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Abstract  

 

The paper attempts to determine the thermoelastic stresses in a thin elliptical plate made up of non-simple elastic 

material subjected to point impulsive time-dependent source of heat moving with constant velocity over the specified 

finite portion. The temperature field in the plate has been considered when the sectional heat supply is continuously 

distributed along the circumference of an ellipse over the upper face with zero temperature on the lower face, and 

thermally insulated curved edge. The solution is formulated involving the Mathieu and modified functions by 

employing the Laplace transform technique. The analytical solution for the thermal stress components is obtained 

using Airy’s stress function with mechanical boundary conditions as stress-free. Numerical results are also obtained. 
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1. Introduction  

The theoretical study of the heat flow within a thin 

elliptical Plate is of considerable practical importance in a 

wide range of fields such as mechanical, aerospace and food 

engineering fields throughout the past years. The two-

temperature model is one of the non-classical 

thermoelasticity theories of elastic solids. The classification 

of real materials into simple and non-simple materials was 

proposed by Chen and Gurtin [1] for which thermodynamic 

and conductive temperature were not identical for non-

simple materials, unlike simple materials. The studies were 

further extended to deformable bodies by Chen et al. [2] and 

shown that such materials contain an additional term 

involving the time derivative of the Laplacian of the 

conductive temperature. Considering isotropy and linearity, 

for such materials, they have shown that the two 

temperatures are related by 2 , 0,T b T b − =     in which   

  is the thermodynamic temperature,  T  is the conductive 

temperature and b  is the temperature discrepancy factor. 

The key element that sets the two-temperature 

thermoelasticity theory apart from the classical theory is the 

material parameter. Specifically, in the limit as 0,b→

T →  and the classical theory is recovered. Problems of 

determination of thermal stresses in the simple material 

under various mechanical and thermal boundary conditions 

have been considered earlier by many researchers viz. Roy 

Choudhary [3], Khobragade and Deshmukh [4], Varghese 

and Khalsa [5] and many others. Similarly, the present 

author [6-13] have investigated various thermoelastic 

problems in elliptical objects of simple materials due to 

interior heat generation or sectional heat supply with 

different solid objects. Even one-dimensional thermoelastic 

problems made up of non-simple elastic material due to heat 

sources has been studied by various authors, viz. 

Chakrabarty [14], Laha [15], Dhar [16-17] etc.  In recent 

years, we have also witnessed a number of papers on non-

simple elastic materials vide, Ciarletta [18], Chakraborty 

[19], Quintanilla [20-22], Zenkour [23] etc. But none of the 

previous investigators solved the higher dimensional 

thermoelastic problem for a non-simple material, 

particularly elliptical objects with the elliptical coordinate 

system. In the present manuscript, the author has made an 

attempt to solve the thermoelastic problem in a thin elliptical 

plate made up of non-simple elastic material. Laplace 

transform technique has been used to solve the problem. 

Due to the complicated nature of the integrands of 

Bromwich integrals, the exact solution of the problem 

cannot be obtained so easily. Finally, by considering a circle 

as a special kind of ellipse, it is shown that the temperature 

distribution and history in an infinite circular solution can 

be derived as a special case from the present mathematical 

and illustrated numerically.  

 

2. Formulation of the Problem  

We consider a thin elliptical elastic plate made up of the 

non-simple material of radius 0  and thickness  in the 

space :
3

{( , , )D z R =   0 ,0    0 2 ,  

/ 2 / 2}z−    defined by the transformation 

1
cosh [( ) / ]i x iy c 

−
+ = + . The geometry of the plate 

indicates that an elliptical-cylindrical coordinate system 

( , , )z   is the most appropriate choices of the reference 

frame, which are related to the rectangular coordinate 

system ( , , )x y z  by the relation cosh cosx c  =

sinh siny c  =  and z z= . The curves  = constant 

represent a family of confocal hyperbolas while the curves 

 = constant represent a family of confocal ellipses. The 

length 2c  is the distance between their common foci (refer 

to Figure 1). Both sets of curves intersect each other 
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orthogonally at every point in space. The parameter   

varies from 0 where it defines the interfocal line to 0 , the 

coordinate   is an angular coordinate taking the range 

[0,2 )  , and (0, )z  . It is noted that c  is denoted as 

2 2 1/2
2 ( )0 0c a b= −  and 

1
tanh ( / )0 0 0b a

−
=  in terms of 

the semi-major length 0a  and the semi-minor length 0b .  

