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Abstract

In this study, by using the Meir-Keeler mapping, cyclic Kannan contraction and cyclic Chatterjee contraction,
we establish the notions of cyclic Meir-Keeler-Kannan-Chatterjea contraction T : A∪B → A∪B and cyclic
Meir-Keeler-Kannan-Chatterjea contractive pair (T, S) of mappings T : A → B and S : B → A, and then
we prove some best proximity point theorems for these various types of cyclic contractions. Our results
generalize or improve many recent best proximity point theorems in the literature.
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1. Introduction and preliminaries

Throughout this article, by R+, we denote the set of all non-negative numbers, while N is the set of
all natural numbers. Let us consider two nonempty subsets A,B of a metric space (X, d) and a mapping
T : A → B. Note that if A ∩ B = φ, the equation Tx = x might have no solution. So, we find a point
x ∈ A such that min d(x, Tx) is minimum. If d(x, Tx) = d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}, then
d(x, Tx) is the global minimum value d(A,B), and x is an approximate solution of the equation Tx = x
with the possible error. A point x ∈ A is said to be the best proximity point of T if d(x, Tx) = d(A,B) :=
inf{d(a, b) : a ∈ A, b ∈ B}. The existence and approximation of best proximity points is an interesting topic
in optimization theory. In [7], Eldred and Veeramani investigated the existence of best proximity points for
a class of mappings called cyclic contraction.

Definition 1.1. [7] Let A,B be nonempty subsets of a metric space (X, d). A mapping T : A ∪B → A ∪B
is said to be a cyclic contraction if there exists k ∈ [0, 1) such that
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(1) T is a cyclic mapping, that is, T (A) ⊂ B and T (B) ⊂ A.

(2) d(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B), for all x ∈ A and y ∈ B.

Theorem 1.2. [7] Let A,B be nonempty closed and convex subsets of a complete metric space (X, d) and
let T : A ∪ B → A ∪ B be a cyclic contraction. For xn+1 = xn for each n ∈ N ∪ {0}. Then there exists a
unique x ∈ A such that x2n → x and d(x, Tx) = d(A,B). Here x is called the best proximity point of T .

In the recent years, many authors are studying the best proximity point problems for various types of
cyclic contractions.(see, eg.[1]-[4],[5],[8],[10],[11],[14]).

We also recalled the following Meir-Keeler mapping (see, [9]). A function φ : R+ → R+ is said to be a
Meir-Keeler mapping, if φ satisfies the following condition:

∀η > 0 ∃δ > 0 ∀t ∈ R+ (η ≤ t < η + δ ⇒ φ(t) < η).

Remark 1.3. It is clear that if φ is a Meir-Keeler mapping, then we have

φ(t) < t for all t ∈ R+.

In this study, by using the Meir-Keeler mapping, cyclic Kannan contraction and cyclic Chatterjee con-
traction, we establish the notions of cyclic Meir-Keeler-Kannan-Chatterjea contraction T : A ∪ B → A ∪ B
and cyclic Meir-Keeler-Kannan-Chatterjea contractive pair (T, S) of mappings T : A → B and S : B → A,
and then we prove some best proximity point theorems for these various types of cyclic contractions. Our
results generalize or improve many recent best proximity point theorems in the literature.

2. Main Results (I)

In this section, we first recalled the following notions of cyclic Kannan contractions and Chatterjee
contractions for the cyclic mapping T : A ∪B → A ∪B.

Definition 2.1. Let A and B be two nonempty subsets of a metric space (X, d), and let T : A∪B → A∪B
be a cyclic mapping. Then

(1) T is said to be a cyclic Kannan contraction if

d(Tx, Ty) ≤ k(d(x, Tx) + d(y, Ty)) + (1− 2k)d(A,B),

for all x ∈ A and y ∈ B, where k ∈ (0, 12).

(2) T is said to be a cyclic Chatterjee contraction if

d(Tx, Ty) ≤ k(d(x, Ty) + d(y, Tx)) + (1− 2k)d(A,B),

for all x ∈ A and y ∈ B, where k ∈ (0, 12).

