GU J Sci32(2): 660-665 (2019)

Gazi University

Journal of Science

http://dergipark.gov.tr/gujs

In this paper, we introduce the notion of multiplier of a hyper BCI- algebra, and discuss some properties of hyper BCI-algebras. Also we introduced notion of hyper isotone multiplier.

On Multiplier of Hyper BCI Algebras

Didem SURGEVIL UZAY¹, Alev FIRAT^{1,*}

¹Ege University, Institute of Science, Department of Mathematics, 35100, İzmir, Turkey

ArticleInfo

Abstract

Received: 22/05/2017 Accepted: 27/12/2018

Keywords

Hyper BCI-algebra Multiplier Isotone Fix_d(H) Regular

1. INTRODUCTION

The study of BCK-algebras was started by Y.Imai and K.Iseki [1] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus.

The hyperstructure theory(called also multialgebras) was introduced by F. Marty [2] in 1934.

Moreover the hyper structure was applied to BCI-algebras and was introduced the concepts of hyper BCIalgebras which is a generalization of BCI-algebras by X.X. Long [3] in 2006.

In this paper, we introduce the notion of multiplier of a hyper BCI- algebra, and discuss some properties of hyper BCI-algebras. Also we introduce the notion of hyper isotone multiplier on hyper BCI-algebras.

2. PRELIMINARIES

Definition 2.1. [3] Let H be a nonempty set and " \circ " be a hyper operation on H. Then H is said to be a hyper BCI-algebra, if it contains a constant 0 and the following conditions hold:

$$(b1) (x \circ z) \circ (y \circ z) \ll x \circ y,$$

$$(b2) (x \circ y) \circ z = (x \circ z) \circ y,$$

$$(b3) x \ll x,$$

$$(b4) x \ll y, y \ll x \Longrightarrow x = y,$$

$$(b5) 0 \circ (0 \circ x) \ll x$$

for all $x, y, z \in H$ where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H A \ll B$ is defined by for all $a \in A$, there exists $b \in B$ such that $a \ll b$. In such case ''<<'' is called the hyper order in *H*.

Let $(H, \circ, 0)$ be a hyper BCI-algebra. By H^+ we mean $H^+ = \{x \in H \mid 0 \in 0 \circ x\}$

We have $0 \in H^+$, thus $H^+ \neq \emptyset$.

Proposition 2.2. [4]Let $(H, \circ, 0)$ be a hyper BCI-algebra, the following hold:

- (i) $x \ll x \circ 0$
- (ii) $A \ll A$
- (iii) $y \ll z$ implies $x \circ z \ll x \circ y$,

for all $x, y, z \in H$ and for all nonempty subsets A and B of H.

Definition 2.3. [4] Let $(H, \circ, 0)$ be a hyper BCI-algebra. Then the set $S_k = \{x \in H : x \circ H \le \{x\}\}$ is called as hyper BCK-part of H. If $H \neq S_k$, then H is said to be a proper hyper BCI-algebra.

A hyper BCI-algebra H is called a

(i) weak proper hyper BCI-algebra if H is proper and $H^+ = H$. In the other word if 0 is the smallest element of H,

(ii) strong proper hyper BCI-algebra if $H^+ \neq H$. We note that if $x \notin H^+$, then $0 \notin 0 \circ x$. Thus $0 \circ x \not\subseteq \{0\}$

Therefore, $0 \circ H \not\subseteq \{0\}$ and $(H, \circ, 0)$ is proper.

Definition 2.4. [4] Let *I* be a nonemptysubset of hyperBCI-algebra *H* and $0 \in I$. Then *I* is said to be a

(i)weak hyper BCI-ideal of H if $x \circ y \subseteq I$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$,

(ii) hyper BCI-ideal of H if $x \circ y \ll I$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$,

(iii)strong hyper BCI-ideal of H if $x \circ y \approx I$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$, where $x \circ y \approx I$ means $x \circ y \cap I \neq \emptyset$.

Definition 2.5. [5] Let *I* be a nonempty subset of a hyper BCI-algebra *H* and $0 \in I$. Then I is called to be hyper subalgebra of *H* if $x \circ y \subseteq I$ for all $x, y \in I$.

