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Abstract 

The integral theorem of the vector field energy is derived in a covariant way, according to which 

under certain conditions the potential energy of the system’s field turns out to be half as large in 

the absolute value as the field’s kinetic energy associated with the four-potential of the field and 

the four-current of the system’s particles. Thus, the integral theorem turns out to be the analogue 

of the virial theorem, but with respect to the field rather than to the particles. Using this theorem, 

it becomes possible to substantiate the fact that electrostatic energy can be calculated by two 

seemingly unrelated ways, either through the scalar potential of the field or through the stres 

energy-momentum tensor of the field. In closed systems, the theorem formulation is simplified 

for the electromagnetic and gravitational fields, which can act at a distance up to infinity. At the 

same time for the fields acting locally in the matter, such as the acceleration field and the pressure 

field, in the theorem formulation it is necessary to take into account the additional term with 

integral taken over the system’s surface. The proof of the theorem for an ideal relativistic uniform 

system containing non-rotating and randomly moving particles shows full coincidence in all 

significant terms, particularly for the electromagnetic and gravitational fields, the acceleration 

field and the vector pressure field.  
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1. INTRODUCTION 

 

In classical mechanics, the particles of an arbitrary physical system have both kinetic and potential energies. 

In this case, there is a relationship between the kinetic and potential energies, which is described with the 

help of the virial theorem. In addition to the particles, each physical system has either external fields, 

generated by external sources, or internal fields originating from the system’s particles themselves. The 

fields and particles are complementary to each other and in the aggregate, they represent the main content 

of the physical system. Thus, we should expect that there is also some theorem for the fields that could 

relate the quantities equivalent to the kinetic and potential energies. 

 

The purpose of this article is establishing such a relationship between the field energies in the most general 

form, which is also suitable in the curved spacetime. Although the proof is provided for the electromagnetic 

field, it is also valid for any vector fields that have four-potentials and the corresponding tensors. 

 

In order to verify the derived integral theorem of the field energy, we apply it to the relativistic uniform 

system and show how exactly this theorem should be used. In this case our analysis will refer not only to 

the electromagnetic field, but also to the vector gravitational field, as well as to the acceleration field and 

the vector pressure field [1, 2]. In particular, the use of the integral field energy theorem makes it possible 

to simplify the calculation of the gravitational energy of the system, since the field energy associated with 

the tensor invariant can be replaced with the energy associated with the four-potential of gravitational field. 

Similarly, the calculation of energy of other fields is simplified. 

 

Everywhere in our calculations we will use the metric signature of the form (+,–,–,–).  
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2. THE INTEGRAL THEOREM OF THE FIELD ENERGY 

 

Suppose that in a certain physical system there are charged particles, the motion of which is described by 

the charge four-current j . In its turn the electromagnetic field has the four-potential A , while the 

electromagnetic field tensor F   is defined by the relation: 

 

F A A A A              .                                                                                                   (1) 

 

The symbols   and   represent the covariant derivative and the four-gradient, respectively. The 

equation of the electromagnetic field with the sources is written in the standard way: 

 

0F j

     ,                                                                                                                                       (2) 

 

where 0  is the magnetic constant, and the covariant derivative 
  with a contravariant index is used. 

 

We will multiply the electromagnetic field tensor by the four-potential with a contravariant index and will 

take from this product the covariant derivative in such a way that a scalar invariant would appear. At the 

same time we will use (2): 

 

0( )F A A F F A j A F A        

                 .                                                      (3) 

 

Let us change the places of the indices   and    in (3): 

 

0( )F A A F F A j A F A        

             .                                                     (4) 

 

Let us now take into account that ( ) ( )F A F A   

    ,  j A j A 

  , since the scalar invariants 

do not depend on permutations of the indices. Also keeping in mind that the electromagnetic field tensor is 

antisymmetric: F F    , we will sum up relations (3) and (4) and use (1): 

 

02 ( ) 2F A j A F F    

        .                                                                                                  (5) 

 

The tensor product F A

   in (5) contains a contraction with respect to the index   and therefore it is 

equivalent to a certain four-vector B . For an arbitrary four-vector the following rule holds: 

 

 1
B B g B

g

  

      


, 

 

where g  is the determinant of the metric tensor g  . 

