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1. INTRODUCTION

One of the widespread distribution for modeling lifetime data is the Weibull (W) distribution where it has
monotone hazard rate function (hrf). In statistical literature, different generalizations and extensions of
the W distribution were done to deal with bathtub shaped hrf. [1] and [2] pioneered and discussed the EW
distribution for analyzing bathtub failure data. The modified W extension with a bathtub shaped hrf can be
found in [3]. The generalized modified W distribution has been suggested in [4].

In the recent time, new generated families have attracted many of statisticians to perform new models. We
list some of the generated families among many of others as: the beta-G [5, 6], gamma-G [7],
Kumaraswamy-G [8], McDonald-G [9], gamma-G (Type 2) [10], transformed-transformer-G [11], W-G
[12], Kumaraswamy odd log-logistic-G [13], Garhy-G [14], exponentiated Weibull-G (EW-G) [15]
Kumaraswamy W-G [16], additive W-G [17], exponentiated extended-G [18], generalized additive W-G
[19], Type Il half logistic-G [20], odd Frechet-G [21] and power Lindley-G [22] among others.

The cumulative distribution function (cdf ) of EW-G family (see [1]) is given by

G(x) 4 |

F(x)=|1-e " | :a,a,B>0, )

where a and g (greater than zero) are the shape parameters and « (greater than zero) is the scale parameter.
The probability density function (pdf) regarding to (1) is given by
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f(x)= aaf(G (x ))ﬂ_l/gl(x )e—a{l_Gc-;()((z)}ﬂ 1_6—0‘{1—6@()((3)},3 ca,a, 3> 0.
(1-G(x))

(2)

We come up with a new five-parameter model as an interesting extension for the W distribution depending
on EW-G distribution. We are motivated to study the EWW distribution because (i) it involves a number
of conventional sub-models as well as it contains some new sub-models; (ii) As provided in Section 2 the
EWW distribution can be considered as a mixture of W distribution as introduced in [23]; and (iii) The
EWW distribution surpasses some of the recent lifetime distributions in regard to two real data examples.

The rest of the paper is outlined as follows. Section 2 defines the EWW distribution and provides its special
models. Section 3 gives important representation for the EWW density and distribution functions.
Furthermore, it contains basic properties of the EWW distribution. The ML method is employed to get the
parameter estimators of the subject model in Section 4. The accuracy and performance of the ML estimates
are checked through a simulation study in Section 5. An illustrative example is given in Section 6 to explain
how a real data can be formed by EWW model. Finally, the paper is concluded in last section.

2. THE EXPONNTIATED WEIBULL WEIBULL DISTRIBUTION

We obtain the EWW distribution depending on the EW-G family. Consider the random variable X has the
W distribution with pdf given by

g4, 7)=Ayx e ™ x>0, ?3)

where, A (greater than zero) is the scale parameter and y (greater than zero) is the shape parameter. The
cdf of W distribution is given by

G(x;A,7)=1-e*. 4)

We get the cdf of EWW distribution by subsituting (3) and (4) into (1) as follows
Y] a
F(x;zc)z{l—e‘“‘e = } o a,a,fAhy>0 , x>0 (5)

where, K = (a,«, 5, 4,7), is parameter set of distribution. A random variable X has (5) shall be denoted by
EWW (a,a, 5,4,7). The pdf of EWW is obtained by subsituting (3) and (4) into (2) as follows

el
F(x:x) =aaBiyx e —11  exp[Lale™ —1) - Ax V}]<1—ea<e‘ 1>/> . ©

The pdf (6) comprises some new distributions and at the same time it contains existing distributions ( see
Table 1).
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Table 1. Special models of the Exponentiated Weibull Weibull distribution