 

Figure 1. Elliptical plate configuration 

  

2.1 Heat Conduction Formulation 

The modified heat conduction differential equation for 

the non-simple material is given as 

 

2 2 2
12

1
2 2 2

( ) ( ) ( ); 00 0

b T T T T
h

t tz

q t z i

  

       

    
+ + + =

   

 − −   

              
    

(1) 

where thermal diffusivity is taken as / ,Cv  =    is the 

thermal conductivity of the material,   is the density and 

vC  is the calorific capacity, ( , , )T T t =  is the 

temperature distribution, ( )0Q q t= ( )z ( )  −  is the 

internal source function, 
1

tanh ( / )b ai i i
−

= , 

1
tanh ( / )b a

−
  = , and the metric coefficient h is given 

by 
2 2

2 / [ (cosh 2 cos 2 )]h c  = − . 

The fundamental Eq. (2) is to be solved subject to the 

following conditions 

0, 0,
0

0
for 0

( , )0,

0 for 02 2

T
T

t

t if eT T
z z

i


 

  
 

  


= =

= 
=

−  
= =

=− =
 





     (2) 

where   is constant, ( , ) ( )f      = −  is the prescribed 

sectional heat supply and ( )  is the Dirac delta function. 

 

2.2 Thermoelastic Displacement and Stresses 

Since we have assumed that the plate is sufficiently thin, 

we can assume that the plane, initially normal to the middle 

or neutral plane ( 0)z =  before bending, remains straight 

and normal to the middle surface during the deformation. 

The length of such elements is not altered.  This means that 

the axial stress is negligible compared to the other stress 

components. This can be neglected in the stress-strain 

relations. According to the assumption as mentioned earlier, 

the modified displacements [24] are given by 

1
( , , ) ( , , ) ,

22

1
( , , ) ( , , )

22

h
u t P t

h

h
u t P t

h

    
  

    
  

 
= − +

 

 
= − +

 

 
 
 

 
 
 

            (3) 

in which ( , )u u   are displacements in the directions 

normal to the curves ( , )  , ( , , )t    is Airy’s stress 

function and ( , , )P t   is the harmonic function, satisfies 

the equations as [24] 

2
0,

2 2
1 1 2

2 2 2 2

P

P P

h h

   

       

 =

    +  
+ = +

    +  

    
              

    (4) 

and the modified stress function in Eq. (4) satisfies below Eq. 

(5) of the fourth order 

2 2 2 2 2 2
1

b
h h h T

t





  = − + 



 
 
 

                             (5) 

The components of the stresses [25] are represented as 

2 2 4 2 4
2

sinh 2 sin 2 ,
2 2 2

2 2 4 2 4
2

sinh 2 sin 2 ,
2 2 2

2 2 4 2 4
2
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h
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 
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 

  
= − + +
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    (6) 

For traction free surface the stress functions 

00 at    = = =                                                  (7) 

Thus, the equations (1) to (7) constitute the mathematical 

formulation under consideration. 

 

3. Solution to the Problem 

3.1 Solution for the Temperature Distribution 

Now applying Laplace transform to Eq. (2), one 

obtains 

2 2 2
2

1 ( ) ( )02 2 2

b p
p h T T q z

z

   
  

  
+ + + = − −

  

              

(8) 

with 

( , )
0,

2 20

T f
T T

z z p

 

 
 

=


= =
=− = +

=

                    (9) 

in which ( , , )T T p =  is the temperature distribution 

in a transformed domain. 

Now, without loss of generality, we assume the 

solution of Eq. (8) satisfying the first two conditions 

given in Eq. (9), as 

( , ) ( , ), , ,2 2
0 1

sinh 2 ,
2

T A C q c qn m e n m e n mn n
n m

zn m

 



 
=  

= =

 +
  

  
  

     (10) 

where,  ,
2 1/2

( / ), 2 , pn m n m  = +  ,An m  is a constant that 

has to be determined from the nature of temperature on the 
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upper face, 
2

4 /2 , ,q cn m n m = − , ,qn m  is the root of the 

equation ( , ) 002
C qe n

 =  and according to McLachlan 

[26, pp. 21,27] 

(2 )
( , ) cosh2, 22

0

n
C q A re n m rn

r

 


= 

=

 

(2 )
( , ) cos2, 22

0

n
c q A re n m rn

r

 


= 

=

 

in which A’s being the functions of q ; then at any point 

within the range [26, pp. 296] 

( , ) ( , ) ( , ), , ,2 2
0 1

f B C q c qn m e n m e n mn n
n m

   
 

=  

= =

                                                             

Hence, by the theory of the Mathieu Function [26], one 
obtains  

( , ) ( , ), ,2 22
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,

2
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f
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where 

22 ( , ) cos 2, ,0 2
c q dn m e n mn

    =   

Now from Eqs. (9)-(11), one yield 
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       (12) 

Now by inverting Eq. (12) by Laplace's inversion theorem, 

one obtains the following Bromwich integral as 
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   (13) 

where c  is a real number, such that c i+   is in the half-

plane of convergence. 