Definition 2.6. [6] Let $(H_1, \circ_1, 0_1)$ and $(H_2, \circ_2, 0_2)$ be two hyper BCI-algebras and $f: H_1 \to H_2$ be a function. Then f is defined a homomorphism if and only if

 $f(x \circ_1 y) = f(x) \circ_2 f(y)$, for all $x, y \in H_1$.

If f is one to one (*onto*) then f is monomorphism (*epimorphisn*) and if f is both one to one and onto, then f is a isomorphism and $(H_1, \circ_1, 0_1)$ and $(H_2, \circ_2, 0_2)$ are isomorphic.

3. MULTIPLIER OF HYPER BCI-ALGEBRAS

In the following, the notion of multiplier of a hyper BCI-algebra is given.

Definition 3.1. Let $(H,\circ,0)$ be a hyper BCI-algebra. A map $d: H \to H$ is said to be a multiplier if for all $x, y \in H$ $d(x \circ y) = d(x) \circ y$.

Example 3.1. Let $H = \{0, \alpha, \beta\}$ and $(H, \circ, 0)$ be a hyper BCI-algebra with Cayley table as follows

Table	1.	Cayley	table

0	0	α	β
0	{0}	{0}	{β}
α	{α}	{ 0 ,α}	{β}
β	{β}	{β}	{0}

Define a map
$$d_1: H \to H \ d_1(x) = \begin{cases} \beta, & x = 0, \alpha \\ 0, & x = \beta \end{cases}$$

Hence it is easily checked that d_1 is a multiplier of hyper BCI-algebra.

Therefore H is strong proper hyper BCI-algebra.

If $I_1 = \{0, \beta\} \subseteq H$ then I_1 is ideal of H.

Example 3.2. Cayley table given in Example 3.1 and $d_2 = I_H$ then d_2 is multiplier of H.

Example 3.3. Cayley table given in Example 3.1 and define a map $d_3: H \rightarrow H$

$$d_3(x) = \begin{cases} 0, & x = 0, \alpha \\ b, & x = \beta \end{cases}$$

Hence it is easily checked that d_3 is a multiplier of hyper BCI-algebra.

If $I_2 = \{0, \alpha\} \subseteq H$ then I_2 is ideal of H. And also d_3 is an invariant map: $d_3(I_2) \subseteq I_2$.

Proposition 3.2. Let $(H, \circ, 0)$ be a hyper BCI-algebra and d be a multiplier of H. Then it satisfies $d(x \circ d(x)) \ll 0$ for all $x \in H$.

Proof. Using (b3);

$$d(x \circ d(x)) << 0$$
$$0 \in d(x) \circ d(x)$$
$$0 \in d(x) \circ d(x) \circ 0$$

Definition 3.3. Let $(H, \circ, 0)$ be a hyper BCI-algebra and a map $d: H \to H$ is called to be a regular if d(0) = 0.

Example 3.4. d_3 given in Example 3.3 is multiplier of hyper BCI-algebra and regular. That is $d_3(0) = 0$

Proposition 3.4. Let $(H, \circ, 0)$ be a hyper BCI-algebra and a map $d: H \to H$ is a regular multplier of H. Then the following hold for all $x, y \in H$:

(i)
$$d(x) \ll x$$
,
(ii) $d(x \circ y) \ll d(x) \circ d(y)$.

Proof.

(i)
$$0 = d(0) \in d(x \circ x) = d(x) \circ x$$
, for all $x \in X$. We get $d(x) \ll x$.

(ii) Let $y \in X$. Using (i) and *Prop.2.2.(iii*), we have $d(x \circ y) = d(x) \circ y$.

Therefore we get $d(x) \circ y \ll d(x) \circ d(y)$.

Hence we have $d(x \circ y) \ll d(x) \circ d(y)$.

Example 3.5. d_3 given in Example 3.3. is multiplier of hyper BCI-algebra. And also it is a homomorphism.

Definition 3.5. Let $(H, \circ, 0)$ be a hyper BCI-algebra and a map $d : H \to H$, if $x \ll y$ then $d(x) \ll d(y)$ for all $x, y \in H$, *d* is said to be hyper isotone.

Example 3.6. d_3 given in Ex. 3.3 is hyper isotone.

Proposition 3.6. Let $(H,\circ,0)$ be a hyper BCI-algebra and d be a regular multiplier of H. If $d: H \to H$ is an endomorphism, then d is hyper isotone.