 

We will use this rule on the left-hand side of (5), and then integrate (5) with respect to the invariant four-

volume, replacing j A

  by A j  : 

 

   0 1 2 3 0 1 2 3

02 2g A F dx dx dx dx A j F F g dx dx dx dx    

           .                     (6) 
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The tensor F 

  in (6) is the electromagnetic field tensor with mixed indices. We will now use the 

divergence theorem and transform the left-hand side in (6): 

 

  0 1 2 32 2g A F dx dx dx dx A F g dS   

        ,                                                              (7) 

 

where dS n dS   is the orthonormal differential dS  of the hypersurface surrounding the physical 

system in the four-dimensional space, n  is the four-dimensional normal vector perpendicular to the 

hypersurface and directed outward. 

 

In (6) and (7) we may not perform integration with respect to the time coordinate 
0x  and may consider the 

physical system at a fixed arbitrary time point. To this end, we will rewrite the right-hand sides of (6) and 

(7): 

 

 

 

0 1 2 3

0

1 2 3 0

0

2

2 .

A j F F g dx dx dx dx

A j F F g dx dx dx dx

  

  

  

  





  

    
 



 
                                                                         (8) 

 
0 1 2 3 1 2 3 0

2 1 3 0 3 1 2 0

2 2 2

2 2 .

A F g dS A F g dx dx dx A F g dx dx dx

A F g dx dx dx A F g dx dx dx

   

   

 

 

     
 

      
   

   

   
                           (9) 

 

The right-hand sides in (8) and (9) are equal to each other as a consequence of (6). Now we will differentiate 

them with respect to the variable 
0x ct , where c  is the speed of light, t  is the coordinate time, and then 

equate the results to each other: 

 

   1 2 3 0 1 2 3

0

1 2 3 2 1 3 3 1 2

2
2

2 2 2 .

d
A j F F g dx dx dx A F g dx dx dx

c dt

A F g dx dx A F g dx dx A F g dx dx

   

   

  

  

    

     

 

  
 

 

The last three integrals on the right-hand side can be combined into one surface integral taken over the 

closed two-dimensional surface S , inside which the entire system with all the particles and fields must be 

located. All this gives the following: 

 

   1 2 3 0 1 2 3

0

2
2

2 .k

k

S

d
A j F F g dx dx dx A F g dx dx dx

c dt

A F n g dS

   

   





    

 

 


                                (10) 

 

In (10) the three-dimensional unit vector 
kn , where 1,2,3k  , is the normal vector to the surface S  

directed outward. 

 

In many practical cases, the right-hand side of (10) vanishes. In particular, the electromagnetic field of the 

system is present both inside and outside the system up to infinity. Then the last integral on the right-hand 

side of (10) is the surface integral over a surface of infinitely large radius. But for a closed system, in which 

there are only the proper fields of the system’s particles, both the four-potential A
 and the electromagnetic 

field tensor F 

  vanish at infinity due to the gauge of the potentials, field strength and magnetic field. 

Consequently, for a closed system this integral in (10) is equal to zero. If the derivative with respect to time 
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inside of the first integral on the right-hand side of (10) is also equal to zero, then the following relation 

would hold for the left-hand side: 

 

  1 2 3

02 0A j F F g dx dx dx  

      .                                                                                     (11) 

 

The quantities inside the integral in (11) are often used in various calculations. For example, the Lagrangian 

for four vector fields, including the electromagnetic field, in case of continuous medium has the following 

form [1]: 

 

  1 2 3

2

0 1 2 3

2 2

1
2

16 4
.

16 16

L U J D J A j J g dx dx dx

c
ckR ck Φ Φ F F

G
g dx dx dx

c c
u u f f

   

   

 

 

 

 



 

 

     

 
    

  
 
   
 




                                                (12) 

 

where k  is a certain coefficient to be determined, 

R  is the scalar curvature, 

  is the cosmological constant, 

0J u   is the four-vector of the mass current, 

0  is the mass density in the reference frame associated with the particle, 

cdx
u

ds


   is the four-velocity of a point particle, dx

 is the four-displacement, and ds  is the interval, 

,U
c



 
  
 

U  is the four-potential of the acceleration field, where   and U  denote the scalar and vector 

potentials, respectively, 

,D
c



 
  
 

D  is the four-potential of the gravitational field, described through the scalar potential   

and the vector potential D  of this field, 

,
c


 

  
 

Π  is the four-potential of the pressure field, consisting of the scalar potential  and the 

vector potential Π , 

G  is the gravitational constant, 

Φ D D D D              is the gravitational tensor, 

Φ g g Φ     

  is the definition of the gravitational tensor with contravariant indices using the metric 

tensor g
, 

,A
c



 
  
 

A  is the four-potential of the electromagnetic field, defined by the scalar potential   and 

the vector potential A  of this field, 

0qj u   is the four-vector of the charge current, 

0q  is the charge density in the reference frame associated with the particle, 

u U U U U              is the acceleration field tensor, calculated using the curl of the four-

potential of the acceleration field, 
  is the acceleration field coefficient, 
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f                 is the pressure field tensor, 

  is the pressure field coefficient. 

