll ey re [ (14m= %dt-
L‘I(E) Cpl, C t 'Y( 1+ 2)+

P2,22,P r
2kr

Now, let us estimate G = H[(bl,bg) T8 f .
q

By For G, it’s similar to (2.6) we also
write

G = ||l(br,b2) T 1o

S = (1)) (b2 (@) = (b2) ) T

Ly(E) Lq¢(E)
]|t = o)) TS (2 = ) £,
][ = b)) TE (1 = G0 2],

/78 (B = (b)) (02 = 2)p) o)
=G1 + Gy + Gs + Gy.

(E)
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To estimate G, let 1 < ¢, 7 < oo, such that % = %Jr
inequality and by (12) in [7] and (2.7), we have

11— 1L 1 Then, using Holder’s
p’ T P1 p2

G = H(bl — (b)) (b2 (z) — (bQ)E)Tgfé L)

S (b= (00)p) 2 = G2 i) [T L],y

¥ 14
S o — (bl)EHLPI(E) [b2 — (bQ)EHLpQ(E) re / ||f||L,,(E(a:0,t))t podt
v i+i+7)
S ol ey 020l ey 7 (”1 vy
’ HLCPLOALP‘ ‘LCPQ,OAQ,P

o0 t 2 L
y / (1+1nr) Al 1] PP
2kr

)7 Wlitean

oo
7
< s _ T pAA05Y))
ol e Wollermg 73 [ (140 ]) Sy

p
A2 2kr

On the other hand, for the estimates used in Gs, G3, we have to prove the below
inequality:

7 12 N AT S
(1m0 ) T U e 29)

kr

T8 (b2 = (b2)p) o) (@)] £ [l o

p2,A2,P
2

Indeed, when s’ < ¢, for z € E, by Fubini’s theorem and applying Holder’s inequality and
from (2.2), (2.3), 0 <r < t, (11) in [7] we have

T8 (b2 () = (02) ) o) ()]
S [ 1) - Gel19 - y) ey

(2kE)°

~[ ] @ - el @)

2kr2kr<p(zo—y)<t
00

5/ / ’bz( — (b2) xot’!Q T — )Hf()|dym+1

2krE(xo,t)
oo

+/ ‘(62)E(a:0,t) - (bQ)E(xo,r)

[ 1=yl w)ldygs

2k7" E(zo,t)
/ Hb2 E(zo t>HLp2 (E(x0.t)) 12 = Dz, (B0 1L, (E o)
2kr

_1_1
11, (50 12 C = D)l (Bao gy [ B @0, )75

o0
—I-/ ’(62)E(wo,t) - (bz)E(wo,T)
2kr

— o X
S / Hb2 () - (b2)E(x0,t)HLP2(E(xO7t)) 1L, (Bosyt 72 Pdt
2kr
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o0
—1—=24~N
Flealgey [ QD 1 gy gyt
2k7‘
—X4rdo—1
A / R el Vi P D

p2,A2, P

T
This completes the proof of inequality (2.9).
Let 1 < 7 < oo, such that % = p% + % Then, using Holder’s inequality and from (2.9),

(2.3) and 0 < r < t, we get
Go = |61 = 1)) T (02 = o)) )], )

S lbn = ) gl gy [T (2 () = B2)) )],

i ? HfH
Lp(E(zo,t))
Sl Mol 7 [ (14m7) 22n i
kr

Similarly, G5 has the same estimate above, so here we omit the details. Then the inequality

G = |02 = b)) T8 (0~ 000 )],

I 20 fle
(E(zo,t))
< lloul Lot} e Loty T / (1+1 r) 5 i

p2,A2,P
2kr

is valid.
. It’s similar to the

Now, let us estimate Gy = HTSI; (b1 = (b1) ) (b2 — (b2) ) f2)‘ I

estimate of (2.9), for any x € E, we also write

TE (b1 = (b1) ) (b2 — (b2) ) f2) (x)‘
5/ / ’bl(y)_( xotHbz (bZE(th“QSL‘— || f ()| dy 2

