Positive Linear Operators Preserving τ and τ^{2}

Tuncer Acar, Ali Aral*, and Ioan Raşa

Abstract

In the paper we introduce a general class of linear positive approximation processes defined on bounded and unbounded intervals designed using an appropriate function. Voronovskaya type theorems are given for these new constructions. Some examples including well known operators are presented.

Keywords: Generalized operators, Voronovskaya theorem.
2010 Mathematics Subject Classification: 41A25, 41A36.

1. Introduction

In the theory of approximation by linear positive operators (l.p.o) Korovkin famous theorem has a crucial role to determine whether the corresponding sequence of l.p.o converges to the identity operator. However, Korovkin theorem for a sequence of l.p.o requires uniform convergence on an extended complete Tchebychev system, in special, the set of test functions $e_{i}(t)=t^{i}, i=0,1,2$. In [6], to obtain better error estimation, J. P. King introduced and studied a generalization of the classical Bernstein operators. These operators preserve the test functions e_{0} and e_{2}, while the classical Bernstein operators preserve the test functions e_{0} and e_{1}. Starting from this approximation process King's idea has been successfully applied to several well known sequences of operators. In [5], the authors introduced the sequence of operators B_{n}^{τ} by

$$
B_{n}^{\tau}(f ; x)=\sum_{k=0}^{n}\left(f \circ \tau^{-1}\right)\left(\frac{k}{n}\right)\binom{n}{k} \tau^{k}(x)(1-\tau(x))^{n-k}, x \in[0,1], n \in \mathbb{N},
$$

which is a new form of well-known Bernstein operators, where $\tau \in C[0,1]$ is a strictly increasing function , $\tau(0)=0, \tau(1)=1$. Shape preserving and convergence properties as well as the asymptotic behavior and saturation for the sequence $\left(B_{n}^{\tau}\right)$ were deeply studied using the test functions $\left\{1, \tau, \tau^{2}\right\}$. Durrmeyer version of the operators B_{n}^{τ} was introduced and studied in [1]. A similar idea was used for the operators defined on unbounded intervals given in [2].
In this short note, we introduce linear positive operators defined on bounded and unbounded intervals that preserve the functions τ and τ^{2} such that $\tau \in C[0,1]$ is strictly increasing, $\tau(0)=$ $0, \tau(1)=1$ (for the operators defined on the unbounded interval, we consider the function $\rho \in C[0, \infty)$ such that $\rho(0)=0$ and $\rho^{\prime}(x)>0$ for $x \in[0, \infty)$). Then, we give a Voronovskaya type theorem for our general operators. Some examples including very well known operators are also obtained.

2. Generalized Operators

Let $L_{n}: C[0,1] \rightarrow C[0,1]$ be a sequence of 1.p.o such that $L_{n} e_{0}=e_{0}$ and $L_{n} e_{1}=e_{1}$.

Let $\tau:[0,1] \rightarrow[m, M]$ be continuous such that $0<m<M, \tau^{\prime}(x)>0$ for $x \in[0,1], \tau(0)=m$ and $\tau(1)=M$. For any $f \in C[0,1]$ consider the function $\frac{f \circ \tau^{-1}}{e_{1}}$ such that

$$
\frac{f \circ \tau^{-1}}{e_{1}}(m+(M-m) t)=\frac{f\left(\tau^{-1}(m+(M-m) t)\right)}{m+(M-m) t}, t \in[0,1]
$$

For $x \in[0,1]$ and $f \in C[0,1]$ consider the operators

$$
\left(V_{n}^{L} f\right)(x)=\tau(x) L_{n}\left(\frac{f \circ \tau^{-1}}{e_{1}}(m+(M-m) t) ; \frac{\tau(x)-m}{M-m}\right)
$$