By using the Meir-Keeler mapping, cyclic Kannan contraction and Chatterjee contraction, we establish
the new notion of cyclic Meir-Keeler-Kannan-Chatterjea contraction, as follows:

Definition 2.2. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be a Meir-
Keeler mapping. Then the mapping T : A∪B → A∪B is said to be a cyclic Meir-Keeler-Kannan-Chatterjea
contraction, if the following conditions hold:

(1) T : A ∪B → A ∪B is a cyclic mapping,

(2) for all x ∈ A and y ∈ B,

d(Tx, Ty)− d(A,B) ≤ φ(d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)

4
− d(A,B)).
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Lemma 2.3. Let A and B be nonempty closed subsets of a metric space (X, d), and let φ : R+ → R+ be
an increasing Meir-Keeler mapping. Let T : A ∪ B → A ∪ B be a cyclic Meir-Keeler-Kannan-Chatterjea
contraction. For x0 ∈ A ∪B, define xn+1 = Txn for each n ∈ N ∪ {0}. Then

d(xn, xn+1)→ d(A,B), as n→∞.

Proof. Since T : A ∪ B → A ∪ B is a cyclic Meir-Keeler-Kannan-Chatterjea contraction, we obtain that for
each n ∈ N ∪ {0},

d(xn+2, xn+1)− d(A,B)

=d(Txn+1, Txn)− d(A,B)

≤φ(d(xn+1, Txn+1) + d(xn, Txn) + d(xn+1, Txn) + d(xn, Txn+1)

4
− d(A,B))

=φ(
d(xn+1, xn+2) + d(xn, xn+1) + d(xn+1, xn+1) + d(xn, xn+2)

4
− d(A,B)).

Since φ is a Meir-Keeler mapping, we have that

d(xn+2, xn+1)− d(A,B)

≤φ(d(xn+1, xn+2) + d(xn, xn+1) + d(xn+1, xn+1) + d(xn, xn+2)

4
− d(A,B))

<
d(xn+1, xn+2) + d(xn, xn+1) + 0 + d(xn, xn+1) + d(xn+1, xn+2)

4
− d(A,B)

=
d(xn+1, xn+2) + d(xn, xn+1)

2
− d(A,B).

Thus, we can conclude that for each n ∈ N ∪ {0},

d(xn+2, xn+1)− d(A,B) < d(xn+1, xn)− d(A,B),

that is, {d(xn+1, xn)− d(A,B)} is decreasing and is bounded below, so there exists γ ≥ 0 such that

d(xn, xn+1)− d(A,B)→ γ, as n→∞.

Notice that
γ = inf{d(xn, xn+1)− d(A,B) : n ∈ N ∪ {0}}

We claim that γ = 0. Suppose, on the the contrary, that γ > 0. Since φ is a Meir-Keeler mapping,
corresponding to γ , there exist a η and a natural number k0 such that

γ ≤ d(xk, xk+1)− d(A,B) ≤ γ + η, for all n ≥ k0.

Since T : A ∪ B → A ∪ B is a cyclic Meir-Keeler-Kannan-Chatterjea contraction and φ is an increasing
Meir-Keeler mapping, we have that:

d(xk+2, xk+1)− d(A,B)

=d(Txk+1, Txk)− d(A,B)

≤φ(d(xk+1, Txk+1) + d(xk, Txk) + d(xk+1, Txk) + d(xk, Txk+1)

4
− d(A,B)

≤φ(d(xk+1, xk+2) + d(xk, xk+1) + d(xk+1, xk+1) + d(xk, xk+2)

4
− d(A,B))

≤φ(d(xk, xk+1)− d(A,B)) < γ,

which implies a contradiction. Thus, we get γ = 0, and we have
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d(xn, xn+1)− d(A,B)→ 0, as n→∞,

that is,
d(xn, xn+1)→ d(A,B), as n→∞.

We now establish the following best proximity point theorem of the cyclic Meir-Keeler-Kannan-Chatterjea
contraction T : A ∪B → A ∪B.