Distribution aja|p|7]|4a Distribution function Author
a
1 | EW exponential e - 1 - | FX)= {1_ exp(-a(e™ _1)ﬂ)} [24]
ax? B a
2 | EW Rayleigh o 2] | FX)= {1— exp(-ae™ -1 )}
. , a
3 Exponentaited I O O R B N S {1_ exp(—ae”™ - 1))}
Exponential Weibull
Exponentaited a
4| el |- RO ={t-exp(-ae™ -D))
Exponential exponential
. 2 a
5 Exponentaited A O O A R TP {1_ exp(—a(e™ - 1))}
Exponential Rayleigh
. . B a
§ Exponentaited Rayleigh N U P U I =T {1_ exp(—ae™ — 1)2)}
Weibull
Exponentaited Rayleigh a
7 P YRR e - I:(X)={1—6XIO(—0!(eﬁx —1)2)}
Exponential
. . , a
. Exponentaited Rayleigh I R P R R T {1_ exp(—ae™ - 1)2)}
Rayleigh
9 | Weibull Weibull 1 |- |- |- | F(Xx)=1-exp(-a@™ -1)) [25]
— A B
10 | Weibull Exponential 1l - 1. | Fx)=1-exp(-ale™ -1)") [26]
11 | Weibull Rayleigh 1 - |- |2 ]- | F)=1-exp(~ae™ -1)") [27]
12 | Exponential Weibull 1 - |1 |- |- | FX) =1-exp(-ae™ -1)")
13 | Exponential 1111 11 - | Fx)=1-exp(-a(e # -1))
14 | Exponential Rayleigh 1= |1 |2 |- | F&x)=1-exp(-ae™ -1))
15 | Rayleigh Weibull 1 - |2 |- |- | FX)=1-exp(-a” -1)%)
2 2
16 | Rayleigh Exponential 1 - 2 |1 |- | F&x)=1-exp(-ale™ -1)°)
17 | Rayleigh Rayleigh 1 (- 2 |2 |- | F&x)=1-exp(-ae™ -1)°)

The survival function, hrf, reversed-hrf and cumulative hrf of EWW distribution are respectively given by
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a
)

S (x:%) :l—<1—exp(—a(e L\ >

aaflyx e -1 exp[{ae™ -1 -Ix"}] {1—exp(—a(e“’ -1 }a_l

h(x;x)= - ,
1—<1—exp(—a(e e —1)'5>
() = aofiyx e -1 exp[—fa(e 2P - x 7Y |
1—exp(-ae™ -1)7")
and,

H(x;x)=—In <1—(1—exp(—a (e e —1)13))a >

Figures 1, 2, and 3 gives pdf, hrf and reversed hrf plots of the EWW distribution for certain values.

(2)

I

Figure 1. The pdf plots of EWW distribution for specific parameter values

(b)
Rix}

0.0 02 0.4 0.6 0.8 1.0

Figure 2. The hrf plots of EWW distribution for specific parameter values
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(c)

n n - ——= "
0.0 0.2 04 0.6 0.8 1.0

Figure 3. The reversed hrf plots of EWW distribution for specific parameter values
3. PRINCIPAL PROPERTIES
This section displays elementary properties of the EWW distribution.
3.1. Expansions

Important mixture expressions for the pdf and cdf of the EWW distribution are displayed. So, we rewrite
the pdf (6) as follows

a-1

aafiyx e ! 1—e> | 1—e> |
f(x;x)= 1-e* exp{ —a . 1-exp{-a
[e—w Tm e e

Since, the generalized binomial expansion
c-1 Z r (et r
(1-m) =>(-1) ( jm . (7)
r=0 r

where c ( greater than zero) is real and |m | <1, then by using (7), the EWW pdf reduces to

-1 A—Ax7 1 ®© . _ a7 s
f (X ,K') _ aaﬂ/WX (S |:1_e—ﬂxr :|/’7 Z[—l]l (al ]j exp —0{(' +1) |:1_%}
e

B 1
[e—ﬂ,x’ :|ﬂ+ i=0

By using the following relation

(8)

C [1me | ey 1 ]
expi—a(i +1)| ———| =] _ _ . 9)
j=0

—AX J | e—lx'
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Inserting the expansion (9) in (8) we have

]ﬁ(J +1)-1
f(x;x)=afiyx’ e ™

I,

w [Tl i+ i fa 1—e ™
[-1] " a' (i +2) [a 1] [ a0
J:

0 j! i ﬂﬂ““”l'

Using (7), then we write

[1_ |:1_ o :|:|—[ﬂ(i +1)+] _

Then, (10) reduces to

NgE

=~

=0

[ﬂ(j ek ][HW T

f (x;x)=apiyx’ e ™ >

i,jk=0 J!

[_1]i+j al (i +1)] a-—l LA +D)+k [1_67“, ]ﬁ(j+1)+k71.
i K

Again, using the binomial theorem another time, then the pdf is written as infinite linear combination of
W distribution, that is

f (X ,K) — 77i ik ’[1X 7_1e —A(L+1)x7 ’ (11)

o0
i,jk,4=0

where,

ik, =

apry[-1]""" (i +1)! [a—l}(ﬁ(j +l)+kj£ﬂ(j +1) +k —1]
j! i k 0 '

Furtheremore, an expansion for the cdf; [F (X ; &°)]" is derived. Using binomial expansion for cdf (5)

5 ah

—Ax7

1-e

—ax7 !

