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Abstract 

The packing chromatic number ( )G  
of a connected graph G is the smallest number m  for 

which a function : ( ) {1,2,..., }g V G m  exists, such that if ( ) ( ) ,g a g b j   then  ( , )d a b j . 

Here, we determine the packing chromatic numbers of bismuth tri-iodide and first type nanostar 

dendrimers.   
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1. INTRODUCTION 
 

A packing m -coloring of a connected graph G  is a function : ( ) {1,2,..., } g V G m such that if 

( ) ( ) ,g a g b j   then ( , )d a b j . The packing chromatic number ( )G  of G  is the smallest number m  

for whichG has packing m -coloring. The idea of packing coloring comes from the zone of frequency 

assignment in wireless networks and was proposed by Goddard et al. [1] underneath the title broadcast 

coloring. The name packing chromatic number was coined by Bresar et al. [2].  

 

Dendrimers are novel artificial polymeric structures having extended bodily and chemical properties due 

to their special three dimensional architecture and they also have a nicely defined shape, size and molecular 

weight. These are adaptable with drug moieties as properly as bioactive molecules like DNA, Liquaemin 

and different polyanions [3,4]. 

 

A crystal structure is made out of a unit cell, a set of atoms arranged particularly; repeated on a lattice 

periodically in three dimensions. The crystal structure plays a crucial role in deciding several physical 

properties, like electronic band structure, cleavage, and optical transparency [5]. Here, we determine  the 

packing coloring of  first type nanostar dendrimers  and bismuth tri-iodide. 

 

2. SOME FAMILIES OF NANOSTAR DENDRIMERS 

 

The first type of nanostar dendrimers 
1( ) D n are shown in Figures 1, 2 and 3, where n  is the stage of 

growth. The order and size of 
1( ) D n nanostar dendrimers are 24 36( -1)n  and 27 42( -1) n respectively.  

In the following Theorems, by ( )c v , ( , ) d u v and ( ,{ , }) d u v w we mean the color of a vertex 𝑣, the distance 

between vertices u  and v , and the distances between u  and v  and u  and w .  

 

Proposition 2.1. [1] Let H  be a subgraph of G . Then ( ) ( )H G  
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Proposition 2.2. [1] For a cycle graph 
nC  of length n , we have 

3  when  is divisible by 4
( )

4  otherwise
n

n
C


 
  

 

Theorem 2.3. For
1(1)D , 

1( (1)) 5D  . 

 

Proof: Assume for logical inconsistency this is not valid. Then
1( (1)) 4D  . Obviously there must be a 

vertex to which color 1 or 2 or 3 or 4 is assigned. Label 
1(1)D  as it is shown in Figure 1(a). Let x  be a 

vertex in 
1(1)D  with ( ) 2 c x  or ( ) 1 c x  or ( ) 3c x  or ( ) 4c x  . Now we will discuss these four cases in 

detail.  

 

Case 1: For ( ) 1 c x  , note that each of the neighbors of x  have pairwise various colors and let 
1( ) 2c u  ,

1( ) 3c v   and 
1( ) 4c w  . Now vertices 

2u  and 
6u  can't be colored except if 

2 6( ) ( ) 1c u c u  . Since 

1 3 5( ,{ , }) 4 d w u u  and 
1 3 5( ,{ , }) 4d v u u  , either 

3u  or 
5u  can be colored 3. But if 

3( ) 3c u  , 
5u can't be 

colored except if a color more than 4 is used. Similarly, if 
5( ) 3c u  , 

3u  can't be colored except if a color 

more than four is used.  

 

Case 2: For ( ) 2 c x  , let 
1 1 1( ) ( ) ( ) 1c u c v c w   . Consider the vertices 

2u , 
6u  and 

2v . Since ( ) 2 c x   

and 
2 2 6( ,{ , }) 4d v u u  , vertices 

2u and 
2v  can be colored 3, which also implies that 

2( ) 3 c w  because 

2 2 6( ,{ , }) 4d w u u  . Now for vertices 
6u , 

6v  and 
6w , the only choice is to get color 4. Without loss of all 

inclusive statement, let 
6( ) 4c u  . Then 

6v and 
6w  can't be colored except if a color more than four is used.  