Theorem 2.4. Let A and B be nonempty closed subsets of a complete metric space (X, d), let φ : R+ → R+

be an increasing Meir-Keeler mapping, and let T : A∪B → A∪B be a cyclic Meir-Keeler-Kannan-Chatterjea
contraction. For x0 ∈ A ∪B, define xn+1 = Txn for each n ∈ N ∪ {0}. Then we have

(1) If x0 ∈ A and {x2n} has a subsequence {x2nk
} converges to µ ∈ A, then µ is a best proximity point of

T .

(2) If x0 ∈ B and {x2n−1} has a subsequence {x2nk−1} converges to ν ∈ B, then ν is a best proximity point
of T .

Proof. Assume that x0 ∈ A. Since T is cyclic, x2n ∈ A and x2n+1 ∈ B for all n ∈ N ∪ {0}. Now, if {x2n}
has a subsequence {x2nk

} converges to µ ∈ A with d(µ, µ) = 0, then

lim
n→∞

d(x2n, µ) = d(µ, µ) = 0.

Since T is cyclic Meir-Keeler-Kannan-Chatterjea contraction and φ is an increasing Meir-Keeler mapping,
we have

d(µ, Tµ)− d(A,B)

≤ d(µ, x2nk
) + d(x2nk

, Tµ)− d(A,B)

≤ d(µ, x2nk
) + d(Tx2nk−1, Tµ)− d(A,B)

≤ d(µ, x2nk
) + φ(

d(x2nk−1, Tx2nk−1) + d(µ, Tµ) + d(x2nk−1, Tµ) + d(µ, Tx2nk−1)

4
− d(A,B))

≤ d(µ, x2nk
) + φ(

d(x2nk−1, x2nk
) + d(µ, Tµ) + d(x2nk−1, Tµ) + d(µ, x2nk

)

4
− d(A,B))

≤ d(µ, x2nk
) + φ(

2d(x2nk−1, x2nk
) + 2d(µ, Tµ) + 2d(µ, x2nk

)

4
− d(A,B))

< d(µ, x2nk
) +

d(x2nk−1, x2nk
) + d(µ, Tµ) + d(µ, x2nk

)

2
− d(A,B).

Letting k →∞, by Lemma 2.3, we obtain

d(µ, Tµ)− d(A,B) <
d(A,B) + d(µ, Tµ)

2
− d(A,B) =

d(µ, Tµ)− d(A,B)

2
.

Thus, we can conclude that d(µ, Tµ) = d(A,B), that is, µ is a best proximity point of T .
The proof of (2) is similar to (1), we omit it. 2

Apply Theorem 2.4, we are easy to obtain the following corollaries. We introduce the following notions
of cyclic Meir-Keeler-Kannan contractions and cyclic Meir-Keeler-Chatterjea contractions.

Definition 2.5. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be a
Meir-Keeler mapping. Then the mapping T : A ∪ B → A ∪ B is said to be a cyclic Meir-Keeler-Kannan
contraction, if the following conditions hold:
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(1) T : A ∪B → A ∪B is a cyclic mapping.

(2) for all x ∈ A and y ∈ B,

d(Tx, Ty)− d(A,B) ≤ φ(d(x, Tx) + d(y, Ty)

2
− d(A,B)).

Definition 2.6. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be a
Meir-Keeler mapping. Then the mapping T : A ∪ B → A ∪ B is said to be a cyclic Meir-Keeler-Chatterjea
contraction, if the following conditions hold:

(1) T : A ∪B → A ∪B is a cyclic mapping.

(2) for all x ∈ A and y ∈ B,

d(Tx, Ty)− d(A,B) ≤ φ(d(x, Ty) + d(y, Tx)

2
− d(A,B)).

Corollary 2.7. Let A and B be nonempty closed subsets of a complete metric space (X, d), and let φ :
R+ → R+ be an increasing Meir-Keeler mapping. Let T : A ∪ B → A ∪ B be a cyclic Meir-Keeler-Kannan
contraction. For x0 ∈ A ∪B, define xn+1 = Txn for each n ∈ N ∪ {0}. Then we have

(1) If x0 ∈ A and {x2n} has a subsequence {x2nk
} converges to µ ∈ A, then µ is a best proximity point of

T .

