

 Koc. J. Sci. Eng., 2(1): (2019) 01-06 https://doi.org/10.34088/kojose.494655

Kocaeli University

 Kocaeli Journal of Science and Engineering

http://dergipark.org.tr/kojose

CAN Bus Based Firmware Update System for Distributed Embedded Systems

Consisting of ARM Cortex-M0 Series Microcontrollers

Ali Batuhan KINDAN 1,* , Selçuk KİZİR2

1 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41310, Turkey, Orcid Id: 0000-0001-6242-7067
2 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41310, Turkey, Orcid Id: 0000-0002-0582-5904

Article Info

Research paper

Received : December 10, 2018

Accepted : January 28, 2019

Keywords

ARM Cortex M0

Bootloader

CAN Bus

Distributed Embedded Systems

Firmware Update

Abstract

In this study, design of a firmware update system for distributed embedded systems consisting of

nodes with ARM Cortex M0 microcontrollers is presented. The nodes in the system are connected to

each other over high speed CAN Bus 2.0A protocol and the system is controlled by a PC via a

graphical user interface. The system allows user to update the Firmware of system nodes through the

CAN Bus network. Complete firmware update system for distributed embedded systems with CAN

Bus field network is provided by the system designed in this study. With the custom bootloader

developed during this study, in application firmware update over CAN Bus feature is integrated to 32

bit STM32F072 microcontroller.

1. Introduction
*

While designing and developing embedded systems,

the firmware is modified several times. As a result of the

changes in the development process, the system is used in

the field after obtaining a stable version providing the

designed features. During the tests in system development,

the system is usually in a test environment and low number

of microcontrollers used in the tests can be programmed

individually with special programmers. Modifying the

software is relatively easy because of low numbers during

the tests. Even if stable software is obtained that meets the

requirements of the system after the test phase, there are a

lot of feedbacks when the system starts to be used in the

field, and in this direction, it is necessary to update the

firmware for the various bug fixes that are not noticed

during the development of the software. In addition,

various updates to improve the system efficiency and to

give new features to the existing system are among the

reasons that require changes to the software. Unlike the

development and testing phases, it is not possible to

* Corresponding Author: batuhan.kindan@gmail.com

modify the software with the methods used in the testing

phase after the system is used by the end users in the field.

The reason for this is that after the stabilized version is

obtained, it is not commercially possible to program a

plurality of systems distributed to end users as commercial

products, or large number of microcontrollers forming a

single system. In current commercial systems, the software

update needs of almost all kinds of applications are met by

bootloader software.

Bootloader software is an embedded software that

starts from the fixed reset address of the microcontroller

and it is designed to be as simple as possible in order not to

make any changes on it in the future [1].

When the supply voltage is provided to the system or

the system is reset, the bootloader application runs first

and, if there is no update request depending on the design

of the application, it jumps to the Firmware application

which is located at a different memory address (Figure 1)

and designed to meet the user's need. When the firmware

update is requested, the firmware resets itself via an

external command and switches to the bootloader [2]. The

bootloader deletes the flash memory sectors of the existing

2667-484X © This paper published in Kocaeli Journal of Science and Engineering is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License

https://doi.org/10.34088/kojose.494655
https://orcid.org/0000-0002-0582-5904
https://orcid.org/0000-0001-6242-7067
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Ali Batuhan KINDAN

et al. / Koc. J. Sci. Eng., 2(1): (2019) 01-06

2

Firmware and writes the program data of the new

Firmware to the firmware address area from a predefined

source, depending on the system design.

Figure 1. Memory map of one of the network elements

in the system that shows the memory sectors of the

bootloader and firmware.

After the bootloader writes all of the new firmware

data to the corresponding address zone, the software will

be used again by jumping to the firmware.

In this study, high-speed CAN Bus 2.0A protocol is

used as the bootloader communication protocol. This

communication protocol allows communication with 110

network elements at a maximum speed of 1Mbit / s over a

total of 6.5 km [3]. The main reasons for using this

protocol are as follows [4]:

1) The CAN bus protocol has a differential

communication hardware so that it can operate smoothly in

industrial environments with electrical noise.