Proof. Let $x, y \in X$ and $x \ll y$

Therefore we get $0 \in x \circ y$. *d* be a regular multiplier of *H* and $d: H \to H$ is an endomorphism so we have $d(0) \in d(x \circ y) \ll d(x) \circ d(y)$. Hence we find $d(x) \ll d(y)$.

Definition 3.7. Let $(H, \circ, 0)$ be a hyper BCI-algebra and d_1, d_2 be two maps. Then a map

 $d_1 \bullet d_2 \colon H \to H$ is defined by $(d_1 \bullet d_2)(x) = d_1(d_2(x))$ for all $x \in H$.

Proposition 3.8. Let $(H,\circ,0)$ be a hyper BCI-algebra and be d_1, d_2 two maps. $d_1, d_2: H \to H$ are multipliers of H. Then $d_1 \cdot d_2$ is a multiplier of H.

Proof. Let $x, y \in H$, we get,

$$(d_1 \bullet d_2)(x \circ y) = d_1(d_2(x \circ y))$$
$$= d_1(d_2(x) \circ y)$$
$$= (d_1 \bullet d_2)(x) \circ y$$

And so $d_1 \cdot d_2$ is a multiplier of H.

Definition 3.9. Let $(H, \circ, 0)$ be a hyper BCI-algebra and d be a multiplier of H. A set $Fix_d(H)$ is defined by $Fix_d(H) := \{x \in H | d(x) = x\}$.

Proposition 3.10. Let $(H,\circ,0)$ be a hyper BCI-algebra and d be a regular multiplier of H. If $x \in Fix_d(H)$ and $y \in H$ imply $(d \cdot d)(x \circ y) = (x \circ y)$.

Proof. Let $x, y \in H$, we have,

$$(d \cdot d)(x \circ y) = d(d(x \circ y))$$
$$= d(d(x) \circ y))$$
$$= d(d(x)) \circ y$$
$$= d(x) \circ y$$
$$= x \circ y$$

Proposition 3.11. Let $(H, \circ, 0)$ be a hyper BCI-algebra and d be a multiplier of H. Then $Fix_d(H)$ is a hyper subalgebra of H.

Proof. Let $x, y \in Fix_d(H)$. We have $d(x \circ y) = d(x) \circ y = x \circ y$.

Hence we find $Fix_d(H)$ is a hyper subalgebra of H.

Proposition 3.12. Let $(H, \circ, 0)$ be a hyper BCI-algebra and d be a multiplier of H. If $x \in H$ and $y \in Fix_d(H)$ then $x \land y \in Fix_d(H)$.

Proof. Let $y \in Fix_d(H)$, we get,

$$d(x \wedge y)) = d(y \circ (y \circ x))$$
$$= d(y) \circ (y \circ x)$$
$$= y \circ (y \circ x)$$
$$= x \wedge y$$

Proposition 3.13. Let $(H,\circ,0)$ be a hyper BCI-algebra and d be a multiplier of H. If $x \in H$ and $y \in Fix_d(H)$ then $d(x \circ y) = d(x) \circ d(y)$.

Proof. Let $y \in Fix_d(H)$ and $x \in H$

$$d(x \circ y)) = d(x) \circ y$$

= $d(x) \circ d(y)$.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- Imai, Y. and Iseki, K., "On axiom systems of prepositional calculi", XIV. Proc. Japan. Acad., 42,19– 22, (1966).
- [2] Marty, F., "Sur une generalization de la notion degroups", 8th congress Math. Scandinaves, Stockholm, 45–49, (1934).
- [3] Long, X., "Hyper BCI-algebras", Discuss Math. Soc., 26,5–19, (2006).
- [4] Ameri, R., Radfar, A., Boorzooei R.A., "Characterization of hyper BCI-Algebra of order 3", 30 : 141–156, (2013).
- [5] Jun Y.B., M.M. Zahedi, Xin X.L., Boorzooei R.A., "On hyper BCK-algebras", Ital. J. Pure Appl. Math., 8 : 493–498, (2000).
- [6] Boorzooei, R.A., Zahedi, M.M. Rezai, H., "Classification of hyper BCK-algebras of order 3" Ital. J. Pure Appl. Math., 12: 175–184, (2012).