$\begin{array}{c} {\rm Hacet.\ J.\ Math.\ Stat.} \\ {\rm Volume\ 48\,(3)\ (2019),\ 700-710} \\ {\rm DOI:10.15672/HJMS.2018.592} \end{array}$

RESEARCH ARTICLE

Super (a, d)-star-antimagic graphs

Pothukutti Nadar Selvagopal¹, Pon Jeyanthi^{*2}, Narayana Perumal Thillaiammal Muthuraja³, Andrea Semaničová-Feňovčíková⁴

 $^1Al\ Musanna\ College\ of\ Technology,\ Sultanate\ of\ Oman$ $^2Research\ Centre,\ Department\ of\ Mathematics,\ Govindammal\ Aditanar\ College\ for\ Women,\ Tiruchendur,\ Tamilnadu,\ India$

Abstract

A simple graph G=(V,E) admitting an H-covering is said to be (a,d)-H-antimagic if there exists a bijection $f:V\cup E\to \{1,2,\ldots,|V|+|E|\}$ such that, for all subgraphs H' of G isomorphic to H, $wt_f(H')=\sum_{v\in V(H')}f(v)+\sum_{e\in E(H')}f(e)$, form an arithmetic progression $a,a+d,\ldots,a+(t-1)d$, where a is the first term, d is the common difference and t is the number of subgraphs in the H-covering. Then f is called an (a,d)-H-antimagic labeling. In this paper we investigate the existence of super (a,d)-star-antimagic labelings of a particular class of banana trees and construct a star-antimagic graph.

Mathematics Subject Classification (2010). 05C78, 05C70

Keywords. H-covering, (super) (a, d)-H-antimagic labeling, star, banana tree

1. Introduction

Let G = (V, E) be a finite simple graph. A family of subgraphs H_1, H_2, \ldots, H_t of G is called an *edge-covering* of G if each edge of E belongs to at least one of the subgraphs H_i , $i = 1, 2, \ldots, t$. Then the graph G admitting an H-covering is (a, d)-H-antimagic if there exists a bijection $f: V \cup E \to \{1, 2, \ldots, |V| + |E|\}$ such that, for all subgraphs H' of G isomorphic to H, the H'-weights,

$$wt_f(H') = \sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e),$$

form an arithmetic progression $a, a+d, \ldots, a+(t-1)d$, where a>0 is the first term, $d\geq 0$ is the common difference and t is the number of subgraphs of G isomorphic to H. Such a labeling is called *super* if $f(V)=\{1,2,\ldots,|V|\}$. For d=0 it is called H-magic and H-supermagic, respectively.

The notion of H-magic graphs was due to Gutiérrez and Lladó [3]. Inayah, Salman and Simanjuntak [4] introduced the concept of (a, d)-H-antimagic labeling. In [5] they proved that there exists a super (a, d)-H-antimagic total labeling for shackles of a connected graph

Email addresses: ps_gopaal@yahoo.co.in (P. Selvagopal), jeyajeyanthi@rediffmail.com (P. Jeyanthi), bareeshraja@yahoo.com (N.T. Muthuraja), andrea.fenovcikova@tuke.sk (A. Semaničová-Feňovčíková) Received: 12.01.2017; Accepted: 04.12.2017

³Department of Mathematics, Cape Institute of Technology, Levengipuram, Tamilnadu, India ⁴Department of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia

^{*}Corresponding Author.

H. Semaničová-Feňovčíková, Bača, Lascsáková, Miller and Ryan [8] proved that wheels W_n , $n \geq 3$ are super (a, d)- C_k -antimagic for every $k = 3, 4, \ldots, n-1, n+1$ and d = 0, 1, 2. For more information see [1, 2] and [7].