2) Even if any network element connected to the

CAN Bus network stops working, the network can

continue to communicate without being affected.

3) The CAN bus protocol can operate as a Multi-

Master. Each network element can have priority over the

network when necessary.

4) Hardware prevention of the mixing of the similar

priority messages that are sent by the network elements at

the same time (Bitwise Arbitration).

5) The CAN Bus protocol has internal CRC (Cyclic

Redundancy Check) in the message frame.

In addition to these, the reasons for choosing

microcontrollers with ARM Cortex M0 architecture for the

implementation of bootloader in the system are; reasonable

price-performance values, 32-bit bus width, NVIC (Nested

Vectored Interrupt Controller) hardware that allows

flexible prioritization of the system interrupts [5], user

friendly software development environments (KEIL, IAR,

ATTOLIC vs.), easy findable software libraries for

peripherals and some of the models in M0 series that have

internal CAN Bus transceiver.

Similar to the designed system in this study, there are

some bootloader designs for automobile ECU’s (Engine

Control Unit) developed on the 16 bit bus width NXP’s

Freescale MC9S12DP256 microcontrollers and that are

using CAN Bus protocol [6]. ECU systems are one of the

functional elements on the automobile which the software

update is performed as a result of performance and

efficiency improvements after the cars are produced and

started to be used by end user. ECU software updates can

be done through the communication line without removing

the ECU component from the vehicle thanks to the

developed systems. Another system developed for software

updates of ECU components in the automotive industry is

the software update system which incrementally updates

the software by taking into consideration the differences

between the old and the new program, rather than simply

deleting or updating all program data for software updates

[7]. In addition, similar to the designed system, there is

also a system that updates a large number of ECU

components on the CAN Bus communication line with a

computer [8]. Except that, in addition to similar systems

used in the automotive industry, there are also different

bootloader and full-scale software update systems designed

based on CAN communication protocol. An example of

these systems is the software update system that enables

the update of the embedded software of the DSP chips used

in robotic systems to perform various control operations

via the CAN communication line [9].

In this study, custom bootloader is designed to

achieve software update feature for 32 bit bus width

STMicroelectronics STM32F072 microcontroller. Also, it

is aimed that the designed software update system can be

used as a diagnostics mechanism by providing access to

the desired parameters of the nodes of the distributed

embedded system via the CAN Bus interface. The system

is controlled by a computer via an interface device between

the computer and the distributed embedded system

communication network.

In Chapter 2, hardware information about the network

elements used in the system, the user interface that allows

the user to manage the system, the communication routines

used in the system and the operating principle of the

system are described. In Chapter 3, the observations of the

system are explained and the contribution of the system is

presented.

Ali Batuhan KINDAN

et al. / Koc. J. Sci. Eng., 2(1): (2019) 01-06

3

2. System Overview

The system consists of 3 types of components:

1) A PC which runs a graphical user interface (GUI)

that allows the user to select which software to update the

HEX file of the software that belongs to desired node to be

updated.

2) A CAN Bus interface device which allows PC to

communicate network nodes and the network elements.

3) Network nodes consisting of STM32F072

microcontrollers.

 Figure 2. System communication scheme.

The PC and CAN Bus interface components

exchange data with the USART protocol, and the CAN Bus

interface component communicates with all network

elements with the CAN protocol through the CAN bus

network (Figure 2).

Figure 3. Graphical user interface on PC.

In order to update the embedded software of any

network element on the CAN Bus network, the user first

imports the HEX file of the new version of the firmware

into the user interface application (Figure 3).

The graphical user interface program allows the user

to update the firmware of the network elements on the

distributed embedded system and inform the user about the

success of the performed operations visually. The user can

check the record type, the record address and all the data

values of the HEX file lines with graphical user interface.