 

In (12) the gravitational field is considered as a vector field in the framework of the covariant theory of 

gravitation. If (11) holds true, then in (12) the term 
0

1

4
F F 




  is half as large as the term A j , 

and has the opposite sign. 

 

As another example we will give the expression for the relativistic energy of a physical system of particles 

and four vector fields, also in the approximation of continuous medium [1]: 

 

  0 1 2 3

0 0 0 0

2

0 1 2 3

2 2

1

1

16 4
.

16 16

rel qE u g dx dx dx
c

c
Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

      

 

 

     

 
 

  
 
   
 





                                                              (13) 

 

If (11) is satisfied in such a system, then the integral of the quantity 
0

1

4
F F 




 over the infinite volume 

in (13) can be replaced by the integral of the quantity 
1

2
A j   over the volume occupied by the matter. 

This would allow us to significantly simplify the calculation of the system’s energy. 

 

The classical virial theorem for the kinetic energy 
kE  of the system’s particles and the potential energy W  

of these particles is written as follows: 2 0kE W  . Comparison of (13) and (11) shows that in some 

cases a quantitatively opposite relation of the form 2 0k f fE W   is satisfied for the electromagnetic 

field. In this case 

 

1 2 3

k fE A j g dx dx dx

  ,            
1 2 3

0

1

4
fW F F g dx dx dx 

 


  , 

 

so that k fE  plays the role of the kinetic energy of the field in the interaction of the four-potential A  with 

the charge four-current j   of the particles, and fW  characterizes the potential energy of the field, not that 

of the particles. 

 

3. THE INTEGRAL THEOREM OF ENERGY FOR OTHER VECTOR FIELDS 

 

In the covariant theory of gravitation [1] the description of the gravitational field occurs in the same way 

as it is done for the electromagnetic field. This means similarity of the equations of both fields, and we can 

immediately write the integral theorem of energy for the gravitational field, replacing in (10) the notation 

of the four-current, four-potential and field tensor, and replacing 
0  by 

2

4 G

c


 : 
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 1 2 3 0 1 2 3

2

8 2

2 .k

k

S

G d
D J Φ Φ g dx dx dx D Φ g dx dx dx

c c dt

D Φ n g dS

   

   





 
      

 

 

 


                       (14) 

 

If the physical system is closed, then in (14) the last surface integral on the right-hand side would vanish as 

a consequence of the field gauge at infinity, where the four-potential D 
 and the gravitational field tensor 

Φ 

  of the system must be equal to zero. 

 

Similarly, we can proceed with the acceleration field and with the vector pressure field [2], for which the 

integral theorem of the field energy is written as follows: 

 

 1 2 3 0 1 2 3

2

8 2

2 .k

k

S

d
U J u u g dx dx dx U u g dx dx dx

c c dt

U u n g dS

   

   





 
     

 

 

 


                               (15) 

 

 1 2 3 0 1 2 3

2

8 2

2 .k

k

S

d
J f f g dx dx dx f g dx dx dx

c c dt

f n g dS

   

   






 



 
     

 

 

 


                              (16) 

 

However, the acceleration field and the pressure field differ substantially from the electromagnetic and 

gravitational fields, because they act only within the limits of matter. Therefore, in (15) and (16) the surface 

integrals on the right-hand side should be taken over the outer surface of the volume occupied by the 

system’s matter. 