(2) If x0 ∈ B and {x2n−1} has a subsequence {x2nk−1} converges to ν ∈ B, then ν is a best proximity point
of T .

Corollary 2.8. Let A and B be nonempty closed subsets of a complete metric space (X, d), and let φ :
R+ → R+ be an increasing Meir-Keeler mapping. Let T : A∪B → A∪B be a cyclic Meir-Keeler-Chatterjea
contraction. For x0 ∈ A ∪B, define xn+1 = Txn for each n ∈ N ∪ {0}. Then we have

(1) If x0 ∈ A and {x2n} has a subsequence {x2nk
} converges to µ ∈ A, then µ is a best proximity point of

T .

(2) If x0 ∈ B and {x2n−1} has a subsequence {x2nk−1} converges to ν ∈ B, then ν is a best proximity point
of T .

3. Main Results (II)

On the other hand, the best proximity point theorems for various types of contractions have been
obtained in [3, 5, 7, 8, 13]. Particularly, in [12] the authors prove some best proximity point theorems for the
pair (T, S) of cyclic Kannan mappings and cyclic Chatterjea mappings in the frameworks of metric spaces.

Definition 3.1. [12] Let A and B be nonempty subsets of a metric space (X, d). A pair (T, S) of mappings
T : A → B and S : B → A is said to form a cyclic Kannan mapping between A and B if there exists a
nonnegative real number k < 1

2 such that

d(TX, Sy) ≤ k[d(x, Tx) + d(y, Sy)] + (1− 2k)d(A,B),

for all x ∈ A and y ∈ B.

Definition 3.2. [12] Let A and B be nonempty subsets of a metric space (X, d). A pair (T, S) of mappings
T : A → B and S : B → A is said to form a cyclic Chatterjea mapping between A and B if there exists a
nonnegative real number k < 1

2 such that

d(TX, Sy) ≤ k[d(y, Tx) + d(x, Sy)] + (1− 2k)d(A,B),

for all x ∈ A and y ∈ B.
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By the Meir-Keeler mapping, Defintion 3.1 and Defintion 3.2, we introduce the new notion of cyclic
Meir-Keeler-Kannan-Chatterjea contractive pair (T, S), as follows:

Definition 3.3. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be a
Meir-Keeler mapping. A pair (T, S) of mappings T : A → B and S : B → A is said to form a cyclic
Meir-Keeler-Kannan-Chatterjea contractive pair between A and B if

d(Tx, Sy)− d(A,B) ≤ φ(d(x, Tx) + d(y, Sy) + d(y, Tx) + d(x, Sy)

4
− d(A,B)),

for all x ∈ A and y ∈ B.

Lemma 3.4. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be an
incresing Meir-Keeler mapping. Suppose that the pair (T, S) of mappings T : A→ B and S : B → A form a
cyclic Meir-Keeler-Kannan-Chatterjea contractive pair between A and B. Then there exists a sequence {xn}
in X such that

lim
n→∞

d(xn, xn+1) = d(A,B).

Proof. Let x0 ∈ A be given, and let x2n+1 = Tx2n and x2n+2 = Sx2n+1 for each n ∈ N ∪ {0}. Since the
pair (T, S) forms a cyclic Meir-Keeler-Kannan-Chatterjea contractive pair between A and B, we have that
for n ∈ N ∪ {0},

d(x2n+1, x2n+2)− d(A,B) = d(Tx2n, Sx2n+1)− d(A,B)

≤ φ(d(x2n, Tx2n) + d(x2n+1, Sx2n+1) + d(x2n+1, Tx2n) + d(x2n, Sx2n+1)

4
− d(A,B))

≤ φ(d(x2n, x2n+1) + d(x2n+1, x2n+2) + d(x2n+1, x2n+1) + d(x2n, x2n+2)

4
− d(A,B)).