[F(x:x)]" =( 1—exps—a

where h is an integer and a ( greater than zero), gets :

B

_/1X7

oo q ah _
[F o = D[] [q jexp ~aq 1ee—

Applying exponential expansion for the cdf in the previous Equation, we get
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o [_q]°" ta" (ah [1—6_’1"7][}t
coor- i g L

Using the relation (9) in the preceding Equation, we have

g+t

s _ t o—AX7 ah , m
] ()

g.,t,m=0 q m

Using the relation (7) in the preceding Equation, we get

[FOGI = D Mypmee 7, (12)

q.t,m,/,=0

[T ey Y A Ao
where, 7q¢m, = £l q m L, '

3.2. Quantile and Median

For X has EWW distribution, its quantile function, say Q (u) =F (u) is yielded by inverting (5) as follows

1 -1 1

Q) =7 In{l+ (In(l—(u)a)a)ﬁ}l , (13)

where, u is a uniform random variable on (0,1). For u = 0.5 the median of distribution is as follows

Median = Q(u) =7/In {1+ (|n(1—(o.5)$)al)ﬂ}l .

3.3. Moments

The rth moment of EWW distribution is obtained as follows
ﬂ;:E(Xr)zj'xrf (x )dx . (14)
Substituting (11) into (14) yields:

,Ur’ — E (X r) — 77i S IX r+y—1e—i((1+1)x7dx )
0

o0
i,j.k, (=0
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Let y=A((, +1)x" then, g becomes

0 o0

_ r+y-1, —A(¢+1)x”
ﬂ:—_ z ﬂi,j,k,[lj.x T dx

i,j.k,(4=0 0

Generally, the moment generating function of the EWW distribution is obtained as

o0

r Ay DO 7+
M ®)=2 FEX )= t" 75,0, 0(F/ 7+

o0
riktol!

[A[¢,- Bk +1)]]_7r‘1.

3.4. Incomplete and Conditional Moments

The sth incomplete moment, say @, (t), is defined by

o, (t) :j‘xsf (x)dx .

Using (11), then @, (t) will be as follows

=

o (t)=

LSy (s )y +1L (G + D7 ) (AL +1))$_1’ 19

o0
ijk.=0 YV

t
where v (s,t) = I x*'e *dx is the lower incomplete gamma function. Further, the sth conditional moment,
0

say 7, (t), is defined by
7, () = [x°F (x)dx .
t
Hence, by using pdf (11), we get

r©)= Y MIRAR(s/y 1 a0 400 ) (A +D)

ijku=0 Y

where F(s t ) = J.x sZe*dx is the upper incomplete gamma function. Additionally, the mean deviation
t
can be calculated by using

(X)) =2uF (1) -23 () and 5,(X)=u-23(M),

where, J (q) is the first incomplete moment and is obtained from (15), so
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J= Y iy (Y140, 420 ) (A0 +D) 7

k=0 YV

and,

IM)= i 77"“ v(Yy+L AL +DM 7 )(z(ﬂ1+1))?1‘1

3.5. Residual Life Function

The nth moment of the residual life function (RLF) of X is given by

LT —t "f (x)dx.

t

mn(t) -

CD

Employing the binomial expansion for (X—t)n we have

1 & & (N T(n—d/y+LA(¢, +1)t")
K) Z (_t) (d }7i,j,k,c1 P ) (16)

m, (t)=
S(t;K) i jir—0d0 7(/1(61 +1))7+1

The nth moment of the reversed RLF of X is given by

M. (t) = j )" £ (x)dx.

0
Again, employing the binomial expansion for (X —t)n , we have

M (t) = 1 i n(‘t)d[n}h,,—,k,qV(n_d/ﬂl’/ﬁt(fldﬂ)ty),

y(A,+0) 7 "