The HEX file uploaded by the user to the interface

program is transferred to the flash memory of the Can Bus

interface component which bridges the PC to the Can Bus

network before programming the desired elements on the

network. The main reasons of this transfer are, improving

the software update time of the nodes and simplifying

system message routines. Instead of using the CAN Bus

interface component just for the message conversion

between CAN and USART for every data message used in

the programming process, the flash memory of interface

component is used as a buffer to store program data. After

saving the HEX data to interface component’s flash

memory, PC sends a program command to interface board.

After CAN Bus interface board receives the program

command message, it starts to send program data to

desired node through CAN Bus network. Before each

programming process, the user can check if the flash

memory of the CAN Bus interface board is empty or not

by using the graphical user interface on the PC. If the flash

memory is full, user can also give command to the CAN

Bus interface board to delete flash via the GUI.

The user can perform the software update process of

the network elements in several different ways with the

user interface on the PC. These ways are; entering each

network element's individual network ID, entering the

group ID associated with grouping the network elements

and programming all the cards in sequence with a single

command.

Each line of the HEX file loaded into the user

interface contains the checksum data which is a control

value specific for each line. The user interface application

calculates the Checksum values for each line of the loaded

HEX file and checks the validity of the file by comparing it

with the control values in the lines of the HEX file and

informs the user accordingly. In case of an error in any line

of the uploaded HEX file, the corresponding HEX file line

is indicated by red background color. After the valid HEX

file is uploaded to the user interface, the HEX file of the

Firmware is transferred to the Flash memory of the CAN

Bus interface component by connecting to the interface

component via USART with the valid Port number and

Baud Rate.

Ali Batuhan KINDAN

et al. / Koc. J. Sci. Eng., 2(1): (2019) 01-06

4

Figure 4. USART messaging schematic between PC

and CAN Bus interface component.

Each line of the HEX file sent to the interface

component as an USART message contains checksum

information. The main reason of sending this checksum

information in addition to HEX data is to make sure that

the data is securely received by interface component.

When the interface component receives the USART

message for each HEX line, it calculates the control value

using the relevant data and confirms the validity of the data

by comparing it to the control data of the sent message.

After this control, the received HEX data is written to the

Flash memory of the interface component. When the

received data are written to flash memory, flash record

address value is also checked to ensure the writing process

is successfully completed. If all of the control phases are

passed, CAN Bus interface board sends the “OK” message

to the PC through USART. All of these control phases and

the message flows for single HEX value transfer defined as

a single cycle of data transfer between PC and interface

board (Figure 4). This routine is repeated for each HEX

data until the last HEX data is sent. If an error occurs

during the any line of HEX file transfer cycle, CAN Bus

interface board sends the “ERROR” message to the PC and

deletes its flash memory that keeps the HEX file data.

When the GUI gets the “ERROR” message from the

interface board, it stops the HEX file transfer and informs

the user about the cancelled transfer routine. In addition,

there is a threshold time defined for every HEX line

transfer routine and if “OK” or “ERROR” messages are

not sent by CAN Bus interface board before the threshold

time, GUI considers the current HEX file transfer routine

as unsuccessful and it informs the user about the cancelled

transfer routine.

All of the elements on the CAN bus network in the

system, have their own predefined 1 byte size network ID.

These network IDs can be written to a specific flash

address of the microcontroller while the bootloader is

being loaded to each network element during production or

can be defined with an 8-DIP switch hardware which can

be located during the electronic card design.

After transferring all of the data in the HEX file to

CAN Bus interface board’s flash memory, the user enters

the network ID of the desired node to be updated via the

GUI and presses the “GoTo Boot” button. After the user

pressed the "GoTo Boot" button, GUI sends the

"GoToBoot" message with the corresponding network

node ID to the CAN Bus interface board. When CAN bus

interface board receives that USART message from PC, it

sends the “GoToBoot” message to the network element

with the corresponding node ID given by the PC. Then the

network element with the corresponding ID that is running

on the firmware application writes a control value to the

Boot Control Page address 0x0801F000 of the flash

memory that is specified in Figure 1 and resets itself. After

the reset, the bootloader application which is located on the

start address of flash memory runs and verifies the value at

the Boot Control Page address then it starts to erase the

flash sectors of firmware application. When the interface

board completes the deleting process, it sends the

“BootOk” message to the CAN Bus interface board and

starts to wait for CAN Bus data messages of the new

firmware. This procedure is referred to as placing the

network element in Boot mode. When the network element

jumpes into the Boot mode and sends the “BootOk”