It is obvious that

$$
V_{n}^{L} \tau(x)=\tau(x) \text { and } V_{n}^{L} \tau^{2}(x)=\tau^{2}(x)
$$

2.1. Examples.

(1) Let $\tau(x)=x+1$ and $L_{n}=B_{n}$, where $\left(B_{n}\right)$ is the sequence of Bernstein operators. For $m=1$ and $M=2$,

$$
V_{n}^{B} f(x)=(x+1) B_{n}\left(\frac{f(t)}{1+t}, x\right)
$$

(2) Let $\tau(x)=e^{\mu x}, \mu>0$ and $L_{n}=B_{n}$, where $\left(B_{n}\right)$ is the sequence of Bernstein operators. For $m=1$ and $M=e^{\mu}$,

$$
V_{n}^{B} f(x)=e^{\mu x} B_{n}\left(\frac{f\left(\frac{1}{\mu} \log \left(1+\left(e^{\mu}-1\right) t\right)\right)}{1+\left(e^{\mu}-1\right) t} ; \frac{e^{\mu x}-1}{e^{\mu}-1}\right)
$$

Let $K_{n}: C[0, \infty) \rightarrow C[0, \infty)$ be a sequence of l.p.o such that $K_{n} e_{0}=e_{0}$ and $K_{n} e_{1}=e_{1}$.
Let $\rho:[0, \infty) \rightarrow[m, \infty)$ be continuous such that $m>0, \rho^{\prime}(x)>0$ for $x \in[0, \infty)$ and $\rho(0)=m$. For $f \in C[0, \infty)$, consider the function $\frac{f \circ \rho^{-1}}{e_{1}}$ such that

$$
\frac{f \circ \rho^{-1}}{e_{1}}(t+m)=\frac{f\left(\rho^{-1}(t+m)\right)}{t+m}, t \in[0, \infty) .
$$

For $x \in[0, \infty)$, consider the operators

$$
\left(U_{n}^{K} f\right)(x)=\rho(x) K_{n}\left(\frac{f\left(\rho^{-1}(m+t)\right)}{m+t} ; \rho(x)-m\right)
$$

It is obvious that

$$
\left(U_{n}^{K} \rho\right)(x)=\rho(x) \quad \text { and }\left(U_{n}^{K} \rho^{2}\right)(x)=\rho^{2}(x)
$$

2.2. Examples.

(1) Let $\rho(x)=e^{\mu x}+1, x \geq 0, \mu>0$ and $K_{n}=S_{n}$, where $\left(S_{n}\right)$ is the sequence of SzászMirakyan operators. For $m=2, \rho^{-1}:[2, \infty) \rightarrow[0, \infty), \rho^{-1}(x)=\frac{1}{\mu} \log (x-1)$ and $x \in[2, \infty)$,

$$
\left(U_{n}^{S} f\right)(x)=\left(e^{\mu x}+1\right) S_{n}\left(\frac{f\left(\frac{1}{\mu} \log (1+t)\right)}{2+t}, e^{\mu x}-1\right)
$$

(2) Let $\rho(x)=e^{\mu x}$ and $K_{n}=T_{n}$, where $\left(T_{n}\right)$ is the sequence of Baskakov operators. For $x \geq 0, m=1$ and $\mu>0$,

$$
\left(U_{n}^{B} f\right)(x)=e^{\mu x} T_{n}\left(\frac{f\left(\frac{1}{\mu} \log (1+t)\right)}{1+t} ; e^{\mu x}-1\right)
$$

3. Transferring the Voronovskaya Result

Theorem 3.1. Let $f \in C[0,1]$ with $f^{\prime \prime}(t)$ finite at any $t \in[0,1]$. Suppose that $L_{n} e_{0}=e_{0}, L_{n} e_{1}=e_{1}$ and

$$
V_{n} f(x)=\tau(x) L_{n}\left(\frac{f \circ \tau^{-1}}{e_{1}}(m+(M-m) t) ; \frac{\tau(x)-m}{M-m}\right) .
$$

If there exists $\alpha \in C[0,1]$ such that

$$
\lim _{n \rightarrow \infty} n\left(L_{n} f(t)-f(t)\right)=\alpha(t) f^{\prime \prime}(t)
$$

