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LOXODROMES ON HELICOIDAL SURFACES AND TUBES
WITH VARIABLE RADIUS IN E4

MURAT BABAARSLAN

Abstract. In this paper, we generalize the equations of loxodromes on heli-
coidal surfaces and canal surfaces in E3 to the case of 4-dimension (E4). Also
we give some examples via Mathematica.

1. Introduction

A curve which cuts all meridians at a constant angle on the Earth’s surface is
called as loxodrome. Loxodromes don’t need a change of course and thus, they are
usually used in navigation. Noble [11] investigated the equations of loxodromes on
the rotational surfaces in Euclidean 3-space E3. The orbit of a plane curve under
a screw motion is called as helicoidal surface and it is a natural generalization of
rotational surface. The equations of loxodromes on helicoidal surfaces in E3 were
found by Babaarslan and Yayli [3].
Another generalization of rotational surfaces is canal surfaces and they are de-

fined as envelope of a family spheres whose trajectory of centers lie on a space curve.
When the radius of spheres is constant, the canal surfaces reduce to tubes with con-
stant radius [12]. Also, if the centers of spheres lie on a straight line, then the canal
surface is a rotational surface [9]. For example, the sphere is a special canal surface
whose axis is a straight line. The differential equations of the loxodromes on canal
surfaces in E3 were given by Babaarslan [4].
Rotational surfaces in Euclidean 4-space E4 was first introduced by Moore [10].

After that, a lot of authors studied on rotational surfaces in E4 (see [13], [14], [1],
[2], [6]).
The parametrization of tube with variable radius in E4 was given by Gal and

Pal [9]. Also, the definition and parametrization of helicoidal surface in E4 were
given by Hieu and Thang [8].
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In this paper, we generalize the equations of loxodromes on helicoidal surfaces
and canal surfaces in E3 to the case of 4-dimension (E4). Also, we give some
examples by using Mathematica computer programme.

2. Preliminaries

In this section, we recall some important notions and also give some properties
of curves and surfaces in E4.
Let x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) be vectors in E4. Then, the inner

product of them is given by

〈x, y〉 = x1y1 + x2y2 + x3y3 + x4y4. (1)

The norm (length) of a vector x ∈ E4 is defined by ‖x‖ =
√
〈x, x〉 and the vector

is called as a unit vector if ‖x‖ = 1.
Also, the angle θ between x and y is given by

cos θ =
〈x, y〉
‖x‖ ‖y‖ , (2)

where 0 < θ < π.
Let β : I ⊂ R → E4 be a regular curve in E4. The arc-length of β between t0

and t is

s(t) =

∫ t

t0

∥∥β′(t)∥∥ dt. (3)

Then, the parameter s ∈ J ⊂ R is determined such as
∥∥β′(s)∥∥ = 1. Thus, β is

called a unit speed curve if
∥∥β′(s)∥∥ = 1.

Now, we give the definitions and parametrizations of rotational surfaces and
helicoidal surfaces in E4.
Let β : I ⊂ R → Π be a smooth curve in a hyperplane Π ⊂ E4 and P be a 2-

plane line in Π. If the profile curve β is rotated about P, then the resulting surface
is rotational surface in E4. Similarly, let us assume that when β rotates about P,
it simultaneously translates along a line l parallel to P so that the speed of the
translation is proportional to the speed of rotation. Then, the resulting surface is
a helicoidal surface in E4 (see [8]).
Let x, y, z, w be the coordinates in E4. We assume that Π is xzw-hyperplane,

P is zw-plane and l is parallel to the z-axis. Then, the rotation which leaves the
plane P invariant is given by the following rotational matrix

cos v − sin v 0 0
sin v cos v 0 0

0 0 1 0
0 0 0 1

 , 0 ≤ v < 2π (4)

[7].
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We consider the profile curve β(u) = (f(u), 0, g(u), h(u)) in Π, where u ∈ I ⊂ R
and f(u) > 0. Then, the parametrization of the helicoidal surface M is

M(u, v) =


cos v − sin v 0 0
sin v cos v 0 0

0 0 1 0
0 0 0 1



f(u)

0
g(u)
h(u)

+ λv


0
0
1
0

 ,
so

M(u, v) = (f(u) cos v, f(u) sin v, g(u) + λv, h(u)) , (5)

where λ > 0. When g is a constant function, the helicoidal surface is called the
right helicoidal surface. When λ = 0, the helicoidal surfaces reduce to rotational
surfaces in E4. Also, when h is a constant function, the surface is just a helicoidal
surface in E3 [8].
Also, we give the parametrizations of tubes with variable radius in E4.
We consider the spine curve β(u) = (f(u), g(u), h(u), 0) , where u ∈ J ⊂ R, that

is β is parametrized by arc-length. Then, the Frenet formulae is given by

β′(u) = e1(u),

e1
′
(u) = κ(u)e2(u),

e2
′
(u) = −κ(u)e1(u) + τ(u)e3(u),

e3
′
(u) = −τ(u)e2(u),

e4
′
(u) = 0,

where {e1(u), e2(u), e3(u), e4(u)} is Frenet orthonormal basis of β, κ(u) and τ(u)
are the curvatures of β.
Then, the parametrization of tube with variable radius C is

C(u, v) = β(u) + r(u) (e3(u) cos v + e4(u) sin v) . (6)

([9], [5]).

