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A new type of canal surface in Euclidean 4-space 4IE  

İlim Kişi*1, Günay Öztürk2, Kadri Arslan3 

ABSTRACT 

We give, with its sample, a new type of canal surface constructed by means of the parallel transport frame 

of its spine curve in Euclidean 4-space 4IE . We investigate the curvature features of this surface with 
respect to the principal curvature functions according to parallel transport frame. Further, we give certain 
results about Weingarten type canal and tube surfaces. Finally, we give the visualizations of projections of 

this new type of canal surface in 3IE  for various radius functions. 

Keywords: Gaussian curvature, mean curvature, parallel transport frame, Weingarten surface 

 

 

1. INTRODUCTION 

Given a space curve   called spine curve, a canal 

surface associated to this curve is defined as a 
surface swept by a family of spheres of varying 
radius )u(r . If )u(r  is constant, the canal surface 

is a tubular (tube, pipe) surface.  

Actually, the concept of canal surface is a 
generalization of an offset of a planar curve. In 
[11], do Carmo gives some geometrical properties 
of tube surfaces and by means of these surfaces 
proves the theorems named as Fenchel's theorem 
and the Fary-Milnor theorem.  

Apart from being used in pure mathematics, canal 
surfaces are widely used in many areas especially 
in CAGD, e.g. construction of blending surfaces, 
i.e. canal surface with a rational radius, shape 
reconstruction or robotic path planning (see, [21, 
23]). Canal surfaces are also useful in visualising 
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long thin objects such as poles, 3D fonts, brass 
instruments, or visceral organs of the body.  

Tori, Dupin cyclids in [22] and tube surfaces in 
[18] are the special types of the canal surfaces.  

Given a surface M  in an Euclidean 3-space 3IE  
and its two principal curvatures 1  and 2 , M  is 

a Weingarten surface under the condition that 
there is a smooth relation 0),(U 21  . If K  and 

H  denote respectively the Gaussian and the mean 
curvatures of M , 0),(U 21   refers to 

0)H,K(  , which is equivalent to 

0HKHK
)v,u(

)H,K(
uvvu 




. Also, if the surface 

satisfies the equation cbHaK   for the non-
zero real numbers a,b,c, then it is called as a linear 
Weingarten surface [20]. 

Frenet-Serret frame gives way to the study of 
curves in classical differential geometry in 
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Euclidean space. However, the Frenet frame can 
not be constructed at the points in which curvature 
vanishes. Hence, an alternative frame is needed. In 
[6], Bishop defines a new frame for a curve and 
calls it Bishop frame, which is well defined even if 
the curve's second derivative in 3-dimensional 
Euclidean space vanishes. In [6, 16], the 
advantages of the Bishop frame and the 
comparison of Bishop frame with the Frenet frame 
in Euclidean 3-space are given. Euclidean 4-space 

4IE  has the same problem as Euclidean 3-space. 
That is, one of the i-th (1<i<4) derivatives of the 
curve may be zero. 

In [14], using the similar idea, authors consider 
such curves and construct an alternative frame. 
They give parallel transport frame of a curve in 

4IE . They generalize the notion which is well 
known in Euclidean 3-space for 4-dimensional 

Euclidean space 4IE . 

In [1-5, 8, 10, 12, 15, 19, 25], authors give some 

characteristic properties of surfaces in 4IE . 
Furthermore, in [9, 17] authors consider canal 

surfaces in 4IE . 

In the present study, we consider a canal surface 
constructed with parallel transport frame of its 

spine curve in Euclidean 4-space 4IE . 

This paper is organized as in the following: 
Section 2 gives certain preliminaries of a curve and 

a surface in 4IE . Section 3 introduces a new type 
of canal surface and give some curvature 

conditions of this surface in 4IE . Section 4 gives 
some visualizations of projections of canal 

surfaces in 3IE  for various radius functions. The 
figures presented in this paper are generated via 
the Maple programme.  

