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In this study, the most preferred in control applications rotary inverted 

pendulum system (rip)  is dealt. The coordinates of the center of gravity of 

the rip elements were found and the total kinetic and potential energies of 

the system were obtained. Lagrange function has been formed by using 

kinetic and potential energy expressions. Expressions giving the equations 

of motion of the system have been found by taking into consideration the 

Lagrange method. Using the state variables, the pendulum angle of the 

system has been controlled by the moving sliding mode control method via 

the program written in Matlab. The slope of the sliding surface is calculated 

by artificial neural networks. Optimum values of weight and bias 

coefficients of artificial neural networks are found by using the genetic 

algorithm. From the results, it has been seen that the pendulum angle 

reaches to about 25 Nm motor torque and the reference value reaches about 

3 seconds and the error is about zero. 
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1. Introduction 

The controllability of the inverted pendulum system has an important place in the application of control 

techniques. The inverted pendulum problem is one of the most appropriate systems to be controlled to 

provide training in control engineering. There are inverted pendulum systems in different structures that 

have been developed and controlled up to now. These are single inverted pendulum systems on a cart 

[1,2], double inverted pendulum systems on a cart  [3], single and double rotary inverted pendulum 

systems [4,5]. 

One of the most preferred inverted pendulum systems is the rip system. The rip system is an excellent 

test system for working on the control of indirectly driven nonlinear unstable systems. The production 

of rip is more preferred in recent times because it is easier and less expensive than the inverted pendulum 

cart type. The rip system consists of two movable rigid rods. One of this limbs, a horizontal cylindrical 

arm, is moved by a rotational drive element and the other one is a vertically movable shaft (pendulum).  

In this system, the aim is to stabilize the pendulum [6,7].  

The rotary inverted pendulum system shown in Figure 1 is available in the literature works such as 

adaptive pid with sliding mode controller, fuzzy control, sliding mode control, pid control based on 

particle swarm optimization and the sliding mode control with the artificial neural network [ 8-12]. 

In this study, the pendulum control was carried out by the moving sliding mode control method by 

obtaining the nonlinear model of the rotary inverted pendulum system. The slop of the sliding surface 

has been found by artificial neural network (ann) method. The values of the ann constants are optimized 

using the genetic algorithm. In the structure of genetic algorithm in matlab, fitness limit, generations 

and population size were taken as 1e-10,  100 and  50, respectively.  
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Fig. 1. Rotary inverted pendulum system (Rip system) 

 

2. The Modeling Of The Rotary Inverted Pendulum System 
The system in Figure 1 is two degrees of freedom system driven by a single motor. Ɵ and β are the 

variable parameters of the system. The coordinate axis of the system is shown in figure 1. If the total 

kinetic energy of the system is calculated according to this coordinate axis set; 
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In the equations 𝑥1 and 𝑦1are coordinates of the center of gravity of the first rod. 𝑥2, 𝑦2, and 𝑧2 represent 

the coordinates of the center of gravity of the second rod. 𝑚1 and 𝑚2 are the masses of each arm. 𝐼1 and 

𝐼2 represent the inertia of the rods. The limb sizes according to the centers of gravity are 𝐿1 and 𝐿2 , 
respectively. Frictional coefficients at joints are 𝑏1 and 𝑏2. U indicates the control signal that the motor 

applies. 

The equations of the unknown expressions given in Eq. (1) are obtained as follows. 

 

𝑥1 = 𝐿1𝑐𝑜𝑠𝜃                                                                                                                             (2) 

𝑦1 = 𝐿1𝑠𝑖𝑛𝜃                                                                                                                             (3)                                                                                             

𝑥2 = 𝑥1 − 𝐿2𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜃                                                                                                             (4) 

𝑦2 = 𝑦1 + 𝐿2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝜃                                                                                                             (5) 

𝑧2 = 𝐿2𝑐𝑜𝑠𝛽                                                                                                                             (6) 

 

If the above expressions are replaced to find the total kinetic energy of the system; 
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     The potential energy of the system is calculated by using equation (8) and (9) respectively. 

𝑉 = 𝑚2𝑔𝑧2                                                                                                                               (8) 

𝑉 = 𝑚2𝑔𝐿2𝑐𝑜𝑠𝛽                                                                                                                      (9) 

     Here the Lagrange function is constructed as follows. 

𝐿 = 𝑇 − 𝑉                                                                                                                               (10) 
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     The equation of motion for θ is: 
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     If the expressions in this equation are calculated and substituted, the equation of motion for θ is 

obtained as follows. 
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    The equation of motion for 𝛽 is: 
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     After performing the necessary operations in the above equation, the equation of motion for 𝛽 is 

obtained as follows. 
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     If the expressions �̈� and �̈� in the equations of motion are extracted, the following equations are found. 
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     If expressions in equations are transformed into state variables, following equations are obtained. 

𝜃 = 𝑥(1)                                                                                                                                 (18) 

�̇� = 𝑥(2)                                                                                                                                 (19) 

𝛽 = 𝑥(3)                                                                                                                                (20) 

�̇� = 𝑥(4)                                                                                                                                 (21)                                                     

 

The moving sliding mode control method is implemented through the program written in Matlab using 

these state variables for the rip system. The pendulum angle β will be set to the desired zero reference 

point with this control method. 