message to the CAN Bus interface board, the user is

informed about the network node that is ready for the

update. If the network node does not send the “BootOk”

message before the threshold time, the system considers

this procedure as unsuccessful. After the desired network

element is put into Boot mode, the user orders CAN Bus

interface board in order to program the corresponding

network element by pressing the Program button via the

GUI on the PC.

Figure 5. CAN messaging schematic between CAN Bus

interface board and a network node.

Then the CAN Bus interface board starts to transfer

the HEX data to network node with the “BootData”

messages which contains the ID of the network node

through CAN Bus. CAN Bus 2.0A message frame has an

internal 16 bit wide CRC area. When a network message

is received incorrectly even by just one node in the

Ali Batuhan KINDAN

et al. / Koc. J. Sci. Eng., 2(1): (2019) 01-06

5

network, sender detects this fault with 2 bit wide ACK

zone in the frame and resends the current message again.

Difference from the USART data messages in the system,

no control values are sent in the “BootData” messages

because there is already an error checking mechanism in

the message frame. After each “BootData” message

arrives at the corresponding network element, the

message content is written to the firmware area in the

flash memory of the network element. After network node

writes the received data to its flash memory, it checks the

value of corresponding flash address then sends

“BootOk” message to the CAN bus interface board

(Figure 5). When the interface board reads “BootOk”

message, it sends another “BootData” message that

contains the next HEX data. This routine is repeated for

every HEX data. After all of the HEX data has been

successfully sent to the network element, a special

“BootData” message that contains transmission complete

value is sent as a last message. If the “BootOk” message

is not received by the CAN Bus interface board before the

threshold time, CAN Bus interface board considers the

transfer operation as unsuccessful and it stops the HEX

data transfer. Then it sends the “ERROR” message to the

PC in order to inform the user. After the “BootData”

message that contains transfer complete value is received

by the network element, the network element deletes the

Boot Control Page of the Flash memory and resets itself.

After rebooting, the bootloader controls the Boot Control

Page address and starts the updated user application by

jumping to the Flash address of the firmware because the

control data was deleted during the previous run. This

whole procedure that starting at entering of the desired

node ID and sending the Program command from the GUI

is referred as programming of a single network device.

But except from the Firmware update of single node, the

user can update the Firmware of the all nodes or the

Firmware of the groups that are consisting of multiple

nodes with a single command. In order to program

multiple nodes with a single command, the user can select

the Firmware update mode by using the “All” and

“Group” radio buttons on the GUI. When the “Group”

mode is selected, the GUI sends the Program command to

CAN Bus interface board for every node ID in the

selected group in order and performs the same procedure

as the single node Firmware update one by one. If an error

occurs during the process, update process stops and the

user is informed by GUI about the node ID that has not

been programmed. When the “All” mode selected, same

procedure is performed by the GUI same as the “Group”

mode for all node IDs.

The flowchart of HEX data transfer from the CAN

Bus interface board to a single network element is

represented in Figure 6. When the interface board receives

the Program command with the desired node ID from the

GUI, it starts the transmit routine of the HEX data which

is stored in the flash memory.

Figure 6. HEX data transfer from the CAN Bus interface

board to a single network element.

The HEX data is represented with a pointer that

addresses the starting address of the flash sector that

contains the HEX file. The pointer value is incremented at

every cycle of transmit routine and if the “BootOk”

message is received until the threshold time, transmit

routine continues until the last HEX data as mentioned

before.