3. The Equations of Loxodromes on Helicoidal Surfaces

In this section, we find the equations of loxodromes on the helicoidal surfaces as
well as rotational surfaces in E4. Also, we give an example to strengthen our main
results.

Definition 1. A curve on a helicoidal surface in E4 is called as a loxodrome if the
curve cuts all meridians at a constant angle on the helicoidal surface.

Let us consider the helicoidal surface M which is given by Eq. (5). To simplify
the calculations, we assume that β is parametrized by arc-length, i.e., f ′2(u) +
g′2(u) + h′2(u) = 1 for all u ∈ J ⊂ R.
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The tangent plane to M at a point p = M(u, v) is span{Mu,Mv} . A direct
computation yields

Mu = (f ′(u) cos v, f ′(u) sin v, g′(u), h′(u)) and Mv = (−f(u) sin v, f(u) cos v, λ, 0).
(7)

By using these equations, the coeffi cients of first fundamental form of M are

E = 〈Mu,Mu〉 = 1, F = 〈Mu,Mv〉 = λg′(u) and G = 〈Mv,Mv〉 = f2(u)+λ2. (8)

Assume that EG− F 2 = λ2(1− g′2) + f2 > 0, that is, M is regular.
The first fundamental form of M is

ds2 = du2 + 2λg′2(u) + λ2)dv2. (9)

Also, the arc-length of any curve on M between u1 and u2 is given by

s =

∣∣∣∣∣
∫ u2

u1

√
1 + 2λg′(u)

dv

du
+ (f2(u) + λ2)(

dv

du
)2du

∣∣∣∣∣ . (10)

Suppose that α(t) is a curve on M. Then, we can write α(t) = M(u(t), v(t)). With
respect to the local base {Mu,Mv} , the vector α′(t) has the coordinates (u′, v′)
and the vector Mu has the coordinates (1, 0). At the point p = M(u, v), where the
loxodrome cuts the meridian at a constant angle θ, we get

cos θ =
du+ λg′(u)dv√

du2 + 2λg′2(u)dudv + (f2(u) + λ2)dv2
. (11)

Then, Eq. (11) can be expressed in the form:(
cos2 θ(f2(u) + λ2)− λ2g′2(u)

)
(
dv

du
)2 − 2λ sin2 θg′(u)

dv

du
= sin2 θ. (12)

This is differential equation of the loxodromes on the helicoidal surfaces in E4.
Thus, the general solution of Eq. (12) becomes

v = v(u) =

∫ u

u0

2λ sin2 θg′(u) + ε
√

sin2 2θ
(
f2(u)− λ2(g′2(u)− 1)

)
2 cos2 θ(f2(u) + λ2)− 2λ2g′2(u)

du, (13)

where ε is plus or minus.
Then, we can give the following theorem.

Theorem 1. The loxodromes on the helicoidal surfaces in E4 are

α(u) = (f(u) cos v(u), f(u) sin v(u), g(u) + λv(u), h(u)) ,

where v(u) is given by Eq. (13).

When λ = 0 in Eq. (13), we find the following general solution of differential
equation of the loxodromes on the rotational surfaces in E4

v = v(u) = ε tan θ

∫ u

u0

du

f(u)
. (14)
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Thus, we have

Theorem 2. The loxodromes on the rotational surfaces in E4 are

γ(u) = (f(u) cos v(u), f(u) sin v(u), g(u), h(u)) ,

where v(u) = ε tan θ
∫ u
u0

du
f(u) .

If g is a constant function, then the arc-length of loxodrome on the right helicoidal
surface in E4 is given by

s =

∣∣∣∣u2 − u1cos θ

∣∣∣∣ . (15)

Similarly, the arc-length of the loxodrome on the rotational surface in E4 coincides
with Eq. (15).
Now, we give the following example.

Example 1. Let us consider the profile curve β(u) =
(

cos u2 , 0, sin
u
2 ,
√
3
2 u
)
. If we

take λ = 1, θ = π
2 and ε = 1, then we have the following helicoidal surface:

M(u, v) =

(
cos

u

2
cos v, cos

u

2
sin v, sin

u

2
+ v,

√
3

2
u

)
.

By using Eq. (13) and taking u0 = 0, we get v(u) = 4 ln
∣∣∣ 1−tan u

4

1+tan u
4

∣∣∣ . Taking
u ∈ (−2, 2), we have v ∈ (−4.9048, 4.9048).
Then, the loxodrome is

α(u) =

(
cos

u

2
cos v(u), cos

u

2
sin v(u), sin

u

2
+ v(u),

√
3

2
u

)
,

where v(u) = 4 ln
∣∣∣ 1−tan u

4

1+tan u
4

∣∣∣ . Also, by using Eq. (10), the arc-length of the loxo-
drome is approximately equal to 12.0528.
Let us plot the graphs of the projections of helicoidal surface, loxodrome and

meridian (v = 0) in E3 to see what they look like in E3 by using Mathematica
plotting command
ParametricPlot3D[{x(u, v), y(u, v), z(u, v) + w(u, v)},{u, a, b},{v, c, d}];

4. The Equations of Loxodromes on Tubes with Variable Radius

In this section, we find the differential equations of loxodromes on the tubes with
variable radius in E4. Also, we give an example to strengthen our main results.

