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On Fuhrmann's Theorem in Abstract Spaces

Nilgiin SONMEZ

Abstract

We prove that Fuhrmann's Theorem holds on every Ptolemaic space.
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1. INTRODUCTION

The classical Fuhrmann's Theorem, [2], states that
if P is an inscribed hexagon in the plane R? with
oriented vertices p;,...,ps and d denotes the
Euclidean distance in R?, then

d(p1,p4).d(P2,0s5)- d(p3,P6) =
d(p1,P2)-d(P3,04).d(ps, Pe) +
d(p1,P6)-d(P2,03)-d(Pa, Ps) +
d(p1,02)-d(Ps, 0s)-d(P3, ) +
d(p,p3).-d(Ps, pe)- d(p1,P4) +
d(ps,p4)- d(P2,05). d(P1, D). (1)

The classical Fuhrmann's Theorem follows as an
elementary corollary of Ptolemy's theorem in R?,
proved by the Ancient Greek mathematician
Claudius Ptolemaeus (Ptolemy) of Alexandria
almost 1800 years ago.

2. PRELIMINARIES

Teorem 1 (Ptolemy's Theorem in R?) Given an
inscribed quadrilateral Q = (p;, P2, P3,P4) then

d(p1,03)- d(P2,Ps) = d(p1,p2)-d(P3,04) +
d(p1,P4)- d(P2, P3)- (2)

Now, Fuhrmann's Theorem may be proved as
follows: We apply Theorem 1 to the quadrilaterals

Q1 = (P1,D02,P4,Ds), Q2 = (2,3, P4, Ds)
Q3 = (P1,P4:Ps,P6)> Q4 = (P1,D2,Ps,P6);
to obtain the relations

d(p1,P4)-d(P2,p5) = d(p1,P2)-d(Ps, ps) +

d(py,p4)-d(P1, Ps), 3)
d(pz,p4)-d(P3,06) = d(p2,p3).d(Pa, Ds) +
d(p3,p4)- d(P2,Ds), 4)
d(p1,Ps)-d(P4, D) = A(P1,P4)-d(Ps,06) +
d(ps,ps)-d(P1,P6), )
d(p1,ps)-d(P2,06) = d(p1,p2)-d(Ps, Ps) +
d(p;,ps)-d(p1, ve)- (6)

We multiply (3) by d(ps, ps) to obtain

d(p1,p4)- d(p2, ps). d(p3,P6) =
d(p1,p2)- d(P4, ps). d(p3,Pe) +
d(p2,p4)-d(P1,05)- d(P3,P6)

using (4)
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d(p1,P4)-d(P2,vs)- d(P3,6)
= d(p1,P2)- d(P4, ps)- d(3,D6)
+d(ps,ps). (d(P2,p3).d(Pa, Ps)
+ d(ps3 ;P4)-d(P2:P6))

= d(p1,D2)-d(P4, ps)- d(P3,P6)
+ d(p1,ps)- d(p2,03)- d(D4, Ds)
+ d(p1,ps)-d(P3,P4)- d(D2, De)-

We now use (5) and (6) for the last two terms to obtain

d(p1,P4)-d(p2,05)-d(P3,P6) =
d(p1,p2)-d(ps, ps). d(p3,pe) +
d(p2,p3)-(d(P1,pa)-d(ps, pe) +
d(pa,ps)-d(p1,pe)) +

d(ps,pa)- (d(p1,p2)-d(ps, pe) +
d(p2,ps).d(p, Pe))

and Fuhrmann's Theorem follows.

It is therefore clear that Fuhrmann's Theorem
does not rely on the Euclidean space itself but
rather on its Ptolemaic property, see Definition 1
of Ptolemaic spaces below. This property is
intuitive and has been generalised to more
abstract spaces, for example see [1,3], [4], among
a great variety of other references on Ptolemaic
spaces.

Let (X, d) be a metric space and suppose there is
remote point which we shall denote by . We
consider the one point compactification of
(X,d): X = X Ao} and d is defined on XxX by

d(x,y) if x,yeX,
j _) to ifxeXy=o,
d(x,y) = +oo ifx=wyeX,
0 ifx=y=ao.

To lighten the notation, we will drop the tildes and
henceforth (X,d) shall denote the compactified
space with the extended metric.

Definition 1 The space (X, d) is called Ptolemaic
if for every py, P2, p3, P4 pairwise distinct points
of X, the following relation holds:

d(p1,P3).-d(P2, P4)<d(P1, p2)- d(P3,P4) +
d(p1,p4)- d(P2, 3). (7)

Definition 2 A Ptolemaic circle ¢ in X is a curve
homeomorphic to S! such that for every
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DP1,D2, D3, D4 pairwise distinct points on ¢
Equation (2) holds.