 

4. APPLICATION OF THE INTEGRAL THEOREM OF ENERGY IN THE RELATIVISTIC 

UNIFORM SYSTEM 

 

A relativistic uniform system is a suitable object for testing many physical laws. Thus in [3] we studied the 

virial theorem and found out the difference from the classical approach due to taking into account the 

relativistic corrections. In [4] we applied the formulas, derived for a relativistic uniform system, to planets 

and stars and found good agreement with the results of other authors. Besides we assumed that the matter 

is in random motion, the matter particles do not have proper rotation and there are no directed fluxes of 

matter. As a result, in this system under consideration both the global vector potentials of all the fields and 

the global solenoidal field vectors vanish. For example, for the electromagnetic field this means that both 

the global vector potential A  and the magnetic field B  are equal to zero. A more thorough analysis shows 

that each charged moving typical particle has its own small vector potential pA , which is proportional to 

the instantaneous velocity v  of the particle and to the proper electric scalar potential p  of the particle, 

as well as its own magnetic field p pB A . The contribution from pA  and pB  in the subsequent 

calculations is small due to the small value of the charge of each particle, therefore it can be neglected in 

the first approximation. The same also applies to the corresponding values for the gravitational field. 

 

Let us now consider how the integral theorem of energy is satisfied for the electromagnetic field in the case 

of a relativistic uniform system. We will assume that the system is closed, has a spherical shape and is held 

in equilibrium under the action of the forces from gravitational attraction and the repulsion forces from the 

electromagnetic field and the pressure field. The acceleration field also contributes to the equilibrium of 

forces, since at random motion inside the sphere the particles experience a centripetal force from the 
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particles’ velocity component, which is tangential with respect to the sphere’s radius. We will use the 

approximation of continuous medium, so the intervals between typical particles are minimal and we can 

assume that the sphere’s volume consists of the volumes of particles. 

 

In order to simplify the subsequent calculations we will consider the situation within the framework of the 

special theory of relativity, in which 1g  . 

 

For a closed system the surface integral in (10) vanishes and for the electromagnetic field we have the 

following: 

 

   1 2 3 0 1 2 3

0

2
2

d
A j F F dx dx dx A F dx dx dx

c dt

   

       .                                                 

(17) 

 

Since ,A
c



 
  
 

A , and in the first approximation we consider that in the system under consideration 

0A , then in order to calculate the four-potential we also need to know the distribution of the global 

electric potential   in the system. As was found in [5], the electric potential inside the sphere depends on 

the sinusoidal functions: 

 
2 2 2

0 0

0 0

0 0 00

(3 )
sin 4 cos 4 .

4 64

q c q c

i

c a rc r a
r

r c c

   
    

    

     
      

     

              (18) 

 

In (18) 
0  is the electric constant, 

c  is the Lorentz factor of the particles at the center of the sphere, a  is 

the radius of the sphere. For the charge four-current we have: 0qj u  , while the four-velocity is 

( , )u c     v , where 
2 2

1

1 v c
  


 is the Lorentz factor for the particles, v  is the particles’ 

velocity. The dependence of    on the current radius r  is as follows [6]: 

 
2

0
0 2

0

2
4

34

c c
c

c rr

c cr

   
   

 

 
    

 
sin .                                                                      (19) 

 

With this in mind, for the scalar product of the four-vectors we find: 0q iA j      . Now, using (18) 

and (19), we can calculate the first term on the left-hand side of (17): 

 
1 2 3 1 2 3

0 0 0

03 2 2

0 0 0 1 2 3

02

0 0 0

0

2 2

sin 4
41

sin 4 .
2 4

cos 4

q i

q c

A j dx dx dx dx dx dx

c r

cc r
dx dx dx

r ca
r

c



    

 
    

 
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In the spherical coordinates 
1 2 3 2 sindx dx dx r drd d   , and this integral will equal: 
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                                  (20) 

 

In (20), the charge q  is the product of the particles’ invariant charge density 0q  by the sphere’s volume, 

and likewise, the mass m  is the product of the particles’ invariant mass density 
0  by the sphere’s volume. 

The quantities q  and m  have a technical character and they are not equal to the sphere’s total charge bq  

and the gravitational mass gm , respectively. In particular, according to [5], 
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In view of (18) and the equality of the vector potential to zero, that is, 0i A ,  the electric field strength 

inside the sphere can be determined by the formula: 
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Similarly, the electric field strength outside the sphere is equal to: 
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                                           (23) 

 

In the general case, the electromagnetic field tensor F   contains the components of the electric field 

strength vector E  and the magnetic field vector B . In the system under consideration, on the average 
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0B , while in the Cartesian space coordinates 
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      , and the remaining components of the 

tensors F   and F  
 are assumed to be equal to zero. Therefore, in this case 
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integral over the volume inside the sphere taken for the second term on the left-hand side of (17), in view 

of (22), in the spherical coordinates is equal to: 
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This integral must be taken by parts, placing 
2