3.6. Inequality Measures

Lorenz, Bonferroni and Zenga curves are inequality measures which are extensively used in income and
wealth distributions (see [31]). They are obtained, respectively, as below

tjxf (x ; x)dt i ni’jlklllv(]/;/+1,}t(lfl+1)t7)(/1(ﬁl+1))_7171
Le()=2 = LLns — ,

=00 i ni,j,k,clr(]v/7+1) [ﬂ,(ﬁl +1)]771

i,j.k, (=0
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- -1
S eV (Vr 4L A0+ ) (A +2) 7
B(t): LF(t)_ i,j,k,00=0
F . - 00 1 ,
F t’ — —ae? _1)f\a
(t;x) > i Wy DA +D)]7 e et
i,j.k,6=0
and

Ae(t)=1- # ) ,

u(t)
where
=80 LA D) |

E(T) _ -Z, Ui,j,k,clr(]/V‘i‘l)(ﬂ(ﬁl"‘1))7_1

and
i Ui,j,k,gV(J/ﬂl,/l(fl+1)t7)(/1(£l+1))_7l‘1

OE @(t) - ik 6=0 _ _

1-F(t;«x) [1- (1—e—a(em_1)ﬂ )] Z 7 ,k,[lr(]/7+l) [/At(fl +1)]7—1

i,k (=0

3.7. Rényi and g-entropies

The Rényi entropy of EWW is formally given by
1,(X)=(1-6)"log jf (x)’dx, &>0and &=1.

We rewrite the pdf f (X ; x)° by using the binomial expansion (7) in (6) as follows

1) 7
f(X;K)5: Z ijmgl /1([1+5)x ’

j.k.m,(;=0

where,

W, . - (abpay) a kﬂs[k!l]wu( j +0) [ (aj_l)J[ﬂ(k +m5)+m][ﬂ(k +5)+m—1].

(

1
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Hence, | ;(X )of the EWW distribution is specified by

w W'k{ 51,9
I5(X):(1—5)1log{ > #F(M(l/y)—(c?/y))[i(ﬂl+5)] ’ 7}-

jk.6=0

Furthermore, the g-entropy takes the form
H, (X )=(1—q)llog[l—jf (x)qu),q >0 and q=1.

Therefore, the g-entropy of the EWW distribution takes the form
-1 = W jk.G , -a4-(Yr)+(a/y)
H,(X)=(-q) log {1—[ > - r@+Wy-@/mMA(,+a)] }}
jk,6=0

3.8. The Probability Weighted Moments

In general, the probability weighted moments (PWM) method is employed for estimating the parameters
of distributions in which they inverse form are not in explicit form (see [32]). It is specified by

7, = EIXTF(X)°]= [ X FO)(F(x))*dx. (17)
By substituting (11) and (12) into (17), replacing h with s, leads to:

_ S C T r+y=1,—A(L+0,+2) X"

Trs = Z Z nq,t,m,(zni,j,k,él_[x € s dx.
i,jk,(,=0q,t,m,(,=0 0

Hence, the PWM of the EWW distribution will be

e o . 1 i
r = Z Z nq,t,m,ﬁznl,J,k,tl (r/j/—i_ )[l(f1+f2+2)]7 l.

i,jk.6=0q.t,m (,=0 V4

3.9. Order Statistics

Given Xin < Xa2n<...,<Xnn be the order statistics of a random sample of size n has the EWW distribution,
then,the pdf of the kth order statistics can be written as follows

_ f(X) K R\ n—k v +k —1
e Y=g n K rp ¢ 1)[ v j':(x) ! (18)

where, B(.,.) is the beta function. By substituting (11) and (12) in (18), changing h with v +k-1,gives
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n—k 0 0
. (X ) _ 77*X y—le —A(l+0,+2)x7 ’ (19)
X B(k n_k +1)v:0| sz,;1:0q,t,mz,;2:0
* \ n - k
where 77 :(_1) v ik MTgtme,:
Moments of order statistics is given by:
r =& = F r/y+1

B(k n-— k +1) i ik coq i,

4. MAXIMUM LIKLIHOOD ESTIMATION

The ML estimators of the population parameters for the EWW distribution are derived in case of complete
samples. Let X1 ,.., Xx» be the observed values from the EWW distribution with set of parameters

x=(a,a, B,2,7) . The total log-likelihood function of x is

InL(x)=nIna+ning+ning+ninA+niny+(y - l)ZIn )+ (B- 1)Zln( —)

+ﬂ§x/—a§[(e X7 )J +(@a- 1)Zln{1 exp[ ( i —1) ﬂ

The elements of the score function U (x)=U_,U U ,U,,U ) aregiven by

u, =%+§|n[1—exp[—a(e“i’ —1)ﬂﬂ, (20)