 

2. BASIC CONCEPTS 

Given a unit speed curve 4IEIRI:   for an 

interval I  in IR , the derivative formulas of Frenet 
frame are 
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where }B,B,N,T{ 21  is the Frenet frame of  , and 

 ,   and   are principal curvature functions 
related to this frame of the curve  , respectively.  

In [14], authors use the same tangent vector )s(T  

as in Frenet frame for the first vector, and for the 
other vectors of the new frame they use relatively 
parallel vector fields )s(M ),s(M 21 , and )s(M 3  to 

construct an alternative frame. They call this frame 
a parallel transport frame along the curve  . Then 

they give the following theorem for a parallel 
transport frame. 

Theorem 2.1. [14] Let }B,B,N,T{ 21  be the 

Frenet frame and }M,M,M,T{ 321  the parallel 

transport frame along a unit speed curve 
4IEIRI:  . The relation between these 

frames may be expressed as 
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M)s(cos)s(sinM)s(sinB
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M))s(cos)s(sin)s(sin)s(sin)s(cos(

M)s(cos)s(cosN

,TT

3

212

3

2

11

3

2

1














(1) 

where  ,   and   are the Euler angles. Then the 

alternative parallel frame equations are  
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where 321 k,k,k  are principal curvature functions 

according to parallel transport frame of the curve 
  and their expressions are as follows: 

),cossincossin(sink

),cossinsinsincos(k

,coscosk

13
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and the following equalities 

0cotcos
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are hold. 

Given a regular surface M  in 4IE  with the 

parametrization 2IED)v,u(:)v,u(X  , at any 

point p=X(u,v), the vectors uX  and vX  span the 

tangent space of M. Then the first fundamental 
form's coefficients are computed as 

uu XXE , ,  vu XXF , ,  vv XXG , . (3) 

Here,  ,  is the Euclidean dot product. For the 

regularity of the surface patch X(u,v), 
0FEGW 22  . 

 

At any point p in M, there is a decomposition 

MTMTIET pp
4

p
 , where MTp

  is the 

orthogonal component of MTp  in 4IE . Let ~  be 

the Riemannian connection of 4IE . Then the 
induced Riemannian connection on M for any 

given local vector fields 1X , 2X  tangent to M is 

defined as 

T
2X2X )X

~
(X

11
 ,                                          (4) 

where T represents the tangential component. 

Let )M(  and )M(  be the spaces of the smooth 

vector fields tangent and normal to M, 
respectively. The second fundamental map is 
defined as follows: 

.2ji,1  ,XX
~

)X,X(h

)M()M()M(:h

jXjXji ii


 

          (5) 

This map is well-defined, symmetric, and bilinear. 

Proposition 2.2. [7] Let M  be a surface in 4IE  
given with the parametrization X(u,v). If the 
coefficient of the first fundamental form F=0, the 
second fundamental form of M becomes  

.XX,X
G

1
XX,X

E

1
X)X,X(h

,XX,X
G

1
XX,X

E

1
X)X,X(h

,XX,X
G

1
XX,X

E

1
X)X,X(h

vvvvuvuvvvuu

vvuvuuuvuvuu

vuuvuuuuuuuu







        (6) 

Proposition 2.3. [7] Let M  be a surface in 4IE  
given with the parametrization X(u,v). Then for 
the basis vu X,X  of )M(TP  the Gaussian 

curvature and the mean curvature vector of M are 
defined as follows respectively, 

 )X,X(h),X,X(h)X,X(h),X,X(h
W

1
K vuvuvvuu2

   (7) 

and 

))X,X(Gh)X,X(Fh2)X,X(Eh(
W2

1
H uuvuvv2




,        (8) 

where 22 FEGW  . 

3. CANAL SURFACE ACCORDING TO 

PARALLEL TRANSPORT FRAME IN 4IE  

In [13], authors give the following parametrization 
for a canal surface: 

),vsin)u(Bvcos)u(B)(u(r)u()v,u(X:M 21 
where )u(  is a space curve parametrized by 
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arclength with the Frenet frame 
 )u(B),u(B),u(N),u(T 21 . 