then we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(V_{n} f(x)-f(x)\right) \\
= & \frac{(M-m)^{2} \alpha\left(\frac{\tau(x)-m}{M-m}\right)}{\tau^{2}(x)\left(\tau^{\prime}(x)\right)^{3}}\left[\tau^{\prime}(x) \tau^{2}(x) f^{\prime \prime}(x)-\tau(x)\left(\tau(x) \tau^{\prime \prime}(x)+2\left(\tau^{\prime}(x)\right)^{2}\right) f^{\prime}(x)\right. \\
+ & \left.2\left(\tau^{\prime}(x)\right)^{3} f(x)\right] .
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& n\left(V_{n} f(x)-f(x)\right) \\
= & n \tau(x)\left[L_{n}\left(\frac{f \circ \tau^{-1}}{e_{1}}(m+(M-m) t) ; \frac{\tau(x)-m}{M-m}\right)-\frac{f(x)}{\tau(x)}\right] \\
= & n \tau(x)\left[\left.L_{n}\left(\frac{f \circ \tau^{-1}}{e_{1}}(m+(M-m) t) ; \frac{\tau(x)-m}{M-m}\right)-\frac{f \circ \tau^{-1}}{e_{1}}(m+(M-m) t) \right\rvert\,\left(\frac{\tau(x)-m}{M-m}\right)^{M-m} .\right.
\end{aligned}
$$

Thus we have from the hypothesis that

$$
\lim _{n \rightarrow \infty} n\left(V_{n} f(x)-f(x)\right)=\left.\tau(x) \alpha\left(\frac{\tau(x)-m}{M-m}\right) \frac{d^{2}}{d u^{2}}\left(\frac{f\left(\tau^{-1}(m+(M-m) u)\right)}{m+(M-m) u}\right)\right|_{u=\frac{\tau(x)-m}{M-m}}
$$

with $u=\frac{\tau(x)-m}{M-m}$ and $\frac{d x}{d u}=\frac{M-m}{\tau^{\prime}(x)}$.
It is obvious that

$$
\begin{aligned}
\left.\frac{d}{d u}\left(\frac{f\left(\tau^{-1}(m+(M-m) u)\right)}{m+(M-m) u}\right)\right|_{u=\frac{\tau(x)-m}{M-m}} & =\left.\frac{d}{d u}\left(\frac{f \circ \tau^{-1}}{e_{1}}(m+(M-m))(u)\right)\right|_{u=\frac{\tau(x)-m}{M-m}} \\
& =\frac{d x}{d u} \frac{d}{d x}\left(\frac{f(x)}{\tau(x)}\right) \\
& =\frac{M-m}{\tau^{\prime}(x)} \frac{d}{d x}\left(\frac{f(x)}{\tau(x)}\right) \\
& =(M-m) \frac{f^{\prime}(x) \tau(x)-\tau^{\prime}(x) f(x)}{\tau^{\prime}(x) \tau^{2}(x)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\frac{d^{2}}{d u^{2}}\left(\frac{f\left(\tau^{-1}(m+(M-m) u)\right)}{m+(M-m) u}\right)\right|_{u=\frac{\tau(x)-m}{M-m}} \\
= & \frac{M-m}{\tau^{\prime}(x)} \frac{d}{d x}\left((M-m) \frac{f^{\prime}(x) \tau(x)-f(x) \tau^{\prime}(x)}{\tau^{\prime}(x) \tau^{2}(x)}\right), \\
= & \frac{(M-m)^{2}}{\left(\tau(x) \tau^{\prime}(x)\right)^{3}}\left[\tau^{\prime}(x) \tau^{2}(x) f^{\prime \prime}(x)-\tau(x)\left(\tau(x) \tau^{\prime \prime}(x)+2\left(\tau^{\prime}(x)\right)^{2}\right) f^{\prime}(x)\right. \\
+ & \left.2\left(\tau^{\prime}(x)\right)^{3} f(x)\right] .
\end{aligned}
$$

Hence we have the desired result.
Corollary 3.1. Let $\tau(x)=e^{\mu x}$ and $L_{n}=B_{n}$, where $\left(B_{n}\right)$ is the sequence of Bernstein operators. For $m=1$ and $M=e^{\mu}$, we get

$$
\lim _{n \rightarrow \infty} n\left(V_{n} f(x)-f(x)\right)=\frac{\left(e^{\mu x}-1\right)\left(e^{\mu}-e^{\mu x}\right)}{2 \mu^{2} e^{2 \mu x}}\left(f^{\prime \prime}(x)-3 \mu f^{\prime}(x)+2 \mu^{2} f(x)\right) .
$$