2. Preliminaries and known results

We use the following notations. For two integers a, b, a < b, let [a, b] denote the set of all integers from a to b. For any set \mathbb{S} , subset of integers \mathbb{Z} we write, $\sum \mathbb{S} = \sum_{x \in \mathbb{S}} x$ and for an integer k, let $k + \mathbb{S} = \{k + x : x \in \mathbb{S}\}$. Thus k + [a, b] is the set $\{x \in \mathbb{Z} : k + a \le x \le k + b\}$. It can be easily verified that $\sum (k + \mathbb{S}) = k |\mathbb{S}| + \sum \mathbb{S}$.

If $\mathbb{P} = \{X_1, X_2, \dots, X_n\}$ is a partition of a set X of integers with the same cardinality then we say \mathbb{P} is an *n*-equipartition of X. Also we denote the set of subsets sums of the parts of \mathbb{P} by $\sum \mathbb{P} = \{\sum X_1, \sum X_2, \dots, \sum X_n\}$.

Lemma 2.1. [3] Let h and k be two positive integers. For each integer $0 \le t \le \lfloor h/2 \rfloor$ there is a k-equipartition \mathbb{P} of [1, hk] such that $\sum \mathbb{P}$ is an arithmetic progression of difference d = h - 2t.

Lemma 2.2. [6] If h is even, then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of X = [1, hk] such that $\sum X_r = h(hk+1)/2$ for $1 \le r \le k$.

Arrange the numbers X=[1,hk] in a matrix $\mathcal{A}=(a_{i,j})_{h\times k}$, where $a_{i,j}=(i-1)k+j$ for $1\leq i\leq h$ and $1\leq j\leq k$. For $1\leq r\leq k$, define $X_r=\{a_{i,r}:1\leq i\leq h/2\}\cup\{a_{i,k-r+1}:h/2+1\leq i\leq h\}$. Then,

$$\sum X_r = \sum_{i=1}^{\frac{h}{2}} a_{i,r} + \sum_{i=\frac{h}{2}+1}^h a_{i,k-r+1}$$

$$= \sum_{i=1}^{\frac{h}{2}} \{(i-1)k + r\} + \sum_{i=\frac{h}{2}+1}^h \{(i-1)k + k - r + 1\} = \frac{h(hk+1)}{2}.$$

Lemma 2.3. [6] Let h and k be two positive integers such that h is even and $k \geq 3$ is odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \ldots, X_k\}$ of X = [1, hk] such that $\sum X_r = (h-1)(hk+k+1)/2 + r$ for $1 \leq r \leq k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = (h-1)(hk+k+1)/2 + [1,k]$.

Let us arrange the set of integers $X = \{1, 2, 3, \dots, hk\}$ in a matrix $\mathcal{A} = (a_{i,j})_{h \times k}$, where $a_{i,j} = (i-1)k+j$ for $1 \leq i \leq h$ and $1 \leq j \leq k$. We construct a k-equipartition Y_1, Y_2, \dots, Y_k using the first (h-1) rows of the matrix as $Y_r = \{a_{i,r} : 1 \leq i \leq h/2\} \cup \{a_{i,k-r+1} : h/2+1 \leq i \leq h-1\}$. For $1 \leq r \leq k$, we define $X_r = Y_{\sigma(r)} \cup \{(h-1)k+\pi(r)\}$, where σ and π denote the permutations of $\{1, 2, \dots, k\}$ given by

$$\sigma(r) = \begin{cases} \frac{k-2r+1}{2} & \text{for } 1 \le r \le \frac{k-1}{2} \\ \frac{3k-2r+1}{2} & \text{for } \frac{k+1}{2} \le r \le k \end{cases}$$

and

$$\pi(r) = \begin{cases} 2r & \text{for } 1 \le r \le \frac{k-1}{2} \\ 2r - k & \text{for } \frac{k+1}{2} \le r \le k. \end{cases}$$

Then it can be verified that $\sum X_r = (h-1)(hk+k+1)/2 + r$ for $1 \le r \le k$.