Definition 2. A curve on a tube with variable radius in E4 is called as a loxodrome
if the curve cuts all meridians at a constant angle on the tube with variable radius.
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Figure 1. The projections of helicoidal surface, loxodrome
(green), meridian (blue).

Let us consider the tube with variable radius C which is given by Eq. (6). The
tangent plane to C at a point p = C(u, v) is span{Cu, Cv} .
A direct computation yields

Cu = e1(u)− r(u)τ(u) cos ve2(u) + r ′(u) cos ve3(u) + r ′(u) sin ve4(u)

and
Cv = −r(u) sin ve3(u) + r(u) cos ve4(u).

By using these equations, the coeffi cients of first fundamental form of C are

E = 1 + r ′2 + r2τ2 cos2 v , F = 0 and G = r2. (16)

Assume that EG− F 2 = r2 + r2r ′2 + r4τ2 cos2 v >0, that is, C is regular.
The first fundamental form of C is given by

ds2 = (1 + r ′2 + r2τ2 cos2 v)du2 + r2dv2. (17)

Also, the arc-length of any curve on C between u1 and u2 is defined by

s =

∣∣∣∣∣
∫ u2

u1

√
1 + r ′2 + r2τ2 cos2 v + r2(

dv

du
)2du

∣∣∣∣∣ . (18)
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Let us assume that σ(t) is a curve on C. Then, we can write σ(t) = C(u(t), v(t)).
With respect to the local base {Cu, Cv} , the vector σ′(t) has the coordinates (u′, v′)
and the vector Cu has the coordinates (1, 0). At the point p = C(u, v), where the
loxodrome cuts the meridian at a constant angle ϕ, we get

cosϕ = (1+r ′2+r2τ2 cos2 v)du√
(1+(r ′2+r2τ2 cos2 v)2du2+(1+r ′2+r2τ2 cos2 v)r2dv2

. (19)

Then, differential equation of the loxodromes on the tubes with variable radius in
E4 is given by

(
dv

du
)2 = tan2 ϕ

(
1 + r′2

r2
+ τ2 cos2 v

)
. (20)

Furthermore, we put the condition that the second curvature of β has null value.
This means that β is a 2-plane curve. Then, the general solution of Eq. (20)
becomes

v = v(u) = ε tanϕ

∫ u

u0

√
1 + r′2

r
du, (21)

where ε is plus or minus.
Under this condition, we can give the following theorem.

Theorem 3. The loxodromes on the tubes with variable radius in E4 are

σ(u) = β(u) + r(u) (e3(u) cos v(u) + e4(u) sin v(u)) ,

where v(u) = ε tanϕ
∫ u
u0

√
1+r′2

r du.

Now, we give the following example.

Example 2. Let us consider the base curve β(u) = (u, 0, 0, 0) . Taking r(u) =
u, ϕ = π

4 and ε = 1, we have the following tube with variable radius:

C(u, v) = (u, 0, u cos v, u sin v) .

Using Eq. (21) and taking u0 = 1, we get v(u) =
√

2 ln |u| . Taking u ∈ (0.1, 9), we
have v ∈ (−3.2563, 3.1073). Then, the loxodrome is

σ(u) =
(
u, 0, u cos(

√
2 lnu), u sin(

√
2 lnu)

)
.

Also, by using Eq. (18), the arc-length of the loxodrome is approximately equal to
17.8.
Let us plot the graphs of the projections of tube with variable radius, loxodrome

and meridian (v = 2) in E3 to see what they look like in E3 by using Mathematica
plotting command
ParametricPlot3D[{x(u, v) + y(u, v), z(u, v), w(u, v)},{u, a, b},{v, c, d}];
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Figure 2. The projections of tubes with variable radius, loxo-
drome (green), meridian (blue).

5. Conclusion

Loxodromes are special curves which cut all meridians at a constant angle on the
Earth’s surface. They do not need a change of course. Thus, they are usually used
in navigation. Loxodromes on rotational, helicoidal and canal surfaces in Euclidean
3-space E3 were studied by different authors (see [11], [3], [4]). In this paper, we
investigate the equations of loxodromes on helicoidal surfaces as well as the tubes
with variable radius in Euclidean 4-space E4, that is, we generalize the equations of
loxodromes on helicoidal surfaces and canal surfaces in E3 to E4. The next time, we
will investigate the differential equations of space-like and time-like loxodromes on
the non-degenerate rotational surfaces, helicoidal surfaces and tubes with variable
radius in Minkowski space-time E41.
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