: (21)

N Y n (e“iy—l)ﬁexp[—a(e“' —1)'8]
Ua:%—g(e“i —1) +@-0y

i1 1—exp[—a(eW —l)ﬁ]

U, :%+izn_l:|n(e“iy —1)/3 —ag(e“/ —1)ﬂ In(e“iy —1)
) (e“iy —1)ﬁ exp[—a(e“iy —1)ﬂ}ln(e“i'y —1) (22)

+0‘(a‘1)§ 1_exp[_a(e“‘y —1)/3}

7 ax;7 n
N/ (8- 1 X, - +a,8(a 1)2 i
A ﬂ - =L 1—exp [—a (eW —1)1 =1 (23)

n B-1
_aﬂzxiy(elxly _1) e/lxlr,
i=1
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and

n n ax;7 n n _
u, :A+;In(xi7)+(ﬂ—l);:£ _1+/1§xi7 In(x, )—aﬂigx/ In(x, )(e“iy —1)ﬂ o

L X7 In(x; e (e“iy —l)ﬂll—exp{—a(e“iy —1)? (24)
+aﬂ/”t(a—1)§ 1—exp[—a(e“iy _1)/3}

Equations [20-24] are setted by zeros, then we get the ML estimators of the parameters. It is very hard to
solve these Equations, so Newton-Raphson’s iteration method is employed.

5. SIMULATION ILLUSTRATION

A comprehnsive numerical inspection is achieved to evaluate the behaviour of ML estimates (MLEs) for
the EWW model. The biases, mean square errors (MSEs) and variance are calculated, for different sample
sizes, to evalute performance of ML estimates. The simulation procedure is done via Mathematica (9) and
described as follows:

4

*,

»  We generate 10000 random samples of sizes n = 20, 30, 50 and 100 from the EWW distribution.

> Select parameter values of a,a, [, A,y as Setl (1.2, 2, 0.5, 1.5, 1), Set2 (1.5, 2, 0.5, 1.5, 1),
Set3(1.8,2,0.5, 1.5, 1), and Set4 (2, 2,0.5, 1.5, 1).

¢ The biases, MSE, mean and variances of MLEs at each sample size are calculated. Outcomes of

simulation are sorted in Tables 2 to 5.

L)

3

Table 2. Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Setl= (1.2,2,0.5,1.5,1)

n MLE Mean Bias MSE Variance
a 1.2732 0.0732 0.0809 0.0756
20 | 4 2.1281 0.1281 0.3411 0.3247
B 0.5477 0.0477 0.0283 0.0260
) 1.5499 0.0499 0.0775 0.0750
y 1.1095 0.1095 0.1352 0.1232
a 1.2677 0.0677 0.0575 0.0529
30 | 4 2.0523 0.0523 0.1866 0.1838
B 0.5482 0.0482 0.0211 0.0188
i 1.5249 0.0249 0.0412 0.0405
7 1.1077 0.1077 0.1085 0.0969
a 1.2270 0.0270 0.0403 0.0396
a 2.0844 0.0844 0.1322 0.1251
50 ﬁ 0.5223 0.0223 0.0128 0.0123
i 1.5327 0.0327 0.0317 0.0307
v 1.0436 0.0436 0.0599 0.0580
a 1.2118 0.0118 0.0172 0.0170
a 2.0486 0.0486 0.0697 0.0673
100 3 0.5080 0.0080 0.0058 0.0057
) 1.5150 0.0150 0.0186 0.0184
y 1.0159 0.0159 0.0240 0.0237
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Table 3. Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Set2 =(1.5,2,0.5,1.5,1)

n MLE Mean Bias MSE Variance
a 1.5780 0.0780 0.1450 | 0.1389
20 | 4 2.1658 0.1658 0.5358 | 0.5083
B 0.5509 0.0509 0.0398 | 0.0372
) 1.5583 0.0583 0.0946 | 0.0912
7 1.1145 0.1145 0.2012 | 0.1881
a 1.5478 0.0478 0.0861 | 0.0838
30 | 4 2.1025 0.1025 0.2535 | 0.2430
Vi 0.5308 0.0308 0.0209 | 0.0200
) 1.5405 0.0405 0.0609 | 0.0592
% 1.0668 0.0668 0.0949 | 0.0904
a 1.5333 0.0333 0.0498 | 0.0487
5 | 4 2.0550 0.0550 0.1378 | 0.1348
3 0.5195 0.0195 0.0113 | 0.0110
) 1.5217 0.0217 0.0378 | 0.0373
% 1.0425 0.0425 0.0493 | 0.0475
a 1.5175 0.0175 0.0238 | 0.0235
100 | 4 2.0235 0.0235 0.0617 | 0.0611
B 0.5092 0.0092 0.0050 | 0.0049
) 1.5090 0.0090 0.0191 | 0.0190
y 1.0208 0.0208 0.0216 | 0.0212