The message IDs used in the system are fixed for the

Boot messages sent by the CAN Bus interface hardware

but for all messages that is sent from the network elements,

ID value is set to 0x20 + Network ID. That means the

network IDs of the nodes can be understood from CAN

Bus message IDs. The types of the messages that are sent

from nodes are being sent inside the data frame of CAN

Bus message as 1 byte. The reason for the use of variable

message IDs according to the identity of the network

element is to ensure that if multiple network elements send

the same message at the same time, priority is given

between the messages and, if desired, by a hardware filter

to a particular ID group to ignore messages from these

network elements by other network elements according to

the design of the system.

Ali Batuhan KINDAN

et al. / Koc. J. Sci. Eng., 2(1): (2019) 01-06

6

3. Conclusions

The software update system has been implemented on

an existing discrete embedded system that has high speed

CAN Bus network and consists of 46 network elements.

The embedded software of the network elements of the

related system has been updated successfully without any

errors. During the tests, the network elements were put into

the Boot mode in order to be updated individually, in

groups and all elements at the same time by the command

that are sent from the computer.

In the programming process during the tests, the

transmission of the 20 KB size HEX file which contains

the updated firmware was completed by an average of 1.2

seconds for each network element by entering the network

ID of each network element individually on user interface.

Also during the programming tests with multiple network

elements, transfer time of the same HEX file to all 46

network elements took about 50 seconds. Compared to the

single network element file transfer mode, the average

transfer time of one network element is faster in multiple

transfer modes. The main reason is that in the multiple

programming mode, the user interface informs the user

only when an error occurs. Instead of informing user for

every network element after the transfer is completed, this

method uses the UART communication and GUI functions

less than the single transfer mode.

In addition to software update processes, the

computer was used to read and write the parameters of

network nodes used on the current system. As a result of

the test, it has been observed that the system can also be

used as a fault diagnosis system in order to read predefined

runtime errors of the network elements.

With the system designed in this study, complete

firmware update system for distributed embedded systems

with CAN Bus field network is provided for general

purpose. Also with the custom bootloader that have been

developed during the study, in application firmware update

over CAN Bus feature is integrated to 32 bit STM32F072

microcontroller. In addition, depending on the distributed

embedded system, if more computing power is needed in

the future, the Cortex M0 network elements that are used

in the system can easily be replaced with higher level

Cortex M series microcontrollers.

References

[1] Fan X., 2015. Real-Time Embedded Systems Design

Principles and Engineering Practices, 1st ed.,

Newnes, Oxford, UK.

[2] Siegesmund M., 2014. Embedded C Programming,

1st ed., Newnes, Oxford, UK.

[3] Eisenreich D., DeMuth B., 2002. Designing

Embedded Internet Devices, 1st ed., Newnes, MA,

USA.

[4] Puri S. B., Nayse S. P., 2013. Green House

Parameters Monitoring Using Can Bus and System

on Chip. International Journal of Advances in

Engineering Research & Technology, 2(5), 1975-

1978.

[5] Yiu J., 2011. The Definitive Guide to ARM Cortex-
M0, 1st ed., Newnes, Oxford, UK.

[6] Chu L., Feng L., 2010. Implementation of CAN

Bootloader Based on Freescale MCU. Journal of

Suzhou University (Engineering Science Edition),

2(15), 57-61.

[7] Zhang J., Zhu X., Peng Y., 2015. Implementation and

Research of Bootloader for Automobile ECU Remote

Incremental Update, AASRI International Conference

on Industrial Electronics and Applications, London,
UK, 27-28 June, doi: 10.2991/iea-15.2015.39.

[8] Xu Y., Wang R. G., Cheng A. Y., Li R., 2013.

Design of online upgrade system for the software of

vehicle ECU based on CAN-bus. International

Journal of Advancements in Computing Technology,

5(1), 79-87.

[9] Regenstein K., Kerscher T., Birkenhofer C., Asfour

T., Zollner M., Dillmann M., 2007. Universal

Controller Module (UCoM)-component of a modular

concept in robotic systems. IEEE International
Symposium, Vigo, Spain, 4-7 June, 2089-2094.