QkTE(xo,t)

)| 9@ =)l 1f ()] dy

+/ / b (y)_(bl)E(mg,t)"(bz)E(mo,t)_(bQ) E(zo,r)

ZkTE (z0,t)

+ / [ 1008000 = )| 2 @) = @) | 126 = )11 )y
2]{7‘E (zo,t)

+ / | 1®0e0n = ) 50| | 02) 50 — Ess0m| 194 = 0] 1f W] dy i
2krE(xo,t)

= Ga + Ga2 + Gaz + Gua.
Let us estimate G41, G429, G43, G44, respectively.
Firstly, to estimate Gy, similar to the estimate of (2.9), we get

Vi 2NNy (B (o)
Gu S Inleimg ol [ (14n]) S

r2he 2kr
Secondly, to estimate G42 and Gus, from (2.9), (2.2), (2.3) and 0 < r < ¢, it follows that

7 2N fllz, (Bo.t)
P2,A2, /( in T) ti_’Y()\l—H\Q)—Hdt

Ga2 S HblHLC{xo} Mozll ey
P1A

2kr
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and

i 2 1S, oo
Gin S il ol [ (14107 ) it

kr
Finally, to estimate G44, similar to the estimate of (2.9), from (2.2), (2.3) and 0 < r < ¢,
we have

oo
£l 2, (E(o.t)
G44§”b1”chf?} ||b2||LC{ZO}2P/<1+1 r) t**’Y(I;\1+)\2)+1dt
'

By the estimates of G4; above, where j =1, 2, 3, we know that
T8 (b1 = (b)) (b2 = (b2) ) f2) ()]

(e}

I £1l 2, (E(zo.t))
< N Lp(Blo.t))
NHblHLCﬁ?A}LPHbQ‘Loi;ox}Q,Pk/( o ?“) t’_'Y(M“”“dt

Then, we have
Gy = |78 (61 = 1)) (02 = b)) ), )
v T 2N fllLp(B(o.t)
< 1 W Ep(B(2o,t))
Sl Walieg [ (14m7) i

kr

So, combining all the estimates for Gy, Ga, G3, G4, we get

o0 2
_ P < : WAl o 1)
G H[(bl’b2)’TQ]f2HLq(E)NHblHLC;T,OA}LPHbQHLC}f;&}%Prq / <1+1 r) t;—’Y(Al—l-)\z)—i-ldt'
2kr

Thus, putting estimates F' and G together, we get the desired conclusion

i 2
P < i t ”fHLp (E(zo0,t))
600 ], g S Wi Moty [ (107 i
T

For the case of p < s, we can also use the same method, so we omit the details. This
completes the proof of Lemma 2.2. O

Lemma 2.3. Suppose that zg € R?, Q € Ly(S" 1), 1 < s < 00, is Aj-homogeneous of
degree zero. Let Ts];,a be a parabolic linear operator satisfying condition (1.2). Let also

— . .
and b € LYY L(RY)

m
. Y oapith 1 = 1,1 1 _1_«
0<a<’yand1<q,q1,pz,p<awzthq—glpi—kp,ql—q 5
forogAi<%,z':1,...,m.
Then, for s' < q the inequality

[e.o]

dt

= O™ e
1B TE ey (Beom) <H||b||LC{IO} i [ (1m?) (B0

piti 2kr 7<(}1<ZM+ZJZ.>>+1

t .

(2.10)
holds for any ellipsoid E (xq,r) and for all f € LfDOC(R”). Also, for q1 < s the inequality

—
H[ b 7TS§a]f‘|Lq1 (E(zo,7))

o0

S HH b HLC{IO} r%_%/ (1 + In :) ( (pr (zo,t)) dt
PisNis
b (1S ) o
t

2kr
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holds for any ellipsoid E (zg,r) and for all f € LéOC(R”).