 

3. Moving Sliding Mode Control Design 
Sliding mode control is a prominent, nonlinear, robust control method that is achieved by switching over 

time on a predetermined sliding surface with high speed, nonlinear feedback and switching 

discontinuously [13]. If parameters of a system are variable or cannot be precisely measured because 

they cannot be modeled and if the system is affected by disturbances, the sliding mode control provides 

robust control as long as their limit values are known. 

The sliding mode controller design process can be considered as a two-step procedure. These steps are 

to determine the sliding surface and to obtain a rule that allows the sliding surface to be determined [14]. 

When the sliding surface is reached, the sliding mode which has been insensitivity to external 

disturbances and parameter uncertainties of the system trajectory begins to slip. The chattering in the 

sliding mode control applications results from oscillations around the equilibrium point that the system 

wants to achieve. Which reveals the unmodified high-frequency dynamics of the system. 

A sliding mode control statement that has a sign function; 

 

𝑢 = −𝑘 𝑠𝑖𝑔𝑛(𝑆)                                                                                                                       (22) 

 

can be written as. Here S is the sliding surface function and is expressed as follows, depending on the 

error (e) taken from the system response and the time-dependent variation of the error (de). 

 

𝑆 = 𝐶𝑒 + 𝑑𝑒                                                                                                                             (23) 

 

      The saturation function can be used at a sliding surface to reduce because the sign function causes 

chattering problem in the system. A sliding mode control statement that has a saturation function; 

 

𝑢 = −𝑘 𝑠𝑎𝑡(𝑆)                                                                                                                         (24) 

 

      The sliding surface has a certain slope as seen in Figure 2. This slope is specified by the C coefficient 

in the equation (23). 
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Fig. 2. Sliding surface 

 

      The success of the controller is provided by determining the most appropriate value of this specified 

slope. In this study, the slope coefficients of the sliding mode controller have been taken as moving. 

Ann has been used to calculate the slope coefficient C. As inputs to the Ann structure, the pendulum 

angle error and the derivative of the pendulum angle error. The slope coefficient of the sliding surface 

of the sliding mode control is obtained as the output. The optimum values of the weight and bias 

coefficients of Ann structure are calculated by using the genetic algorithm. The model for the Ann 

structure used is shown below. 

 

 

 

 

 

 

 

 

Fig. 3. ANN Structure 

 

Since the obtained coefficient C is variable every time, our control method has a moving sliding surface. 

The figure below shows the motion of the C coefficient. 

 

 

Fig. 4. Variation of the C coefficient 
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Figure 5 shows the block diagram of the operations performed in the program written in Matlab 

environment. 

 

 

 

 

 

 

 

Fig. 5. Block Diagram of Controller Matlab Program 

 

4. Results And Discussion 
 

In Figure 6, the angular position of the first arm connected to the motor changes with time. Initially, it 

is starting at zero points and changing direction in the first seconds. This situation is an expected result 

to be able to lift the pendulum up. 

 

 

Fig. 6. Ɵ angle change with time 

 

In the graph shown in Fig. 7, the angular velocity of the first arm according to time is shown. In the 

beginning, it is seen that the angular velocity value is reaching 40 rad / s and fixed at -15 rad / s. 
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Fig. 7. First rod angular velocity change with time 

 

 

Fig. 8. β angle (pendulum angle) change with time 

 

      Figure 8 shows the variation of the pendulum angle according to time. It is desired that the pendulum 

is able to stop at the unstable equilibrium point. For this reason, the pendulum angle needs to reach the 

desired zero reference point. As can be seen from the figure, the pendulum has reached the desired 

reference value in about 3 seconds. 
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Fig. 9. Angular velocity change of the pendulum with time 

 

      Figure 9 shows the angular velocity of the pendulum with respect to time. The angular velocity of 

the pendulum reaches zero after the third second. 

      Respectively, figures 10 and 11 show the control signal values, which should be applied to the motor, 

and error graph. When the control signal graph is examined, it is clear that 25 Nm of engine torque will 

be sufficient to bring the pendulum to the desired reference value. It can be said that this torque value is 

reasonable for real applications. After a time like 3.5 seconds, the control signal reaches zero. When 

looking at the error graph in Figure 11, the error is zero because the pendulum angle captures the desired 

reference value after the 3rd second. 

 

 

Fig. 10. Control signal change with time 
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Fig. 11. Error graph of the pendulum angle 

 

5. Conclusion 
 

      In this study, firstly the nonlinear model of the rotary inverted pendulum system with two degrees 

of freedom was obtained by the Lagrange method. Through the obtained model, the control of the 

pendulum angle was carried out with the program created in Matlab using the state variables. The 

moving sliding mode control method has been applied to the system for this purpose. Variation of the 

slope of the sliding surface is provided by the artificial neural network. Constant coefficients in the 

network structure are calculated by using the genetic algorithm. At the end of the work, it was observed 

that the pendulum reached the desired reference value, the error was about zero, and the control signal 

reached zero after 3 seconds. There is a 0.001 % error. In future studies, it is planned to control both the 

pendulum angle and the first pendulum angle by using the moving sliding mode control method. 
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