1

r
 under the differential sign in the form 

2

1 1
dr d

r r
  . This 

gives the following: 
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Let us now calculate the integral over the volume outside the sphere taken for the second term on the left-

hand side of (17), in view of (23), in the spherical coordinates: 
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The sum of (24) and (25) gives the integral over the entire space: 
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If we take into account the identity 
2

0 0 1с    and substitute (20) and (26) into (17), then we can see that 

the left-hand side of (17) becomes equal to zero. Therefore, in the given physical system the right-hand side 

of (17) must also be equal to zero: 
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 0 1 2 32
0

d
A F dx dx dx

c dt



  .                                                                                                             (27) 

 

And this is true, since the space components of the four-potential A
 are assumed to be equal to zero, that 

is, 0A . At the same time, the time component of the electromagnetic field tensor is equal to zero due to 

antisymmetry of the tensor, 
0

0 0F  . Consequently, the product 
0 0A F

  , and equation (27) is satisfied. 

 

For the gravitational field the situation is completely analogous to that of the electromagnetic field. For a 

closed system, within the framework of the special theory of relativity, in (14) the surface integral vanishes 

and we have the following: 
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Since in the relativistic uniform system the global vector potential of the gravitational field is equal to zero, 

0D , both the product 
0D Φ   and the right-hand side of (28) are equal to zero. As for the left-hand side 

of (28), in order to calculate it we need the global scalar gravitational potential 
i  inside the sphere and 

the gravitational field strengths inside and outside the sphere [5]: 
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We obtain the product D J 

  as follows: 0 iD J 

     . Then taking into account (19) and (29), for 

the first term on the left-hand side of (28) we find: 
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For the second term on the left-hand side of (28), in view of (30) and (31) we have the following: 
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The sum of (32) and (33) vanishes according to (28), where the right-hand side is equal to zero. 

 

5. THE ACCELERATION FIELD 

 

Let us begin with clarification of what should be meant by the four-potential of the acceleration field of a 

certain physical system in the general case. According to [2], the four-potential of any vector field, the 

vector potential of which is equal to zero in its proper reference frame, that is, in the center-of-momentum 

frame, in case of rectilinear motion in the laboratory reference frame can be defined by the following 

formula: 
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where 0

0

f

q

k



  for the electromagnetic field and 1fk   for the remaining fields;   is the invariant energy 

density of interaction, which is the product of the four-potential of the field by the corresponding 4-current; 

Lu  is the four-velocity with a covariant index that defines the motion of the center of momentum of the 

physical system in the laboratory reference frame. 

 

In the proper reference frame , 0 ,0,0L

dt
u c

d




 
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 

, and the vector potential as the space component L  

vanishes according to (34). However, some physical systems, even if their center of momentum is fixed, 

have not only a scalar potential but also a vector field potential within the system. Therefore, the more 

general expression for the four-potential of the field in the laboratory reference frame is as follows: 

 

L M L

  
 ,                                                                                                                                          (35) 

 

where M 

  is a matrix connecting the coordinates and time of two reference frames, one of which is the 

laboratory reference frame and the other moves together with the center of momentum of the physical 

system under consideration, so that it has the four-potential L
  of the field in it. In the special case of the 

system’s motion at the constant velocity M 

  represents the Lorentz transformation matrix [7]. 

 

As a typical example we will consider a neutron star consisting mainly of neutrons and to some extent of 

protons and electrons. Both the star itself and the nucleons have fast rotation and strong magnetic fields. 

Despite the absence of charge, each neutron has a complex internal electromagnetic structure and a 

magnetic moment. Suppose that it is required to model a star as a relativistic uniform system and to specify 

the four-potential of the field of an arbitrary moving nucleon as a typical particle. To do this, we must use 

formula (35), since in (34) it is assumed that there is no vector potential in the nucleon’s center-of-

momentum frame. Really, a nucleon may not move in space, but due to proper rotation and complex internal 

structure in the nucleon there are nonzero vector potentials of almost all the fields. 
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In order to simplify the calculations, we will further assume that the physical system under consideration 

does not have general rotation, the system’s typical particles move randomly and have neither proper 

rotation, nor proper vector potentials in the center-of-momentum frames of the particles. In this case, we 

can use a simpler formula (34) instead of (35). 