Proof. Similar to the proof of Lemma 2.2, it is sufficient to show that the conclusion
holds for m = 2. As in the proof of Lemma 2.2, we split f = f; + f2 in form (2.5) and
have

P P _.
H[(blv b2) 7TQ,a]f‘ Loy (E) < H[(bla b2) 7Tﬂ,a]f1 Lo, (E + H bla b2 TQ a]fQ‘ Lq, (E) = A+B.
Let us estimate A + B, respectively.
For (b1, b2) ,Tg{a]fl (x), it is easy to see that
= L < _ _ P
A=[lonb) TELA] ) S[0r= 008) G2 @) = ) ) Taahi],
[ = @) T (2 = ) ],
a1
|2 = @2)) Tha (01 = G0 0],
1
[T (= B)g) 2 = D) 1]
1
=A1+ Ay + Az + Ay (2.11)

_ . 11 o iy . 1 _ 1,1 ,1 . " s
Let 1 < § < oco. Since 7= p o itis obvious that o - Tm T Thus, using Holder’s

inequality and by Theorem 0.1 in [8] and (2.7) it follows that:
A S 0= (00)g) 2 = )l T8l
S [lbr — (bl)BHLm(E) [b2 — (b2)B||L ||f”Lp (2KE)

< llor = (40 sllz, (e b2~ B2l iy / 1120 m

2kr
oo
o A% £l 2y (E(o.t)
$lcgeg Wlscgy o [ (o) "

a2 U B
oker y(A1+X2) 7(p1+p2>+1

To estimate As, let 1 < 7 < oo, such that q% = p% + % Then, similar to the estimates for
Ajq, we have

Az 5 b1 = 00 glly, ) [T (b2 () = (52) ) 1)
S oy - (bl)EHLpl(E) [1(b2 () = (b2) ) f1HLk(E)

S oy — (bl)EHLpl(E) [[b2 — (b2)EHLP2(2kE) ”f”Lp(QkE‘) )

L.(E)

2
where 1 < k < 2, such that § = p% + ;1) =14 2. By (2.7) and (2.8), we get
o0
X t)? 1fllz, &
Ay S b1l e HbQHLC{zo} ra / (1 +1In ) p(E(0,1)) dt.
p1,A1,P 2,9, P T 77V()\1+A2)77<i+i)+1
kr P1 P2

In a similar way, A3 has the same estimate as above, so we omit the details. Then we have
that

4 T )2 £ Ly (B (o.t))
s S Il gy NPl ey 7 [ (1407 .
Pl:

Ao, P r o o
2 . o (A1 +A2) “/(p1+p2)+1

@

Now let us consider the term A4. Let 1 < ¢ < %7 such that q% = % o It is easy to
see that % = p% + p% + %. Thus, by Theorem 0.1 in [8], Hélder’s inequality and (2.8), we
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obtain

Ay S [(br = (b1) ) (b2 = (b2) ) [l ()

SIor = 00 gll,, ke 102 = (02)EllL, @2ke) 11|, 24E)

e t)? £l 2 (E(20,t))
Sl el ooy 7o / 1+1n) it
2h2. P " **’Y()\1+/\2)*’Y<%+i)+1

kr P2

Combining all the estimates of Ay, As, Az, Ay; we get

A= H[(bl,m) T W)

Lay (E)

<Ml Walgiy 7 [ (1) M istan g,
~ 1101 LCE?A}LP 2 LC;;O/\}Q,P ‘

r oo _ 1 41
o Y(A14+A2) 'y(m +p2 )+1

Now, let us estimate B = H[(bl,bg) ,Tga]fg‘

. For B, it’s similar to (2.11) we also
. L, (E)
write

B = H[(bl, b2) 7T§a]f2‘

Lq, (E) S H(bl — (b1)g) (b2 (z) — (bQ)E)TKIZD,an‘

Lq, (E)
o= @00 T (02— @) 2],
1 (R OBEE AR B
T HTg{a ((br = (b1) ) (b2 = (b2) p) f2)‘ Lo, (E)

=B, + By + B3 + By.