Lemma 2.4. [6] Let h and k be two positive integers and let h be odd. Then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of X = [1, hk] such that $\sum X_r = (h-1)(hk+k+1)/2+r$ for $1 \le r \le k$. Thus, $\sum \mathbb{P}$ is a set of consecutive integers given by $\sum \mathbb{P} = (h-1)(hk+k+1)/2+[1,k]$.

Arrange the numbers X = [1, hk] in a matrix $\mathcal{A} = (a_{i,j})_{h \times k}$, where $a_{i,j} = (i-1)k+j$ for $1 \le i \le h$ and $1 \le j \le k$. For $1 \le r \le k$, define $X_r = \{a_{i,r} : 1 \le i \le (h+1)/2\} \cup \{a_{i,k-r+1} : (h+3)2 \le i \le h\}$. Then $\sum \mathbb{P} = (h-1)(hk+k+1)/2 + [1,k]$.

3. Super star-antimagic graphs

In this section we prove that a particular class of banana trees are super star-antimagic. The star S_n , $n \ge 1$ is a graph isomorphic to the complete bipartite graph $K_{1,n}$. A banana tree $Bt(n_1, n_2, \ldots, n_k)$ is the tree obtained by joining a vertex v to one leaf vertex of each star in a family of disjoint stars $S_{n_1}, S_{n_2}, \ldots, S_{n_k}$. If $n_1 = n_2 = \cdots = n_k = n$ we will use the notation Bt_n^k instead of $Bt(n, n, \ldots, n)$.

Theorem 3.1. The banana tree Bt_k^k , $k \geq 3$ admits a super (a, d)- S_k -antimagic labeling for $d \in \{0, 2, 4, ..., k+1\}$ if k is odd and $d \in \{1, 3, 5, ..., k+1\}$ if k is even.

Proof. Let the vertex set and the edge set of the banana tree Bt_k^k be

$$V(Bt_k^k) = \{v, v_i, v_i^j : i = 1, 2, \dots, k; j = 1, 2, \dots, k\},$$

$$E(Bt_k^k) = \{v_i v_i^j : i = 1, 2, \dots, k; j = 1, 2, \dots, k\} \cup \{v v_1^j : j = 1, 2, \dots, k\}.$$

Evidently, the graph Bt_k^k admits a S_k -covering consisting of k+1 stars isomorphic to S_k . We denote the k-stars by the symbols $\{S_k^1, S_k^2, \ldots, S_k^k, S_k^{k+1}\}$ such that the vertex set of S_k^i , $i=1,2,\ldots,k$, is $V(S_k^i)=\{v_i,v_j^i:j=1,2,\ldots,k\}$ and its edge set is $E(S_k^i)=\{v_iv_j^i:j=1,2,\ldots,k\}$. For the star S_k^{k+1} holds $V(S_k^{k+1})=\{v,v_i:i=1,2,\ldots,k\}$ and $E(S_k^{k+1})=\{vv^i:i=1,2,\ldots,k\}$.

Let us distinguish two cases.

Case i: k is odd.

Since k+1 is even, by Lemma 2.3 then there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of X = [1, (k+1)k] such that

$$\sum X_i = \frac{k(k+1)^2}{2} + i \quad \text{for } 1 \le i \le k.$$
 (3.1)

It can be easily verified by the definition of X_i in Lemma 2.3 that for $1 \le i \le k$

$$\left(\frac{k+1}{2} - 1\right)k + \sigma(i) \in X_i,$$

where σ is the permutation on $\{1, 2, ..., k\}$ given by

$$\sigma(i) = \begin{cases} \frac{k-2i+1}{2} & \text{for } 1 \leq i \leq \frac{k-1}{2}, \\ \frac{3k-2i+1}{2} & \text{for } \frac{k+1}{2} \leq i \leq k. \end{cases}$$