 

In a fixed sphere, the energy density in the volume of each particle is 
2

0c   , and for the acceleration 

field in case of rectilinear motion of the sphere in the laboratory reference frame, according to (34), the 

four-potential will equal 
L LU u   . This means that if for an observer inside the sphere with particles 

within the relativistic uniform model the quantity    is an invariantly determined Lorentz factor as a certain 

function of coordinates and time, then for an observer in the laboratory reference frame, in which the 

sphere’s center has the four-velocity 
Lu , the four-potential of the acceleration field  for each point inside 

the moving sphere will equal 
LU  .  

 

In the ideal case, when the system of particles is an absolutely solid body and the particles inside the system 

are motionless, it should be 1   , and then the four-potential of the acceleration field would coincide with 

the four-velocity of the system’s center of momentum, L LU u  . A material point is a tiny physical 

system, and if we do not delve deeply into the structure of the internal motion of its matter and consider 

this point as a solid body, then the four-potential of the acceleration field of such a point would be equal to 

the four-velocity of its rectilinear motion. 

 

By definition, the four-potential of the acceleration field is a four-vector ,U
c



 
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 

U , where   and 

U  denote the scalar and vector potentials, respectively. In view of (34) and the relation 
2

0c   , it 

turns out that in the relativistic uniform system under consideration in the form of a fixed sphere the scalar 

potential will be 
2c   . As for the global vector potential of the acceleration field U , it is equal to zero 

due to the randomness of motion of the matter particles. On the other hand, inside each typical particle there 

is always a small vector potential pU  of the acceleration field, which is proportional to the instantaneous 

velocity v  of the particle. This changes to some extent the form of the effectively acting four-potential of 

the acceleration field inside the sphere. 

 

Let an arbitrary typical particle move inside the sphere, and its four-velocity within the framework of the 

special theory of relativity ( , )u c      v , where v  is the velocity of the particle,    is the Lorentz 

factor of the particle. This particle, in turn, can be considered as a relativistic uniform system, in which 

subparticles with the Lorentz factor p  move randomly relative to the particle’s center of momentum. Then, 

according to (34), the four-potential of the acceleration field for this moving particle will be written as 

( , )p p pU u c          v . Comparison with the expression ,
p

pU
c



 
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U  allows us to 

determine the acceleration field potentials inside each moving particle of the sphere: 
2

p p c    ,  

p p   U v . In this case it turns out that p  , that is, the motion of subparticles inside the particle 

with the Lorentz factor p  increases the scalar potential of the moving particle up to the value p .  

 

Due to the smallness of the local vector potential pU , we will not use it in our calculations. As a result, for 

the four-potential of the acceleration field inside the sphere we can write the following: 
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,0,0,0 ( ,0,0,0)U c U
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.                                                                                                (36) 

 

This means that we do not take into account the internal motion of subparticles in individual particles, 

assuming that 1p  , so that the scalar potential of the particles will be equal to   and will coincide with 

the acceleration field potential inside the fixed sphere. 

 

5.1. Calculation for the Acceleration Field 

 

Given that the mass four-current is 0 0 ( , )J u с        v , and the effective four-potential of the 

acceleration field inside the sphere is determined in (36), we find that 
2 2

0U J c

    . 

 

Now we can write the first part of the integral on the left-hand side of (15) and in view of (19) we can 

perform integration in the spherical coordinates: 
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Since the acceleration tensor is defined by the expression u U U       , then in view of (36) the 

tensor invariant has the following form: 
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The acceleration field strength inside the sphere is calculated in terms of the scalar and vector potentials 

[2], and since 
2c   , 0U , according to (36), then in view of (19) we obtain: 
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 


   

 


     



    
     

     

U
S

r
sin cos

                                                           (38) 

 

Using (38) we will calculate the following integral over the sphere’s volume: 

 

1 2 3 2 1 2 3

2

2

2 2 1 2 3

0 04

0

2

1
2 sin 4 cos 4 .

4
c

u u dx dx dx S dx dx dx
c

c r r
c r dx dx dx

r c c

 

 

    
 

 

    
     

     

 



 

 

This integral can be calculated similarly to (24) in the spherical coordinates: 
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1 2 3

2
2 2 2

0 0

00

2
8 sin 4 sin 4 .

2 44 4
c

u u dx dx dx

a c a c a
c

c a c

 

 

     
  



    
      

     


                             (39) 

 

Let us now go over to the right-hand side of (15), for which it is necessary to calculate the product 
0U u

  

inside the sphere. If according to (36) the four-potential has the components ( ,0,0,0)U c   , then the 

time components of the acceleration tensor in the Cartesian space coordinates are 
0

0 0u  , 
0

1
xS

u
c

  , 

0

2

yS
u

c
  , 

0

3
zS

u
c

  . Consequently, 
0 0U u

  , and the first integral on the right-hand side of (15) 

is equal to zero. 