Let 1 < p1,p2 < 2. Since L =
Holder’s mequahty and by (2.6

By 5 01 = (b)) (b2 = 02) )y [T o],

1 1,1 .
, it is easy to see that -- o = T T Thus, using
| and (2.7), we have

\-/'UM—‘

n 8

¥ a
S by — (bl)EHLm(E) llb2 — (b2)E||Lp2(E) ra / HfHLp(E(xo,t))t a ldt

2kr
o0
5 N Il
Sl gty ol 7 [ (1+m?) 2 (Elzo, dt.
2,A9, P % r 177()\1+)\2)*7<H+E)+1
'

On the other hand, for the estimates used in By, Bs, we have to prove the below
inequality:

T (b2 = (b2)p) f2) (@)] < N2l

p2,A2, P

> t\ 24— 1+4a
/<1+lnr>t A ] PR
k

r

(2.12)
Indeed, when s’ < ¢, for z € E, by Fubini’s theorem and applying Holder’s inequality and

from (2.2), (2.3), 0 <r <t and (11) in [7] we have
T8 (02 () = (52) ) fo) (@)

S [ @) - Gel16 -yl Yy
(2kE)©
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<[ )= @0 IS 0

2kr2kr<p(1‘o y)<

~ / / ‘bg b2 E(J»’Ot ‘|Q L= )||f( )|dytw ES

ZkTE (zo,t)

[ [0t~ Oletaan| [ 126 = 0117 0l

2]€T E({[O’t)
/ 2 ) = @) e t)HLm(mO,t)) 120 = 9l (B0t 11|, (0.0
2kr

1—L1_1_1
X |E (zo,t)|" 72 = pt'y—dii—kl

=

1—1_
+ / ‘ b2 J:()t ) :l:()7 x07t)) HQ ( - y)HLS(E(J}()J)) |E($07t)| p s tfy_di(iﬂ
2kr
— Ty do—1+
S Pollygizgy [y,

,
This completes the proof of inequality (2.12).
Let 1 <T<oo,suchthatqi1:pil—|—%and%:
inequality and from (2.12), (2.3) and 0 < r < ¢, we get

By S llbr = (b1) gl (| T (82 () = (02) ) o)

_l’_

1 1 o Th : . ’
= 4 = — & n ing Holder
T Ty en, using Holder’s

L. (B)

S ol ey F [ (1ant) — Mean
1 LC{xo} 2 LC]‘E;@}Q P?” n . l_,y(/\l_‘_)@)_,y(;_i_i)_*_l .
tQ1 P1 P2

kr

Similarly, B3 has the same estimate above, so here we omit the details. Then the inequality

By = (b — 02)) T8 (b1~ 00)p) 2],

- a by t\?2 HfHL E(xzo,t)
Sl ooy o2l ooy rm [ {1+ ) — Nt
PLALP p2,A2,P o ta*’y(h+>\2)*’7(ﬁ+5)+1

is valid.
Now, let us estimate By = HT{;O‘ (b1 = (b1) ) (b2 — (b2) ) fg)‘

estimate of (2.12), for any = € E, we also write

T8 (b1 = (b)) (b2 = (b2) ) fo) ()]

</ (/ | b1 @) = (B (e [B2 ) = (B2) a0 196 = )11 ()] iy

2krE(xo,t

. It’s similar to the
Ly, (E)

o0

+/ / b1 (y) — (bl)E(ﬂco»t)’ ‘(62)E(xo,t) = (02) B(ag,n)

2krE(xo,t)
[e.e]

Q@ = )| 1f ()] dy s

[ ] 0050 — 0eon| 22 0) = G2 0] 196 = 9] 1F @) dy s

2krE(zo,t)
00

1z — )| 1f (v)| dy 72

+/ / (0 B(z0) — 02) ag) | | 02) w0y — (2) (e

2krE(xo,t)



Some parabolic multilinear commutators 633

= Ba1 + Bya + B4z + Bua.
Let us estimate By1, B2, Bas, Bag, respectively.
Firstly, to estimate By, similar to the estimate of (2.12), we get

o0 2

/<1+ln t) 11l 2, (E(zo.t) "
»