We construct a new set of integers X_{k+1} by choosing one particular element from each X_i , i = 1, 2, ..., k, together with $k^2 + k + 1$ as follows:

$$X_{k+1} = \left\{ \left(\frac{k+1}{2} - 1 \right) k + \sigma(i) : 1 \le i \le k \right\} \cup \left\{ k^2 + k + 1 \right\}.$$

Then

$$\sum X_{k+1} = \sum_{i=1}^{k} \left[\left(\frac{k+1}{2} - 1 \right) k + \sigma(i) \right] + k^2 + k + 1$$

$$= \frac{k^2(k-1)}{2} + \frac{k(k+1)}{2} + k^2 + k + 1 = \frac{k(k+1)^2}{2} + k + 1. \tag{3.2}$$

From (3.1) and (3.2) we have

$$\sum X_i = \frac{k(k+1)^2}{2} + i$$
 for $1 \le i \le k+1$.

By Lemma 2.1, for each integer $0 \le t \le \lfloor k/2 \rfloor$ there is a (k+1)-equipartition $\mathbb{R}^t = \{R_1^t, R_2^t, \dots, R_{k+1}^t\}$ of [1, k(k+1)] such that for $1 \le i \le k+1$ holds $\sum R_i^t = \Delta_t + di$,

where d=k-2t and $\Delta_t=\sum R_1^t-d$. Hence we have a (k+1)-equipartition $\mathbb{Q}^t=\{Y_1^t,Y_2^t,\ldots,Y_{k+1}^t\}$ of the set $[k^2+k+2,2k^2+2k+1]$ such that

$$\sum Y_i^t = k(k^2 + k + 1) + \Delta_t + di$$
 for $1 \le i \le k + 1$.

For each $0 \le t \le \lfloor k/2 \rfloor$ we define a total labeling f_t , $f_t : V(Bt_k^k) \cup E(Bt_k^k) \to [1, 2k^2 + 2k + 1]$ as follows:

$$f_t(E(S_k^i)) = Y_i^t \qquad \text{for } 1 \le i \le k+1,$$

$$f_t(v) = k^2 + k + 1,$$

$$f_t(V(S_k^i)) = X_i \qquad \text{for } 1 \le i \le k+1,$$

with the restriction that for i = 1, 2, ..., k it holds

$$f_t(v_1^i) = \left(\frac{k+1}{2} - 1\right)k + \sigma(i).$$

Then for $1 \le i \le k+1$ we get

$$wt_{f_t}(S_k^i) = \sum_{k} f_t(V(S_k^i)) + \sum_{k} f_t(E(S_k^i)) = \sum_{k} X_i + \sum_{k} Y_i^t$$

= $\frac{k(k+1)^2}{2} + i + k(k^2 + k + 1) + \Delta_t + di = a_t + (d+1)i$,

where $a_t = k(k+1)^2/2 + k(k^2 + k + 1) + \Delta_t$.

Since k is odd and d = k - 2t then for $0 \le t \le \lfloor k/2 \rfloor$ we have $d \in \{1, 3, 5, ..., k\}$. Hence the banana tree Bt_k^k admits super (a, d^*) - S_k -antimagic labeling for $d^* \in \{2, 4, 6, ..., k+1\}$.

To prove that the banana tree Bt_k^k admits a super S_k -magic labeling also, we define a total labeling $g: V(Bt_k^k) \cup E(Bt_k^k) \to [1, 2k^2 + 2k + 1]$ as follows:

$$g(E(S_k^i)) = f_{\left\lfloor \frac{k}{2} \right\rfloor}(E(S_k^i)) = Y_i^{\left\lfloor \frac{k}{2} \right\rfloor}$$
 for $1 \le i \le k+1$,