 

Case 2.1: For ( ) 2 c x  , let 
1( ) 3 c v  and 

1( ) 4 c w  or vice versa. This forces 
1( ) 1c u  . Since 

1 2 6( ,{ , }) 3d v u u  , 
1 2 6( ,{ , }) 3 d w u u  and 

2 6( ,{ , }) 2d x u u  , vertices 
2u  and 

6u  can't be colored except if 

a color more than 4 is used.  

 

Case 2.2: For ( ) 2 c x  , let 
1 1 ( ) ( ) 1c u c v  . Then 

1( ) {3,4}c w  . Since 
1 2 6( ,{ , }) 3d w v v  , if 

1( ) 3c w  , 

vertex 
6v  can be colored 4 but 

2v  needs a color greater than 4. Similarly, if 
1( ) 4c w   instead of 

1( ) 3c w 

, vertex 
6v  can be colored 3 but 

2v  needs a color more than 4.  

 

 

 
 

Figure 1. a) Labeling of 
1(1)D  b) Packing 5-coloring of 

1(1)D  

 

 

 

 
Case 3: For ( ) 3 c x  , let 

1 1 1( ) ( ) ( ) 1c u c v c w   . Consider the vertices 
6u , 

6v  and 
6w . Since 

6 6 6( ,{ , }) 4 d u v w  and 
6 6( , ) 4d v w  , 

6u , 
6v  and 

6w  can be colored 2. Now for vertex 
2v , the only choice 
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is to get color 4. But if 
2( ) 4c v  , vertices 

2u  and 
2w  can't be colored except if a color more than four is 

used. 

 

Case 3.1: For ( ) 3 c x  , let 
1( ) 2 c v  and 

1( ) 4c w  . This forces 
1( ) 1c u  . Since 

1 2 6( ,{ , }) 3d v u u  , if 

2( ) 2c u  , 
6u can't be colored except if a color greater than 4 is used. Similarly, if 

6( ) 2c u   instead of 

2 ( ) 2c u  , 
2u  can't be colored except if a color more than four is used.  

 

Case 3.2: For ( ) 3 c x  , let 
1 1( ) ( ) 1c v c w  . Then 

1( ) {2,4}c u  . Since 
1 6 6( ,{ , }) 3d u u w  , 

1u , 
6u  and 

6w

can be colored 2. This forces 
2( ) 4c w  . But if 

2( ) 4c w  , 
2v can't be colored except if a color greater than 

four is used and suppose if 
1( ) 4c u  instead of 

1( ) 2c u  , vertex 
2v  should receive a color more than four.  

 

Case 4: For ( ) 4c x  , let 
1( ) 1c u  . Then 

2( )c u  and 
6( ) {2,3}c u  . Without loss of all inclusive statement, 

let 
2( ) 2 c u  and 

6( ) 3c u  . This forces 
3 5( ) ( ) 1c u c u  . But for vertex 

4u , the only choice is to get a 

color more than four.  

 

Case 4.1: For ( ) 4c x  , let 
1( ) {2,3}c u  . To minimize the packing coloring, vertices 

2u and 
6u  can be 

colored 1. When 
1( ) 2c u  , either 

3( ) 3 c u  or 
5( ) 3c u  . Without loss of all inclusive statement let 

3( ) 3 c u  . Then 
5u  needs a color more than four. Similarly, when 

1( ) 3c u  instead of 
1( ) 2c u  , either 

3( ) 2 c u  or 
5( ) 2c u  . Without loss of generality let 

3( ) 2 c u  . Then 
5u  needs a color more than four.  

Hence from above four Cases, 
1( (1)) 5D  . From Figure 1(b), we conclude that 

1( (1)) 5D  . 

 

Theorem 2.4. For
1( ), 2,3D n n  ,

1( ( )) 5D n  .  

 

Proof: Since 
1(1)D

 
is a subgraph of 

1( ), 2,3D n n  , by Propositions 2.1 and 2.2, 
1( ( )) 5D n  . From 

Figures 2 and 3, the upper bound is 
1( ( )) 5D n  . Hence for 

1( ), 2,3D n n  , 
1( ( )) 5D n  .   

 

 
Figure 2. Packing 5-coloring of 

1(2)D  
 

Open Problem 2.5. By a comparable, yet considerably more monotonous investigation as in the above 

verification one can set up 1( ( )) 5D n  , for 4n .  