Using the similar idea, we give the following 
parametrization: 

),vsin)u(Mvcos)u(M)(u(r)u()v,u(X:M 32     (9) 

where )u(r  is a differentiable function and 

 )u(M),u(M),u(M),u(T 321  is parallel transport 

frame of the curve   in 4IE . 

Corollary 3.1. Let  21 B,B,N,T  be the Frenet 

frame and  321 M,M,M,T  the parallel transport 

frame along a unit speed curve 4IEI:)s(  . 

Then, the parallel transport frame vectors can be 
given as follows: 
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Proof. If the equations (1) is written in the matrix 
form, the transition matrix is obtained as follows: 






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. 

By calculating the inverse of this transition matrix, 
we write the desired result. 

Example 3.2. Consider the unit speed curve 

)dusinb,ducosb,cusina,cucosa()u(   in 4IE , 

where 1dbca 2222  . Then the canal surface 

associated to the spine curve   in 4IE  has the 

following parametrization 
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are real constants and 0d,c  .  

The tangent space of M is spanned by the vectors 

,vMcosrvMsinrX

,vMsinrvMcosrfTX

32v
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where 

vsin)u(r)u(kvcos)u(r)u(k1)v,u(f 32  .(11) 

Thus, the coefficients of the first fundamental form 
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Proposition 3.3. Let M  be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . Then for all Mp
, the surface patch of M is regular if and only if 

0))r(f(r 222  . 

Proof. Assume that the surface patch is regular. 
Then from the equations (12), 

0))r(f(rW 2222  . Conversely, if the 

condition holds, it is easy to see that the surface 
patch is regular. 

The second partial derivatives of X(u,v) are 
expressed as follows: 

32vv
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332211uu
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     (13) 

where  

vsin)u(r)u(kvcos)u(r)u(k)v,u(f)v,u(gg 32u  .   (14) 
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Hence, from the equations (10) and (13), we get 
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Further, by the use of the equations (10), (12), and 
(15), the second fundamental form of M becomes 
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From the equations (15)-(17), we get the following 
result: 

Proposition 3.7. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . Then the Gaussian 
curvature of M at point p is 
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As a consequence of (19), we obtain the following 
result: 

Corollary 3.8. Let M be a tube surface with 
constant )u(rr  . Then the Gaussian curvature of 

M becomes 
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Proposition 3.9. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . If   is a straight 

line, then the Gaussian curvature of M at point p is 
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Proof. Let   be a straight line. Then the curvatures 

321 k,k,k  of   are identically zero. By (11) and 

(14), we find f=1, g=0 which shows that the 
equation (21) holds. 

Corollary 3.10. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . When   is a 

straight line, the surface M is flat if and only if r is 
a linear function of the form r(u)=au+b for some 
real constants a, b. 

Proposition 3.11. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . Then the mean 
curvature vector of M at point p is 
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Proof. Substituting the equations (16)-(18) into 
(6), we obtain the vector given in (22). 

Corollary 3.12. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . Then the mean 
curvature of M at point p is 
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2
322


































 

Corollary 3.13. Let M be a tube surface with 
constant )u(rr  . Then the mean curvature vector 

of M becomes 

 3211 M)1f2(vsinM)1f2(vcosMrk
fr2

1
H 


.      (23) 

Corollary 3.14. Let M be a tube surface with 
constant )u(rr  . Then the mean curvature of M 

at point p is 
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.)1krf4f4(
fr2

1
H 2

12
1

22                      (24) 

Proposition 3.15. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . If   is a straight 

line, then the mean curvature vector of M at point 
p is 

)vMsinvMcosTr(
))r(1(r2

rr)r(1
H 3222

2








.(25) 

Proof. Let   be a straight line. Then the curvatures 

321 k,k,k  of   are identically zero. By (11) and 

(14), we find f=1, g=0 which shows that the 
equation (25) holds. 