To evaluate the Bromwich integral in Eq. (13) by 

contour integration method, we have to calculate the residue 

at the poles of the integrand  
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Now 

1/ 2 1/ 2
2 2

sinh 02 , 2 ,

2 2
2
2 ,

2

p p i
n m n m

p
n m


 

 

 




+ =  + =

 + = −

 
   
    
    
   

2 2
( ), 0,1, 2..2 ,p p n m     = = − + =   

in which / .  =  

In this case, the poles of the integrand are at the following 

points 
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Now by the residue theorem, the integrand given in Eq. (14) 

can be written as 
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  (15) 

Thus, the temperature field can be obtained from Eq. (13) 

using Eq. (15) as
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3.2 Solution for displacement and its stresses 

Assuming Airy’s stress function ( , , )t   , which 

satisfies Eq. (5) as  
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where ,Cn m  and ,Dn m  are arbitrary functions and can be 

obtained by using traction free conditions given in Eq. (7) as 
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in which the double prime symbol ( ″ ) denotes double 

differentiation with respect to the assigned variable. 

Similarly, if we assume the solution of the first equation of 

Eq. (4) satisfying the conditions (7) as 
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in which ,Bn m  is the constant to be determined using 

equation (4) considering Eq. (17), as 
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Now putting the expression of Airy’s stress function 

( , , )t    from Eq. (17) and harmonic function ( , , )P t   

from Eq. (18), one obtains the expression for the required 

displacements. Similarly using Eq. (17) in Eq. (6), one 

obtains the expression for thermal stresses. The resulting 

equations of displacements (i.e. u  and u ) and thermal 

stresses (i.e. ,    and  ) which are also rather 

lengthy, and consequently are omitted here for the sake of 

brevity, but considered during graphical discussion 

described in below section. 

 

4. Transition to Circular 

When the elliptic plate tends to a circular structure of 

the radius 0 , the semi-focal 0c → and then m  is the 

roots of the transcendental equation ( ) 00J m =

.Also 0e →   [as → ] , cosh2 d  →

2cosh2 sinh2 d   →
2

2 /rdr c ,  sinh cosh , →  

coshh r → [as 0h → ], cosh ,d rdr  →

sinh ,h d dr  → Using results from [26] 

( , ) ( ),0 0, 0 0Ce q p J rm m → ( , ) 1 / 2,0 0,
ce q

m
 →

2 2 2 2 2 2
/ /0, 0, 0 0m m m m     = = =  

 

Considering the aforesaid parameters, the temperature 

distribution in cylindrical coordinate is finally represented 

by 
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            (19) 

The aforementioned degenerated result agrees with the 

previous result [3]. 

 

5. Numerical Results, Discussion and Remarks 

For the sake of simplicity of calculation, we introduce 

the following dimensionless values 
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               (20) 

Substituting the value of equation (20) in equations of 

temperature (16), displacements and components of 

stresses, we obtained the expressions for our numerical 

discussion. The numerical computations have been carried 

out for an elliptical plate with physical parameter as 
0

 = 

1m, 0.3i = m, = 0.08m, reference temperature as 1500C 

and 0.1,0.3,0.5,0.7b = . The thermo-mechanical properties 

are considered as modulus of elasticity E = 70 GPa, 

Poisson’s ratio  = 0.35, thermal expansion coefficient  = 

2310-6 /0C, thermal diffusivity  = 84.1810-6 m2s−1 and 

thermal conductivity  = 204.2 Wm−1K−1. The 2 ,
q

n m
=

0.0786, 0.356, 0.8882, 1.7691, 2.2344, 3.7234, 4.6731, 

6.5665, 7.3673, 9.6733, 11.2343, 14.2722, 16.6896, 

19.3825, 22.2566, 25.2341, 28.6731, 31.2345, 35.0862, 

39.4664 are the positive & real roots of the transcendental 

equation ( , ) 002
C qe n

 = .  In order to examine the influence 

of heating on the plate, the numerical calculations were 

performed for all the variables and numerical calculations 

are depicted in the following figures with the help of 

MATHEMATICA software.   

 

 
Figure 2 (a): Thermodynamic temperature along -

direction for various values of η and b=0.4 

 

Figures. 2–3 illustrates the numerical analysis of two 

temperature distributions, strains and stresses of the non-

simple elliptical plate due to point impulsive heat sources 

within the solid, under thermal boundary conditions. Figures 

2(a) and 2(b) shows the variation in the thermodynamical 

and conductive temperature for various angles along the 

radial direction ( − axial direction) for a fixed value of 

temperature discrepancy 0.4b = . The maximum 

temperature can be found at the inner core of the plate due 

the available point heat source and is lowering at the outer 

edge of the plate, may be due to thermal insulation of outer 

edge. Figures 2(a) and 2(b) shows the parameter b  has 

significant effects on temperature field and changes its 

behaviour as it reaches to the outer boundary along the radial 
direction. 