 

3. THE STRUCTURE  OF BISMUTH TRI-IODIDE 

 

Bismuth tri-iodide (BiI3) is one of the  inorganic compounds. The result of the response of bismuth and 

iodine is used to be of attractive for subjective inorganic investigation. Bismuth tri-iodide is additionally 

shaped by the activity of ethyl iodide on bismuth trichloride within the sight of ethyl chloride. Layered BiI3 

crystal is viewed as 3-layered stacking structure. The occasional stacking of 3 layers frames rhombohedral 

BiI3 crystal with R-3 symmetry. The progressive stacking of one I-Bi-I layer frames hexagonal structure 

with symmetry [6]. Figure 4(a) demonstrates one unit of bismuth tri-iodide. An m - bismuth chain is 

obtained by linearly arranging m unit cells. 
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Figure 3. Packing 5-coloring of 

1(3)D  
 

 

Theorem 3.1. Let G  be an m -bismuth chain. Then ( ) 3G  .  

 

Proof: Since 
4C  is a subgraph of G , by Propositions 2.1 and 2.2, ( ) 3G  . The upper bound pursues 

from the coloring of an m -bismuth chain with 3 colors, whose pattern is shown in Figure 4(b). Thus, from 

Figure 4(b), ( ) 3G  . Hence ( ) 3G  . 

 

 
Figure 4. a) One unit of bismuth b) Packing 3-coloring of 3-bismuth chain c) Packing 3-coloring of 

subdivided 3-bismuth chain  

 

By subdividing each edge of a graph ,G  subdivision graph ( )S G  is acquired. 

 

Theorem 3.2. Let ( )S G be a subdivided m -bismuth chain. Then ( ( )) 3S G  .  

 

Proof: Since 
8C  is a subgraph of ( )S G , by Propositions 2.1 and 2.2, ( ( )) 3S G  . Then upper bound 

pursues from the labelling of a subdivided m -bismuth chain with 3 colors, whose pattern is shown  in 

Figure 4(c). In Figure 4(c), it is expected that the vertices which are not colored get color 1. Thus, from 



671 Roy SANTIAGO/ GU J Sci, 32(2): 667-672 (2019) 

 

Figure 4(c), ( ( )) 3.S G   Hence ( ( )) 3S G  . 

 
4. THE STRUCTURE OF LEAD CHLORIDE  

 

Lead chloride is a salt crystal which is utilized in the creation of infra red disseminating glass. It is 

additionally used as an intermediate in refinement of  bismuth (Bi) ore. The structure of lead chloride is 

orthorhombic dipyramidal [6]. The diagram of one unit of lead chloride is gotten from that of bismuth tri-

iodide by joining only one two degree vertex of every one of the 4-cycles to another vertex. As on account 

of bismuth tri-iodide, chains and sheets of lead chloride are characterized. See Figure 5(a). 

 

 
Figure 5. a) One unit of lead chloride b) Packing 5-coloring of 4-lead chloride chain c) Packing 3-

coloring of subdivided 4-lead chloride chain 

 

Theorem 4.1. Let G  be an m -lead chloride chain. Then 4 ( ) 5G  .  

 

Proof: Since 
6C  is a subgraph of G , by Propositions 2.1 and 2.2, ( ) 4G  . Then upper bound pursues 

from the labelling of an m -lead chloride chain with 5 colors, whose pattern is shown in Figure 5(b). In 

Figure 5(b), it is expected that the vertices which are not colored get color 1. Thus, from Figure 5(b), 

( ) 5G  . Hence 4 ( ) 5G  . 

Theorem 4.2. Let ( )S G be a subdivided m -lead chloride chain. Then ( ( )) 3S G  .  

 

Proof: Since 
8C  is a subgraph of ( )S G , by Propositions 2.1 and 2.2, ( ( )) 3S G  . Then upper bound 

pursues from the labelling of a subdivided m -lead chloride chain with 3 colors, whose pattern is shown in 

Figure 5(c). In Figure 5(c), it is expected that the vertices which are not colored get color 1. Thus, from 

Figure 5(c), ( ( )) 3S G  . Hence ( ( )) 3S G  . 
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