Table 4. Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Set3= (1.8,2,0.5,1.5,1)

n MLE Mean Bias MSE Variance
a 1.8909 0.0909 [ 0.2028 [0.1945
20 | 4 2.2181 0.2181 | 0.7847 |0.7371
B 0.5535 0.0535 | 0.0399 | 0.0371
7 1.5780 0.0780 | 0.1190 |0.1129
7 1.1156 01156 | 0.2008 | 0.1875
a 1.8624 0.0624 | 0.1283 |0.1244
0 |4 2.1299 01299 | 0.3671 | 0.3503
B 0.5339 0.0339 | 0.0216 | 0.0205
7 15511 0.0511 [ 0.0786 | 0.0760
7 1.0749 00748 | 0.1043 [0.0987
a 1.8367 0.0367 [ 0.0712 | 0.0698
5 | 4 2.0746 0.0746 | 0.1752 | 0.1696
B 0.5198 0.0198 | 0.0112 |0.0108
7 1.5318 0.0317 | 0.0470 | 0.0460
7 1.0415 00414 | 0.0490 [0.0473
a 1.8188 0.0188 [ 0.0341 |0.0337
100 | 4 2.0320 0.0320 | 0.0749 |0.0738
B 0.5089 0.0089 | 0.0049 | 0.0048
7 15138 00138 | 0.0228 [0.0226
7 1.0202 00202 |0.0217 [0.0213
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Table 5. Biases, Mean, MSEs, and Variances of MLEs for EWW distribution of Set4 = (2,2,0.5,1.5,1)

n MLE Mean Bias MSE Variance
a 2.1077 0.1077 0.2602 | 0.2486
20 | 4 2.2382 0.2382 1.0230 | 0.9662
B 0.5533 0.0533 0.0391 | 0.0362
1 1.5835 0.0835 0.1346 | 0.1276
% 1.1232 0.1231 0.2794 | 0.2642
a 2.0762 0.0762 0.1607 | 0.1549
30 |4 2.1315 0.1314 0.3773 | 0.3600
B 0.5350 0.0350 0.0220 | 0.0208
1 1.5519 0.0519 0.0870 | 0.0843
7 1.0787 0.0787 0.1059 | 0.0997
a 2.0432 0.0432 0.0899 | 0.0881
5 | 4 2.0838 0.0838 0.2053 | 0.1982
B 0.5202 0.0202 0.0113 | 0.0109
) 1.5350 0.0350 0.0546 | 0.0534
7 1.0432 0.0432 0.0511 | 0.0492
a 2.0212 0.0212 0.0415 | 0.0411
100 | 4 2.0371 0.0371 0.0814 | 0.0801
Ié 0.5101 0.0101 0.0051 | 0.0050
y) 1.5171 0.0171 0.0255 | 0.0252
4 1.0213 0.0213 0.0221 | 0.0217

Generally, it can be seen from above tables that the MSEs of parameter estimates of a,«, f,Aandy
decrease as n increases.

6. DATA ANALYSIS

Here, two real data are utilized to explain the advantage of the EWW distribution compared with some
sub-models; namely, WW, exponential exponential (EE), Rayleigh W (RW), exponential W (EW) and
Rayleigh Rayleigh (RR) dsitributions.

MLEs of parameters and their related standard errors (S.E.) are computed. Citeria like; minus of log-
likelihood function (-2 In L), Kolmogorov-Smirnov (K-S) statistic, Akaike information criterion (AIC),
correct AIC (CAIC), Hannan-Quinn IC (HQIC) and Bayesian IC (BIC) are considered to compare the
distribution models. For each data set, we plot the histogram and the estimated pdf of the EWW ,WW, EE,
RW, EW and RR models.