 

 
Figure 2 (b): Conductive temperature along -direction for 

various values of η and b=0.4 

 

Figures 2(c) and 2(d) represents the non-dimensional 

temperature distribution along the axial direction (i.e. along 

z -axial direction) for the different angles η. It is observed 

that the due to the available impulsive heat function at the 

outer edge, the instantaneous increase in the temperature is 

found at the outer edge. The linear proportionality of the 

temperature along the z-axis may be due to the thinness of 

the plate. Again in Figures 2(a) and 2(b) shows the 

parameter b  has significant effects on temperature field 

along the thickness direction.   

    

 
Figure 2 (c): Thermodynamic temperature along z-

direction for different values of b and fixed η 

 

Figures 2(e) and 2(f) express an increase in temperature 

distribution along the radial direction for the various values 

of temperature discrepancy ( 0.1,0.3,0.5,0.7)b = . Also, as 

b  increases the thermodynamical T  and conductive 

temperature   decreases in the interval 0 0   . The
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temperature field depends not only on the time t  and space 

coordinate  , but also depends on the two-temperature 

parameter b . 
 

 
Figure 2 (d): Conductive temperature along z-direction for 

different values of b and fixed η 

 

 
Figure 2 (e): Thermodynamic temperature along -

direction for different values of b and fixed z  

 

Figure 3(a) depicts dimensionless thermal stresses along the 

axial direction. The nature of radial stress and tangential 

stresses are of the same kind, they attain minimum at the 

outer face, whereas hoop stress has similar nature as 

tangential stress but opposite in nature. The contrary nature 

of the hoop stress can be observed, the stress is increasing 

from the inner face to the outer face of the plate and these 

changes could be owing due to thermal expansion.   

 

 
Figure 2 (f): Conductive temperature along -direction for 

different values of b and fixed z  
 

Figure 3(b) illustrates the absolute value of dimensionless 

stresses along the radial direction. It is observed that the 

tangential stress and radial stress increases towards the outer 

core of the plate, but shear stress decrease along the radius, 

satisfying the traction free boundary conditions. 

 

 
Figure 3 (a): Dimensionless stresses along z-direction for 

different values of b 

 

Figure 3(c) outlines the sinusoidal nature of dimensionless 

stresses along the angular direction. The tangential stress 

and radial stress have the same kind of amplitude at the 

central core of the plate, whereas circumferential shear 

stress has exactly opposite nature of that tangential stress 

and radial stress. It can be narrated that the dimensionless 

stresses portray the periodicity , 1, 2,3...n n = = . 

 

 
Figure 3 (b): Dimensionless stresses along -direction for 

different values of b 

 

 
Figure 3 (c): Dimensionless stresses along η -direction for 

different values of b 

 

In the preliminary investigation, as expected, there is an 

increment in the rate of heat propagation with a radius, 

which leads to compressive force in the outer surface and 

expands more on the inner part. To satisfy the convergence 

of series and traction-free conditions at an arbitrary point on 

the boundary, we must replace  in the stress 

components by ,20  approximately. 
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6. Conclusion 

Motivated by the earlier analysis made up of non-simple 

elastic material, we have proposed the analytical solution of 

transient thermal stress problem in a thin elliptical plate 

made up of non-simple elastic material subjected to point 

impulsive time-dependent source of heat moving with 

constant velocity over the specified finite portion. To the 

author’s knowledge, there have been no reports of the 

solution so far in which sources are generated according to 

the linear function of the temperature in mediums in the form 

of an elliptical plate of finite height with Dirichlet type 

boundary conditions. The analysis of non-stationary three-

dimensional equation of heat conduction is investigated 

involving the Mathieu and modified functions by employing 

the Laplace transform technique when there are conditions 

of Dirichlet type contour acting on the object under 

consideration. The following results were obtained to be 

carried out during our research are: 

o The advantage of this method is its generality and its 

mathematical power to handle different types of 

mechanical and thermal boundary conditions in both 

simple and non-simple materials. 

o The greatest tensile stress is moving from the focal 

center to the external area might be because of heat, 

stress, focus or accessible interior heat sources under 

considered temperature distribution. 

o The outcomes presented in this paper should prove 

subsidiary for researchers in technical and 

manufacturing, as well as for those working on the 

advance of mechanics of solids. 

o At last, the most extreme tensile stress happens in the 

roundabout center on the major axis contrasted with the 

circular focal part shows the dispersion of weak heating. 

It may be because of lacking entrance of heat through 

the circular inward surface. 
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