Since φ is a Meir-Keeler mapping, we obtain that for each n ∈ N ∪ {0},

d(x2n+1, x2n+2)− d(A,B) = d(Tx2n, Sx2n+1)− d(A,B)

<
d(x2n, x2n+1) + d(x2n+1, x2n+2) + d(x2n+1, x2n+1) + d(x2n, x2n+2)

4
− d(A,B)

=
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
− d(A,B).

Thus, we conclude that d(x2n+1, x2n+2) < d(x2n, x2n+1) for all n ∈ N ∪ {0}, that is, for all n ∈ N ∪ {0},

d(x2n+1, x2n+2)− d(A,B) < d(x2n, x2n+1)− d(A,B).

Similarly, we can conclude that d(x2n, x2n+1) < d(x2n−1, x2n) for all n ∈ N∪{0}, that is, for all n ∈ N∪{0},

d(x2n, x2n+1)− d(A,B) < d(x2n−1, x2n)− d(A,B).

By the above argument, we conclude that {d(xn, xn+1) − d(A,B)}n∈N∪{0} is decreasing and bounded
below, so there exists γ ≥ 0 such that

d(xn, xn+1)− d(A,B)→ γ, as n→∞.

Notice that
γ = inf{d(xn, xn+1)− d(A,B) : n ∈ N ∪ {0}}

We now claim that γ = 0. Suppose, on the the contrary, that γ > 0. Since φ is a Meir-Keeler mapping,
corresponding to γ , there exist a η and a natural number k0 such that

γ ≤ d(xk, xk+1)− d(A,B) ≤ γ + η, for all n ≥ k0.
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Since the pair (T, S) forms a cyclic Meir-Keeler-Kannan-Chatterjea contractive pair between A and B and
φ is increasing, we have

d(xk+1, xk+2)− d(A,B)

=d(Txk, Txk+1)− d(A,B)

≤φ(d(xk, Txk) + d(xk+1, Txk+1) + d(xk+1, Txk) + d(xk, Txk+1)

4
− d(A,B)

≤φ(d(xk, xk+1) + d(xk+1, xk+2) + d(xk+1, xk+1) + d(xk, xk+2)

4
− d(A,B))

≤φ(d(xk, xk+1)− d(A,B)) < γ,

which implies a contradiction. Thus, we get γ = 0, and we have

d(xn, xn+1)− d(A,B)→ 0, as n→∞,
that is,

d(xn, xn+1)→ d(A,B), as n→∞.

Lemma 3.5. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be an
incresing Meir-Keeler mapping. Suppose that the pair (T, S) of mappings T : A → B and S : B → A form
a cyclic Meir-Keeler-Kannan-Chatterjea contractive pair between A and B. For a fixed point x0 ∈ A, let
x2n+1 = Tx2n and x2n+2 = Sx2n+1. Then the sequence xn is bounded.

Proof. It follows from Lemma 3.4 that the sequence {d(x2n−1, x2n)} is convergent and hence it is bounded.
Since the pair (T, S) forms a cyclic Meir-Keeler-Kannan-Chatterjea contractive pair between A and B such
that for x0 ∈ A and x2n−1 ∈ B, we have

d(x2n, Tx0)− d(A,B)

= d(Sx2n−1, Tx0)− d(A,B)

= d(Tx0, Sx2n−1)− d(A,B)

≤ φ(d(x0, Tx0) + d(x2n−1, Sx2n−1) + d(x2n−1, Tx0) + d(x0, Sx2n−1)

4
− d(A,B))

≤ φ(d(x0, Tx0) + d(x2n−1, x2n) + d(x2n−1, Tx0) + d(x0, x2n)

4
− d(A,B))

<
d(x0, Tx0) + d(x2n−1, x2n) + d(x2n−1, Tx0) + d(x0, x2n)

4
− d(A,B)

≤ d(x0, Tx0) + d(x2n−1, x2n) + d(x2n, Tx0)

2
− d(A,B).

Thus, we conclude that
d(x2n, Tx0) < d(x0, Tx0) + d(x2n−1, x2n).

Therefore, the sequence {x2n} is bounded. Similarly, it can be shown that {x2n+1} is also bounded. So we
complete the proof.