Example 6.1. The data represent 30 successive values of March precipitation (in inches) in Minneapolis/St
Paul ( see [33] ). MLEs of models parameter and their S.E in parenthesis are placed in Table 6. The results
of the mentioned measures are placed in Table 7.
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Table 6. The MLEs of model parameters and S.Es for first data

Model MLEs
™l g p i 7
EWW 78.61 79.35 20.486 0.624 0.014
(0.14836) | (0.561) (0.131) (0.024) (0.148)
WW i 39.853 3.154 0.196 0.5
(0.414) (0.518) (0.102) (0.072)
EE i 42.659 i 0.014 i
(0.35762) (.00499)
RW i 104.304 i 0.018 1.81
(0.50776) (.0085) (0.156)
EW i 3.918 i .0002904 | 5.511
(0.03031) (0.011) (0.148)
RR i 100.351 i 0.014 i
(0.21297) (.002292)
Table 7. Values of -2LnL, AIC, BIC, CAIC, HQIC and K-S for first data
Distribution | -2LnL AlC CAIC BIC HQIC K-S
EWW 129.022 | 139.022 | 141.522 | 136.407 | 141.263 | 0.113
ww 138.194 | 146.194 | 147.794 | 145.623 | 149.819 | 0.07549
EE 178.758 | 182.758 | 183.202 | 181.712 | 183.654 | 0.234
RW 212.093 | 218.093 | 219.016 | 216.525 | 219.438 | 0.384
EW 304.274 | 310.274 | 311.197 | 308.705 | 311.619 | 0.715
RR 243.627 | 247.627 | 248.071 | 247.341 | 249.439 | 0.427

From Table 7, it can be observed that the EWW distribution has the smallest values of proposed measures
compared to other models. So, it suitable model for these data than their special sub-models. Figure 4
provides plots of the fitted densities and the histogram.
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Figure 4. Estimated cdf and estimated pdf for the first data
Example 6.2. The data are obtained from [34]. Data represent the survival times (in days) of 72 guinea
pigs infected with virulent tubercle bacilli.

Table 8 gives MLEs of the models parameter and their S.E. Results of considered measures are presented
in Table 9.
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Table 8. The MLEs of model parameters and S.Es for second data

Model MLEs
™ la Q p ] 7
EWW 115.001 | 125.918 19.125 | 0.61 0.013
(0.0787) | (0.361) (0.085) | (0.015) (0.093)
WW i 48.725 2.947 0.162 0.546
(0.27) (0.324) | (0.063) (0.047)
EE i 42.093 i 0.013 i
(0.23097) (.0032)
RW i 86.137 i 0.019 1.751
(0.32826) (.0055) (0.099)
EW i 3.816 i .00029 5.149
(0.01957) (.0073) (0.096)
RR i 25.417 i 0.022 i
(0.13753) (.001468)
Table 9. Values of -2LnL, AIC, BIC, CAIC, HQIC and K-S for second data
Distribution | -2LnL | AIC CAIC BIC HQIC K-S
EWW 302.076 | 312.076 | 312.972 | 311.363 | 316.608 | 0.134
WW 337.304 | 345.304 | 345.901 | 344.734 | 348.93 | 0.10975
EE 429.411 | 433.411 | 433.585 | 433.126 | 435.224 | 0.2939
RW 502.013 | 508.013 | 508.366 | 507.585 | 510.732 | 0.413
EW 732.507 | 738.507 | 738.86 | 738.079 | 741.226 | 0.729
RR 552.88 | 556.88 | 557.054 | 556.595 | 558.693 | 0.507

We observe from Table 9 that the EWW distribution has the smallest values of considered measures
compared to other models. So, it suitable model for these data than their special sub-models. Figure 5
provides plots of the fitted densities and the histogram

o

i ©
= | ] u
/ 0
® S A
o
<
=
©
i = ¥
o z -
S § o | \
IS 4 o
< |
S
o
o
— Empiical
34 — Enww -
—ww s
— EE
RW
o — Ew o L]
2+ RR = :

~
w
=
o
@

0 1 2 3 4 5 6 7 0

X

Figure 5. Estimated cdf and estimated pdf for the second data set

7. CONCLUSION

We introduce a new five-parameter, the so called exponentiated Weibull Weibull distribution. The main
properties are provided. The EWW distribution contains some usuall distributions which obtained in [24-
27] besides, it contains some new distributions. The simulation study is conducted to evaluate the behaviour
of the maximum likelihood estimates of EWW parameters. The practical importance of the EWW
distribution is demonstrated in two applications to show its superiority compared to other existing lifetime
distributions. Application appeared that the EWW model can be employed rather than other considred
distributions.
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