 

We have also to calculate the surface integral on the right-hand side of (15). If we introduce the vector 
1 2 3( , , ) ( , , )x y zF F F U u U u U u  

   F , then we see that the surface integral reduces to a doubled 

flux of this vector through the spherical surface of the system. 

 

The radial component of the vector F  is defined by the expression 
r rF  F e , where 

re  is a unit vector 

directed along the radius. To determine the doubled flux of the vector F  it suffices to multiply the value 

rF , calculated at r a , by the doubled area of the sphere: 

 
22 8 ( )k

k r

S

U u n dS a F a

  .                                                                                                             (40) 

 

Since according to (36) the four-potential of the acceleration field inside the sphere has the components 

( ,0,0,0)U c   , and the nonzero components of the acceleration tensor in the Cartesian space 

coordinates equal 
1

0
xS

u
c

  , 
2

0

yS
u

c
  , 

3

0
zS

u
c

  , then it should be: 

 

  F S ,                  
r r rF S    F e . 

 

In view of (19) and (38), we find: 

 

3 2

0 0 03

0 0

sin 4 cos 4 sin 4
4 4

c
r

c c r r r
F r

c c cr


     

   

      
        

       

. 

 

At r a  this expression gives ( )rF a , and then the surface integral (40) is calculated as follows: 

 
2

3 2
2

0 0

0 0

2 8 ( )

8 2
sin 4 sin 4 .

24 4

k

k r

S

c

U u n dS a F a

c c a a a

c ca



 

 
   

   



    
      

     


                                            (41) 

 

Substituting (37), (39), and (41) into (15), we can see that the theorem of energy for the acceleration field 

is exactly satisfied. 
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6. THE PRESSURE FIELD 

 

In the physical system under consideration the vector potential Π  is assumed to be equal to zero, and then 

the four-potential of the pressure field inside the sphere in the approximation of the special theory of 

relativity will be written as follows: 

 

,0,0,0
c



 
 

  
 

.                                                                                                                          (42) 

 

The scalar potential of the pressure field was calculated in [6]: 

 
2 3 2

0
0

0

2
sin 4 .

34

c c c
c c

c c rr

cr

       
 

   

 
     

 
                                           (43) 

 

The mass four-current has the following form: 0 0 ( , )J u с        v . With this in mind 

0J 

     , and we can write the first integral on the left-hand side of (16): 

 

1 2 3 1 2 30

2 2

88
J dx dx dx dx dx dx

c c





 
       . 

 

Substituting here (43) and    from (19), we find: 

 

1 2 3

2

2

0 0

0

2

0

0

8

sin 4 cos 4
48

.

2
sin 4

2 4 4

c
c

c

c

J dx dx dx
c

c c a a
a

c c

c a c a

c








 
   

  

  
 

  



       
         

        
   

   
         



                        (44) 

 

Since we assumed that in the system under consideration the vector potential of the pressure field is absent, 

then the solenoidal vector I  of the pressure field, calculated as the curl of the vector potential [2], will also 

be equal to zero. In this case, the pressure field tensor f   will depend only on the field strength С , so 

that the tensor invariant will equal 
2

2

2
f f С

c

 

    . The pressure field strength is determined by the 

formula: 

 

2

0 03

0

2

0 0

2

sin 4 cos 4
4

4 2
1 .

3 5

c

c

c c r r
r

t r c c

r

c

 
   

  

   

     
       

      

 
  

 

rΠ
С

r
                             (45) 

 

Now we can write the second integral on the left-hand side of (16) in the spherical coordinates: 

 



701 Sergey G. FEDOSIN  / GU J Sci, 32(2): 686-703 (2019) 

1 2 3 2 2

2

0

2
2 2 2

0 02 2

0 0

8

8 1
sin 4 cos 4 .

4

a

r

a

c

r

f f dx dx dx С r dr
c

c c r r
r dr

r c c

 

 



 
   

  





 

    
     

     

 



 

 

This integral is calculated in the same way as (24): 

 
1 2 3

2 2 2 2
2

0 02

00

8 2
sin 4 sin 4 .