2kr

By < [Jba]]
r f*’y(/\1+>\2)*’y(%+é>+l

1621l

{zo} {zo}
LCPlvAlvP LC’I72 Xg. P

Secondly, to estimate Byo and Bys, from (2.12), (2.2), (2.3) and 0 < r < t, it follows that

i t)? I £1l 2,y (E(zo.))
Boo S Ibrl oy ol [ (1400 .
o 2kr )*1

P2, 32, r ff‘y(/\1+>\2)f'y(ﬁ+é

and

7 £\ 2 1 £11 2y (E(zo,t)
Bz S ||bl||LC{zo} ||52||Lc{zo} / e dt.
P1A P2:A2. P ta—“/(AH-M) ( >+1

1 1
—~ 4+ L
r v P11 P2

Finally, to estimate B4, similar to the estimate of (2.12) and from (2.2), (2.3) and
0 < r <t, we have

7 2% 1£ 11, (B0t
Bu S Iilieg Ialyoiey | [ (1+1m2) (Bleor) g
Plv

P22 d r —f'y(/\1+>\2)f'y(%+é>+l

By the estimates of By; above, where j = 1, 2, 3, we know that

o0

£\ 2
T (01 = (b)) (b2 = (22)) 2) ()] S Dol oy Wl oy / (“%)
*2 kr
1Nl 2, (B0 .t) it
tﬁ‘“’““” <p11+%>+1
Then, we have
[e.e]
2 A% 1Nl 2, (B (ot
BiS Il gty ol gty o [ (14107) Sl g
PLA 222, . tg—’Y()\1+>\2)—7(H+E)+1
So, combining all the estimates for By, By, By, By, we get
_ P
B = H[(b17b2) ﬂTQ,oz]fQ’ Ly (E)
o
2 A% £, (B
Sl Palleen i [ (1+107) oBt) gy
KOy Lo r r *—v(/\1+>\2)—7(ﬁ+i)+1

kr P2

Thus, putting estimates A and B together, we get the desired conclusion

‘[(bl, ba) ,T{Za]fHqu(E)

3 7 )2 1]z, (B0.0)
< ||b1”LC{zo} ||b2||LC{IO} PT“H 1+1In ; Onta) ldt
p2:A2, g YAitA2 _7(H+E)+

2kr

For the case of g1 < s, we can also use the same method, so we omit the details. Thus,
we complete the the proof of Lemma 2.3. O
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3. Proofs of the main results
3.1. Proof of Theorem 1.3.

We consider (1.5) firstly. Since f € LM {9;01} p> by (1.3) and it is also non-decreasing,

with respect to t, of the norm ||fHLp Ezo.t))> We get

1Nl 2, (B o))

- < esssup —————5~

S pa(a, )T 0<i<r <0 oy, )7

1AW, (B o,0))

/
< esssup HHLP—%

0<T<00 ©1 (1;0’ T)TP

< [Ifl Larioh (3.1)

For s’ < ¢ < 00, since (1, p2) satisfies (1.4), we have

7(1 tin t)m ||f||Lp(E (20.t) g4

v ' ( ZA )+1

t
BN Wy ST
< / (1 +1n ) : dt
P et (5,
¢ i=1

® ™ te<ssmf ©1(zo, )T%
< Ol g0, [ (1 +In T) dt
p,p,

gl <;_Z)\i> +1

t i=1

< ClSll w0y 2(@0, 7). (3.2)
D,

Then by (2.4) and (3.2), we get

|7z

T

1 _
LM;,T;,OQ}, = sup o (xo,7m)" " |E(z0,7)| @ Lo(E(or)

<Cl_[H b|| Lotz SR (o, 7) "

Pis A, P

X/(1+1nt> HfHLp(Tf(zo,t)) 5
;
'Y(;Z)\i>+l
t =

r

< CHH b HLC{xo} HfHLM{xo}
=1 Ai»

For the case of p < s, we can also use the same method, so we omit the details. Thus, we
finish the proof of (1.5).
We are now in a place of proving (1.6) in Theorem 1.3.