Corollary 3.2. Let $\tau(x)=x+1$ and $L_{n}=B_{n}$, where $\left(B_{n}\right)$ is the sequence of Bernstein operators. For $m=1$ and $M=2$, we obtain

$$
\lim _{n \rightarrow \infty} n\left(V_{n} f(x)-f(x)\right)=\frac{x(1-x)}{2}\left(f^{\prime \prime}(x)-\frac{2}{x+1} f^{\prime}(x)+\frac{2}{(x+1)^{2}} f(x)\right)
$$

Theorem 3.2. Let $f \in C[0, \infty)$ with $f^{\prime \prime}(t)$ finite, $t \in[0, \infty)$. Suppose that $K_{n} e_{0}=e_{0}, K_{n} e_{1}=e_{1}$ and

$$
U_{n} f(x)=\rho(x) K_{n}\left(\frac{f \circ \rho^{-1}}{e_{1}}(m+t) ; \rho(x)-m\right) .
$$

If there exists $\gamma \in C[0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} n\left(K_{n} f(t)-f(t)\right)=\gamma(t) f^{\prime \prime}(t)
$$

then we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(U_{n} f(x)-f(x)\right) \\
= & \frac{\gamma(\rho(x)-m)}{\rho^{2}(x)\left(\rho^{\prime}(x)\right)^{3}}\left[\rho^{\prime}(x) \rho^{2}(x) f^{\prime \prime}(x)-\rho(x)\left(\rho(x) \rho^{\prime \prime}(x)+2\left(\rho^{\prime}(x)\right)^{2}\right) f^{\prime}(x)\right. \\
+ & \left.2\left(\rho^{\prime}(x)\right)^{3} f(x)\right] .
\end{aligned}
$$

Proof. The proof of this theorem is similar to that of Theorem 1.
Corollary 3.3. Let $\rho(x)=e^{\mu x}+1, x \geq 0, \mu>0$ and $K_{n}=S_{n}$, where $\left(S_{n}\right)$ is the sequence of Szász-Mirakyan operators. For $m=2$, we have

$$
\lim _{n \rightarrow \infty} n\left(U_{n} f(x)-f(x)\right)=\frac{e^{\mu x}-1}{2 \mu^{2} e^{2 \mu x}}\left(f^{\prime \prime}(x)-\mu \frac{3 e^{\mu x}+1}{e^{\mu x}+1} f^{\prime}(x)+2 \mu^{2} \frac{e^{2 \mu x}}{\left(e^{\mu x}+1\right)^{2}} f(x)\right) .
$$

Corollary 3.4. Let $\rho(x)=e^{\mu x}$, and $K_{n}=T_{n}$, where $\left(T_{n}\right)$ is the sequence of Baskakov operators. For $x \geq 0, \mu>0$ and $m=1$, we get

$$
\lim _{n \rightarrow \infty} n\left(U_{n} f(x)-f(x)\right)=\frac{e^{\mu x}-1}{2 \mu^{2} e^{\mu x}}\left(f^{\prime \prime}(x)-3 \mu f^{\prime}(x)+2 \mu^{2} f(x)\right) .
$$

4. ACKNOWLEDGEMENT

The work was done jointly, while the third author visited Selçuk University during February 2019, supported by The Scientific and Technological Research Council of Turkey, "2221Fellowships for Visiting Scientists and Scientists on Sabbatical Leave". Thanks also to Selçuk University Scientific Research Projects Coordination Unit.

REFERENCES

[1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.
[2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014, 441-452.
[3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type operators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
[4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Asymptotic formulae via a Korovkin-type result, Abstract and Applied Analysis, vol. 2012, Article ID 217464, 12 pages, 2012. https:/ /doi.org/10.1155/2012/217464.
[5] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62, 2011, 158-163.
[6] J. P. King, Positive linear operators which preserve x^{2}, Acta. Math. Hungar., 99, 2003, 203-208

Department of Mathematics, Faculty of Science,
Selçuk University,
Selçuklu, Konya, 42003, Turkey
Email address: tunceracar@ymail.com
Department of Mathematics, Kirikkale University
TR-71450, Yahşihan, KirikKale, Turkey
Email address: aliaral73@yahoo.com
Department of Mathematics,
Technical University of Cluj-Napoca, Romania
Email address: Ioan.Rasa@math.utcluj.ro

