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Abstract 

In this paper, we propose the Bernoulli wavelet approximation for the solution of the fractional differential equations with variable 

coefficients. In the proposed method, the fractional derivatives are transformed using the operational matrix of fractional order 

integration and by doing that differential equation reduces to a system of algebraic equations. The operational matrix of fractional order 

integration is obtained via block pulse functions. Illustrative examples are presented. The examples demonstrate that the method is 

accurate and efficient. 
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1. Introduction 

The fractional calculus is a branch of applied mathematics focused on derivatives and integrals to any arbitrary order of real or 

complex numbers. It is used to model several real-life phenomena in many fields of engineering and science. For example, fractional 

calculus or differential equations applied to model the mechanics and dynamical systems (Cajić, Karličić and Lazarević, 2015; Wang et 

al., 2017) and, environmental sciences (Moradi and Mehdinejadiani, 2018; Sun et al., 2014) signal and image processing (Li and Yu, 

2006; Chen, Chen and Xue, 2013; Nigmatullin, Osokin and Toboev, 2011), colored noise (Mandelbrot, 1967),  macroeconomics models 

(Tarasova  and Tarasov, 2017),  biology (Karaman et al., 2016) , materials (Lei, Liang and Xiao, 2018), optimal control (Karimi et al., 

2005) and so on. 

However, many of these fractional differential equations do not have analytical solutions, therefore various numerical algorithms 

are developed.  Homotopy analysis method was applied to solve fractional initial value problem by Hashim, Abdulaziz and Momani, 

2009. Differential transform method was presented by Arikoglu and Ozkol, 2009. Homotopy perturbation method was studied by 

Khader, 2017; Li and Sun, 2011. The Laplace transform method was examined by Gupta, Kumar and Singh, 2015.   

In this paper, we use Bernoulli wavelet method to solve the fractional differential equations with variable coefficients in the form: 
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where α is the fractional derivative-order parameter, 1 2 10 r        , n  is an integer and D
 is the Caputo fractional 

differential operator. This method presents a procedure to reduce the fractional differential equations to a system of algebraic equations 

by using a family of Bernoulli wavelets. The organization the paper is as follows: Section 2 includes some necessary definitions of the 

fractional calculus. In Section 3, after explaining Bernoulli wavelets, the Bernoulli wavelet operational matrix of the fractional 
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integration is derived. In Section 4, we present the numerical method to solve the fractional order differential equations. Numerical 

example results are provided in Section 5. Last section includes concluding remarks. 

2. Basic Definitions 

Definition 2.1 The Riemann-Liouville fractional integral operator of order   is defined as: 
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Definition 2.2 The Caputo definition of fractional derivative operator is defined by the following expression 
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It has the basic properties of: 
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3 Bernoulli Wavelet and Operational Matrix of the Fractional Integration 

3.1 Bernoulli polynomial and Bernoulli wavelets 

 Let  m t denote the Bernoulli polynomials of order m, which is given by Rahimkhani, Ordokhani and Babolian, 2016 
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where i , 1, 2, ,i m  are Bernoulli numbers. These polynomials satisfy the following orthogonality condition (Rahimkhani,  

Ordokhani and Babolian, 2016). 
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The Bernoulli wavelets are defined on interval [0,1) by 
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where 1n n  , 
11, 2, , 2kn  , 0,1,2, , 1m M  ,  k is any positive integer value, t is the normalized time (Rahimkhani,  

Ordokhani and Babolian, 2016). 

3.2 Function approximation 

A function f  defined over [0,1)  may be expressed with Bernoulli wavelets as                                                         
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where C and ( )t  are 1m (
12km M   ) vectors defined by 
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The Bernoulli wavelet matrix is defined as 
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3.3      Operational matrix of the fractional integration 

We present the operational matrix of fractional order integration using the Block Pulse Functions (BPFs).The set of BPFs is 

defined as 
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For  0 1t , , following properties for these functions will be used in this paper 
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The Bernoulli wavelet may be expanded to an m  terms BPFs as 
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where F
is given  with the Bernoulli wavelet operational matrix of the fractional integration m xmP  


( Kilicman, 2007): 
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The convergence analysis of the Bernoulli wavelet basis can be found in the study of Rahimkhani, Ordokhani and Babolian, 2016. 

4 Numerical Method 

To solve problem (1) and (2) we approximate ( )D y t
and ( )g t  by the Bernoulli wavelet as 
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by substituting Eqs. (20) and (21) in Eq. (1) we get a system of algebraic equations as follows:                                           
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The Newton-Raphson iteration method is used to solve the system of algebraic equations and the unknown coefficient values of  
TC , and thus the approximate solution ( )y t  are obtained.  