It turns out that a variety of nice spaces are
Ptolemaic. For instance, the extended Euclidean
space R™ = R™U{oo} with the extended
Euclidean metric is Ptolemaic and its Ptolemaic
circles are the usual Euclidean circles as well as
the straight lines. This space of course may be
identified via stereographic projection with the
sphere S™and the metric is identified to the
chordal metric. The sphere S™ is in turn identified
to the boundary of R™! which is the usual
Euclidean space, the first among the K-hyperbolic

spaces Hy, where K can be the set of the real
numbers R, the set of the complex numbers C, the
set of quaternions H and the set of octonions O
(the latter only for n = 2). The boundaries of
those spaces may be identified to what is called
the generalised Heisenberg group hg together
with a point at infinity co. There is a natural metric
defined on those spaces, the so-called Kordnyi
metric dj,. Now, it is known (see for instance [4])
that all spaces dHy endowed with the extension to
infinity of the Kordnyi metric d; are Ptolemaic
and have Ptolemaic circles.

3. MAIN RESULT

Teorem 2 Fuhrmann's Theorem holds on every
Ptolemaic circle on the boundary of Hy.

Let R™ be the extended Euclidean space; that is
R™ = R™ U {oo}.

We will denote the Kordnyi metric d,=d in R™,
by requiring

d(p, ) = +0o,if p # 00,d(c0,0) = 0

and let p = (p1,P2 P3,P4) E R™ be arbitrary.
There are six distances in (0,4o0] involved:

d(pip;), Li=1,. 40 #]

We adopt the convention: (+): (+o0) = 1, and to
p we associate the cross-ratio |X¢|(p) defined by

789
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d(ps, p2) d(ps,p1)

d =
|X |(p) d(ps,p1) d(ps,p2)

[5].

For every i,j,k,l=1,..,4, such that
pi,DjPk P € R™ are pairwise disjoint, the
following symmetry conditions are clearly
satisfied:

|X4| @) (p:. 0, v 21) = |X* @) (pj . 01 01, PK)
= |X*| @) (P, o1 pi, P))
= |X|®) (o, p1. ) D1)-

Letnow p = (p1,P2,P3,Ps) € R™ and set
1X2 |(p) = |X| () (P1, P2 D3, Pa)s
1X¢ |(p) = |X|(p)(P1,P3, P2, Pa)-

[5]. The cross-ratios of all possible permutations
of points of p are functions of |X¢|(p) and

X5 1.
We apply it to the quadrilaterals
Q1 = (p1,P2,P4,P5), Q2 = (P2,P3, P4, D6)
Q3 = (P1,Pa:Ps,Pe)> Qs = (1,P2, D5, Pe)-
We assume that
P1 = ,py = (x2,0,u),p3 = (x3,0,u),
Ps = (%4,0,u), ps = (x5,0,u),
pe = (0,0,u)
where x5 > x, > x3 > x, > 0.
We now use (3). Then:

1XZ |(p) = |X| () (P1, D2, P4, P5)

_ d(ps,p2) d(ap1)
d(ps,p1)  dPap2)

X5—X2

Xg4—X2

and

1X¢ |(p) = |X|()(P1, P4 P2, D5)
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_ d(ps,ps) dpz2.pr1)
d(ps,p1)  d(P2,ps)

X5—X4

X4—X2

The p, and p, separate p; and psg since | X2 |(p) —
|X¢ |(p) = 1. We now use (4). Then:

1XZ |(p) = |X?*| () (P2, P2, Pa» P6)

_ d(pep3) d(pap2)
d(Pep2)  d(Pap3)

__ X3 Xg—X3
Xp X4—X3

and

1X¢ |(p) = |X*|(P) (P2, P4 P3,P6)

__ d(peps) d(pz,p2)
d(pep2)  d(P3,pa)

__ X4 X3—X3

Xp X3—X4

_ X4 X37X
X2 ) X4—X3

The p, and p, separate p; and p, since | X2 |(p) +
|X¢ |(p) = 1. We now use (5). Then:

1X2 |(p) = | X4 ()1, Par s, P6)

_ d(Peps) dps.p1)
d(pep1)  d(ps,pa)

X4

X5—X3g

and

1X¢ |(p) = |X| ()1, D5, Pa P6)

_ d(Peps) dPap1)
d(pep1)  dPaps)

X5

X5—Xga

The p, and ps separate p; and pg since |X$ |(p) —
|X¢ |(p) = 1. We now use (6). Then:

1X¢ () = |X*|(0)(p1, P2, D5, P6)
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_ d(pe,p2) d(psp1)
d(pep1)  dpsp2)

X2

X5—X2

and

1X¢ |(p) = |X|()(p1,Ps, P2, D6)

_ d(pe,ps) d(p2,p1)
d(pep1)  dP2,ps)

X5

X5—X2

The p, and p, separate p, and ps since |[X¢ |(p) +
X5 () = 1.

4. CONCLUSION

Fuhrmann's theorem is satisfied in abstract
Ptolemaic spaces.
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