Remark 3.1. The conclusion of (1.6) is a direct consequence of the following Lemma 3.2
and (1.5). In order to do this, we need to define an operator by

. TH1(£1) (@) = / [ L (16 (@) = bi (9)]] ,?(( }'

where Q € Lg(S"1), 1 < s < 00, is A;-homogeneous of degree zero in R™.

[F(y)l dy
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Using the idea of proving Lemma 2 in [4] (see also [9]), we can obtain the following
pointwise relation:

Lemma 3.2. Let Q € Ly(S" 1), 1 < s < 00, be Aj-homogeneous of degree zero. Then we
have

MESf@) < (B, TH11f) () forz €R™.

In fact, for any ¢t > 0, we have

7 ) b (o1 12 =)
BT (1) (@) > (w_/yminlubz (@)= b )l = 1 W)l dy
= H i () — bi ()1 12 = )11 )] d.
E(z,t)"®

Taking the supremum for ¢ > 0 on the inequality above, we get
— .
B, I51(f) (@) = MP o f(z)  forz e R™.

From_)the process proving (1.5), it is easy to see that the conclusions of (1.5) also hold
for [ b ,’f]g‘]. Combining this with Lemma 3.2, we can immediately obtain (1.6), which
completes the proof.

3.2. Proof of Theorem 1.5.

Similar to the proof of Theorem 1.3, We consider (1.8) firstly.
For s’ < g < o0, since (1, p2) satisfies (1.7) and by (3.1), we have

/ (1 o t>m 17y moy
r m m
r ((zz))
¢ i=1 =1
X

j (1+m2)" (EAPAEEN gesinf er(wo, )77

r
essinf TP
r int o1 (oo v<;l<zxi+z;i>>+l
t i=1 =1

dt

i N tessmf o1(z0, 7)T »
< Ol [ (141 E) = at
f2h G5
t =1 =1
p,¥,

Then by (2.10) and (3.3), we get

|7 717

(0,751

1
= sup w2 (xg, T E(xg,r
LM;f?p}Q P >0 SO ( 9 ) | ( 9 )|

- -1
<C b . su o, T
391 (T

X7(1+ln;>m 1£1|L, (B (o, Y
T ¢ ( (ZA +ZP’>>

Lg, (E(z0,7))
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=
<C bl w0y fIl; o 4200 -
g” ||chig‘ivp|| HLMp,é),P

For the case of g1 < s, we can also use the same method, so we omit the details. Thus,
we finish the proof of (1.8).
We are now in a place of proving (1.9) in Theorem 1.5.

Remark 3.3. The conclusion of (1.9) is a direct consequence of the following Lemma 3.4
and (1.8). In order to do this, we need to define an operator by

— - _ i ‘ o Q(z —y)| @
(V. i) (1) @) —R[ I1 (@)~ b @ S s 1wl dy - 0 <<,

where Q € Ly(S" 1), 1 < s < 00, is A;-homogeneous of degree zero in R™.

Using the idea of proving Lemma 2 in [4] (see also [9]), we can obtain the following
pointwise relation:

Lemma 3.4. Let 0 < a < and Q € Ly(S"1), 1 < s < 00, be Aj-homogeneous of degree
zero. Then we have

MPS f@) < [B.ThJAD @) forzeR

In fact, for any ¢t > 0, we have

TG00 @ [ Tk - b0l (Q(__)y)’ or
ple—y)<t =1 P Y

L [ I @) b @96 — ) )l dy
E(z,t) =1

>

tY

Taking the supremum for ¢ > 0 on the inequality above, we get
— .
(B, 76 () (2) 2 MES f@)  forz R

Flrom_> the process proving (1.8), it is easy to see that the conclusions of (1.8) also hold
for [ b ,T@' o] Combining this with Lemma 3.4, we can immediately obtain (1.9), which
completes the proof.
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