Apply Lemma 3.4 and Lemma 3.5, we prove the best proximity points theorem of cyclic Meir-Keeler-
Kannan-Chatterjea contractive pair (T, S).

Theorem 3.6. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be an
incresing Meir-Keeler mapping. Suppose that the pair (T, S) of mappings T : A → B and S : B → A form
a cyclic Meir-Keeler-Kannan-Chatterjea contractive pair between A and B. For a fixed point x0 ∈ A, let
x2n+1 = Tx2n and x2n+2 = Sx2n+1. Suppose that the sequence {x2n} has a subsequence converging to some
element x in A. Then, x is a best proximity point of T .
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Proof. Suppose that a subsequence {x2nk
} converges to x inA. It follows from Lemma 3.4 that {d(x2nk−1, x2nk

)}
converges to d(A,B). Since the pair (T, S) forms a cyclic Meir-Keeler-Kannan-Chatterjea contractive pair
between A and B, we have that for each 2nk ∈ N,

d(x2nk
, Tx)− d(A,B)

= d(Tx, x2nk
)− d(A,B)

= d(Tx, Sx2nk−1)− d(A,B)

≤ φ(d(x, Tx) + d(x2nk−1, Sx2nk−1) + d(x2nk−1, Tx) + d(x, Sx2nk−1)

4
− d(A,B))

≤ φ(d(x, Tx) + d(x2nk−1, x2nk
) + d(x2nk−1, Tx) + d(x, x2nk

)

4
− d(A,B))

<
d(x, Tx) + d(x2nk−1, x2nk

) + d(x2nk−1, Tx) + d(x, x2nk
)

4
− d(A,B)

≤ d(x, Tx) + 2d(x2nk−1, x2nk
) + d(x2nk

, Tx) + d(x, x2nk
)

4
− d(A,B).

Letting k →∞. Then we conclude that

d(x, Tx) ≤ d(x, Tx) + d(A,B)

2
, that is, d(x, Tx) ≤ d(A,B).

So we can conclude that d(x, Tx) = d(A,B), so x is a best proximity point of T .

We next introduce the notions of cyclic Meir-Keeler-Kannan contractive pair and cyclic Meir-Keeler-
Chatterjea contractive pair.

Definition 3.7. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be a
Meir-Keeler mapping. A pair (T, S) of mappings T : A → B and S : B → A is said to form a cyclic
Meir-Keeler-Kannan contractive pair between A and B if

d(Tx, Sy)− d(A,B) ≤ φ(d(x, Tx) + d(y, Sy)

2
− d(A,B)),

for all x ∈ A and y ∈ B.

Definition 3.8. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be a
Meir-Keeler mapping. A pair (T, S) of mappings T : A → B and S : B → A is said to form a cyclic
Meir-Keeler-Chatterjea contractive pair between A and B if

d(Tx, Sy)− d(A,B) ≤ φ(d(y, Tx) + d(x, Sy)

2
− d(A,B)),

for all x ∈ A and y ∈ B.

Apply Theorem 3.6, we are easy to get the following corollaries.

Corollary 3.9. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be an
incresing Meir-Keeler mapping. Suppose that the pair (T, S) of mappings T : A → B and S : B → A form
a cyclic Meir-Keeler-Kannan contractive pair between A and B. For a fixed point x0 ∈ A, let x2n+1 = Tx2n
and x2n+2 = Sx2n+1. Suppose that the sequence {x2n} has a subsequence converging to some element x in
A. Then, x is a best proximity point of T .

Corollary 3.10. Let A and B be nonempty subsets of a metric space (X, d), and let φ : R+ → R+ be an
incresing Meir-Keeler mapping. Suppose that the pair (T, S) of mappings T : A→ B and S : B → A form a
cyclic Meir-Keeler-Chatterjea contractive pair between A and B. For a fixed point x0 ∈ A, let x2n+1 = Tx2n
and x2n+2 = Sx2n+1. Suppose that the sequence {x2n} has a subsequence converging to some element x in
A. Then, x is a best proximity point of T .
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