5 Illustirative Examples 

In this section, we demonstrate some numerical examples to show the efficiency and the accuracy of the presented method. The 

numerical results are obtained using Matlab R2017a. 

Example 5.1: We first consider the following nonlinear fractional differential equation (Atabakzadeh, Akrami and Erjaee, 2013) 

7/2 3/2 2 2 44
( ) ( ) ( ) 1 2t D y t D y t y t t

 
     

 
, (0) (0) 0y y  , [0,1]t  

whose exact solution is given by 2( )y t t . 

Using the method presented in Section 4, we obtain the approximate solution of the fractional differential equation given above. 

The comparison of the method and exact solutions for 2k   and 3M   are shown in Figure 1.  It is obvious that the numerical 

solutions are in perfect agreement with the exact solutions. 

 

Figure 1. Bernoulli wavelet and the exact solution for Example 1. 

Table 1. Comparison of the absolute errors for Example 1 

t 
Present method 

Chebyshev operational 

matrix method 

(Atabakzadeh, Akrami 

and Erjaee, 2013) 

3k   

24m'  48m'  96m' 192m' 384m' 

 

k  5  k  6  k  8  

[32] 

N  2  

[33] 

N  3  

[35] 

N  4  

0.2 5.75E-04 3.62E-05 9.04E-06 5.65E-07 3.3E-3 2.2E-3 8.8E-4 

0.4 5.66E-04 3.60E-05 9.01E-06 5.63E-07 1.3E-2 9.6E-3 7.1E-3 

0.6 5.47E-04 3.54E-05 8.87E-06 5.55E-07 2.9E-2 1.3E-2 3.5E-3 

0.8 5.13E-04 3.40E-05 8.54E-06 5.34E-07 5.3E-2 4.2E-2 2.8E-2 
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In Table 1, we present the absolute errors for several k  values of Bernoulli wavelet method and Chebyshev operational matrix 

method (Atabakzadeh, Akrami and Erjaee, 2013). Numerical results of this initial value problem show that our method is more accurate 

than the Chebyshev operational matrix method. 

Example 5.2 Consider the following initial value problem 

3/2 3/2 7/2( ) ( ) 4
t

D y t t y t t  


(0) (0) 0y y  , (0,1]t   

with the exact solution of 2( )y t t . 

Again, using the method presented in Section 4, we obtain the approximate solution of the fractional differential equation given 

above. Table 2 shows absolute errors for 3,4,5,6,7k  and 3M  . Moreover, the comparison of the numerical solutions and the exact 

solutions for 2k   and 3M   are plotted in Figure 2.  As can be seen, numerical results demonstrate the accuracy of our method.  

Table 2.The absolute errors of the Bernoulli wavelet method for 1   and various k  values 

t  Exact 

sol. 

3k   k  4  k  5  k  6  k  7  

0.1 0.01 7.91E-05 1.98E-05 4.94E-06 1.24E-06 3.09E-07 

0.2 0.04 1.57E-04 5.01E-05 1.61E-05 5.29E-06 1.76E-06 

0.3     0.09 2.01E-04 6.47E-05 2.12E-05 7.06E-06 2.38E-06 

0.4     0.16 2.33E-04 7.59E-05 2.51E-05 8.43E-06 2.87E-06 

0.5     0.25 2.61E-04 8.56E-05 2.85E-05 9.63E-06 3.29E-06 

0.6     0.36 2.88E-04 9.48E-05 3.17E-05 1.08E-05 3.69E-06 

0.7     0.49 3.14E-04 1.04E-04 3.49E-05 1.19E-05 4.08E-06 

0.8     0.64 3.41E-04 1.13E-04 3.82E-05 1.30E-05 4.48E-06 

0.9     0.81 3.71E-04 1.23E-04 4.17E-05 1.42E-05 4.91E-06 

 

 

Figure 2. Bernoulli wavelet and the exact solution for Example 2. 

6 Conclusion 

In this paper, we intend to develop an accurate and effective method to solve the fractional differential equations with variable 

coefficients. To this end, the Bernoulli wavelet operational matrix of fractional order integration is used to approximate the fractional 

derivatives and to convert the fractional differential equations with variable coefficients into a system of algebraic equations. By solving 

the system of algebraic equations, we obtain the approximate solutions of the fractional differential equations. Since this transformation 

uses orthogonal wavelets, the corresponding operational matrix of fractional integration is a sparse matrix, which greatly contributes to 

have a fast and efficient solution method. The block pulse functions are employed to obtain the operational matrix of fractional order 

integration. Numerical results are presented to demonstrate the accuracy end the efficiency of the method.  
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