2 44 4

c

f f dx dx dx

c a c a c a

c a c

 

 

 
   

   



    
      

     


                           (46) 

 

On the right-hand side of (16) there is a product 
0f

 , and the pressure field tensor components are the 

following: 
0

0 0f  , 
0

1
xC

f
c

  , 
0

2

yC
f

c
  , 

0

3
zC

f
c

  . If we take into account the components of 

the four-potential 
  according to (42), then we can see that 

0 0f

  . 

 

Now we will turn to the product 
kf

  on the right-hand side of (16), where 1,2,3k  . Since the four-

potential 
  contains only the time component with the index 0  , we will write out all the nonzero 

components of 
0

kf : 
1

0
xСf

c
  , 

2

0

yС
f

c
  , 

3

0
zСf

c
  . Consequently, the product 

 2 2
, ,k

x y zf С С С
c c




 

    C  is a radial vector directed oppositely to the pressure field strength 

vector C . The fact that 
kf

  is a radial vector allows us immediately to find the surface integral on the 

right-hand side of (16). To calculate this integral, we need to assume r a  in the field strength С  (45) 

and in the scalar potential  (43), which are part of 
kf

 , and then to multiply С  by the normal vector 

kn , and multiply the obtained result by the area of the sphere’s surface: 

 
2

2

2 3

0

0

0 0

0

8
2 ( ) ( )

8
sin 4

4

sin 4 cos 4 .
4

k

k r

S

c c c
c

a
f n dS a C a

c

c c a

ca

c a a
a

c c








    
 

    

   
 

  

  
      

   

    
     

     



                                                              

(47) 

 

Substituting the expressions from (44), (46) and (47) into (16), we find that the theorem of energy for the 

pressure field is satisfied, since all the terms in (16) completely cancel out with each other. 

 

 

 

 

 



702 Sergey G. FEDOSIN  / GU J Sci, 32(2): 686-703 (2019) 

 

7. CONCLUSION 

 

By the example of the electromagnetic field we derived the integral theorem of the field energy in relation 

(10). In addition, we introduced the concepts of the kinetic energy k fE  and the potential energy fW  of the 

electromagnetic field: 

 

1 2 3

k fE A j g dx dx dx

  ,            
1 2 3

0

1

4
fW F F g dx dx dx 

 


  .                                  (48) 

 

In (48), the energy 
k fE  is related to the energy of interaction of the field and particles and is calculated in 

terms of the product of the four-potential A  of the field and the charge four-current j   of the particles, 

and the energy fW  is expressed in terms of the volume integral of the tensor invariant F F 

   of the 

electromagnetic field. From (10) and (48) we obtain the following relation: 

 

 0 1 2 3

0 0

1 1
2 k

k f f k

S

d
E W A F g dx dx dx A F n g dS

c dt

 

 
 

       .                               (49) 

 

For a closed system, the surface integral on the right-hand side of (49) vanishes due to the gauge of the 

four-potential A
 and the electromagnetic field tensor 

kF  at infinity. In the relativistic uniform system 

the product 
0A F

  also vanishes, and then (49) reduces to a simple relation 2 0k f fE W  . This relation 

for the field resembles the classical virial theorem for particles of the form 2 0kE W  , where 
kE  is 

kinetic energy, and W  is the potential energy of the particles. The relation 2 0k f fE W   is often used in 

electrostatics, allowing to determine the electrical energy of the system in two different ways – either with 

the charge density and the electric potential, or with the field strength, which is part of the electromagnetic 

tensor. However, in the general case there was no proof of existence of a relationship between the energies 

(48) in the presence of electric currents and magnetic fields. Now we see that such a relationship in (49) is 

the consequence of the integral theorem of the field energy. 

 

In (14) we presented the integral theorem of energy for the vector gravitational field in the framework of 

the covariant theory of gravitation, and in (15) and (16) – the integral theorem of energy for the acceleration 

field and the pressure field, respectively. By analogy with (48), for these fields we can also introduce the 

concepts of the kinetic energy and the potential energy of the field. In particular, in [8] for closed static 

uniform systems it was found that a relation of the form 2 0k f fE W   holds in them for the gravitational 

field. 

 

For all the four vector fields in Sections 4, 5 and 6 we showed by direct calculation of all the terms in the 

formulation of the integral theorem of energy how exactly this theorem is satisfied in the case of a 

relativistic uniform system. These calculations prove that the integral theorem of the field energy is exactly 

satisfied, confirming the validity of the theorem. 
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