Corollary 3.16. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . If   is a straight 

line, then the mean curvature of M at point p is 

2
32

2

))r(1(r2

rr)r(1
H




 .                                        (26) 

Proposition 3.17. Let M be a canal surface 
according to parallel transport frame given with 

the parametrization (9) in 4IE . If   is a straight 

line, the surface M is minimal if and only if 

.ecr2r2
2

1

c
c

u
2

1
2




 

Proof. Let M is minimal. Then from the equation 

(26), 0rr)r(1 2  . If we take )u(pr  , the 

last equation becomes 

1p

pdp

r

dr
2 

 .                                                     (27) 

The solution of the equation (27) is as follows: 

)1p(cr 22
1

2  . 

Again taking r)u(p  , we obtain the following 

ordinary differential equation: 

1
2

1
2 c

du

cr

dr



. 

Integrating both sides of the last equation, we get 
the solution. 

As a consequence of (25), we obtain the following 
result: 

Proposition 3.18. Let M be a tube surface with 
constant )u(rr  . If   is a straight line, the mean 

curvature vector of M at point p is 

).vMsinvMcos(
r2

1
H 32 


 

Corollary 3.19. Let M be a tube surface with 
constant )u(rr  . If   is a straight line, M has 

constant mean curvature of the form 

.
r2

1
H   

Proposition 3.20. Let M be a tube surface with 

constant )u(rr   in 4IE . If   is a straight line, 

then M is a Weingarten surface. 

Proof. Considering the equations (21) and (26), 
we see that K and H are the functions of the 
variable u. Thus 

vv H0K  , 

which means 0HKHK uvvu  . 

Proposition 3.21. Let M be a tube surface with 

constant )u(rr   in 4IE . M is a Weingarten 

surface if and only if one of the three conditions 
holds: 

i) The first curvature function of the spine curve   
vanishes, i.e., .0k1   

ii) The first curvature function of the spine curve 
  is constant, i.e., .0)k( u1   

iii) For the second and the third curvatures of the 
spine curve  , the equation 

IRc   ,cvtan
)u(k

)u(k

2

3   

holds. 

Proof. By using the equations (20) and (24), we 
obtain 
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22
u

u rf

f
K  ,       

22
v

v rf

f
K  ,                              (28) 

and 




















2
12

1
22

u

u11
2

uu
2

12
1

22

22u

)1krf4f4(rf2

))k(kr2f4ff8()1krf4f4(fr

rf4

1
H




















2
12

1
22

v

vv
2

12
1

22

22u

)1krf4f4(rf2

)f4ff8()1krf4f4(fr

rf4

1
H .(29) 

Thus,  

0f)k(k0HKHK vu11uvvu  , 

which yields the expected result. 

Proposition 3.22. Let M be a tube surface with 
constant )u(rr  . If   is a straight line, M is a 

linear Weingarten surface. 

Proof. Assume that M is a tube surface with 

constant )u(rr   in 4IE  and   is a straight line. 

Then we know that K=0 and .
r2

1
H   For the non-

zero real numbers a,b,c, we get 

c
r2

1
.b0.a  , 

which has the solution )c,rc2,a( , }0{IRc,a  . 

4. VISUALIZATION 

Canal surfaces are very popular in geometric 
modeling. In this section, we visualize the surfaces 
given with the patch 

))v,u(w),v,u(z),v,u(y),v,u(x()v,u(X   

in 4IE  by the use of Maple program. We plot the 
graph of the projection of the given surface by 
using maple plotting command 

).d..cv,b..au],wz,y,x([d3plot              (30) 

After than, we construct some 3D geometric shape 
models by using the canal surfaces defined in 
Example 3.2. for the following values; 

a) 6u2)u(r  , 

b) 2u)u(r  , 

c) )ucos()u(r 2 . 

We plot the graph of the projection of these 

surfaces in 3IE  by the use of plotting command 
(30). (see, Figure 1, Figure 2, Figure 3). 

 

Figure 1: Canal surface with 6u2)u(r   

 

Figure 2: Canal surface with 2u)u(r   

 

Figure 3: Canal surface with )ucos()u(r 2  
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