$$g(v) = k^2 + k + 1$$
,

$$g(V(S_k^i)) = X_{k+2-i}$$
 for $1 \le i \le k+1$,

with the restriction that for i = 1, 2, ..., k

$$g(v_1^i) = \left(\frac{k+1}{2} - 1\right)k + \sigma(i).$$

Then for $1 \le i \le k+1$

$$wt_g(S_k^i) = \sum_{k} g(V(S_k^i)) + \sum_{k} g(E(S_k^i)) = \sum_{k} X_{k+2-i} + \sum_{k} Y_i^{\left\lfloor \frac{k}{2} \right\rfloor}$$

$$= \frac{k(k+1)^2}{2} + k + 2 - i + k(k^2 + k + 1) + \Delta_{\left\lfloor \frac{k}{2} \right\rfloor} + i$$

$$= \frac{k(k+1)^2}{2} + k + 2 + k(k^2 + k + 1) + \Delta_{\left\lfloor \frac{k}{2} \right\rfloor}.$$

Case ii: k is even.

Since k+1 is odd, by Lemma 2.4, there exists a k-equipartition $\mathbb{P} = \{X_1, X_2, \dots, X_k\}$ of X = [1, (k+1)k] such that

$$\sum X_i = \frac{k(k+1)^2}{2} + i \quad \text{for } 1 \le i \le k.$$
 (3.3)

It can be easily verified by the definition of X_i in Lemma 2.4 that for $1 \le i \le k/2$

$$\left(\frac{k+2}{2} - 1\right)k + i \in X_i$$

and for $k/2 + 1 \le i \le k$

$$\left(\frac{k}{2} - 1\right)k + i \in X_i.$$

We construct a new set of integers X_{k+1} by choosing one particular element from each X_i for i = 1, 2, ..., k together with $k^2 + k + 1$ as follows:

$$X_{k+1} = \left\{ \left(\frac{k+2}{2} - 1 \right) k + j : 1 \le j \le \frac{k}{2} \right\} \cup \left\{ \left(\frac{k}{2} - 1 \right) k + j : \frac{k}{2} + 1 \le j \le k \right\}$$
$$\cup \left\{ k^2 + k + 1 \right\}.$$

Then

$$\sum X_{k+1} = \sum_{j=1}^{\frac{k}{2}} \left[\left(\frac{k+2}{2} - 1 \right) k + j \right] + \sum_{j=\frac{k}{2}+1}^{k} \left[\left(\frac{k}{2} - 1 \right) k + j \right] + k^2 + k + 1$$

$$= \frac{k^2(k-1)}{2} + \frac{k(k+1)}{2} + k^2 + k + 1 = \frac{k(k+1)^2}{2} + k + 1.$$
(3.4)

From (3.3) and (3.4) we have

$$\sum X_i = \frac{k(k+1)^2}{2} + i$$
 for $1 \le i \le k+1$.

By Lemma 2.1, for each integer $0 \le t \le \lfloor k/2 \rfloor$ there is a (k+1)-equipartition $\mathbb{R}^t = \{R_1^t, R_2^t, \dots, R_{k+1}^t\}$ of [1, k(k+1)] such that for $1 \le i \le k+1$ holds $\sum R_i^t = \Delta_t + di$, where d = k-2t and $\Delta_t = \sum R_1^t - d$. Hence we have a (k+1)-equipartition $\mathbb{Q}^t = \{Y_1^t, Y_2^t, \dots, Y_{k+1}^t\}$ of the set $[k^2 + k + 2, 2k^2 + 2k + 1]$ such that

$$\sum Y_i^t = k(k^2 + k + 1) + \Delta_t + di \text{ for } 1 \le i \le k + 1.$$

For each $0 \le t \le k/2$ we define a total labeling $f_t: V(Bt_k^k) \cup E(Bt_k^k) \to [1, 2k^2 + 2k + 1]$ as follows:

$$f_t(E(S_k^i)) = Y_i^t \qquad \text{for } 1 \le i \le k+1,$$

$$f_t(v) = k^2 + k + 1,$$

$$f_t(V(S_k^i)) = X_i \qquad \text{for } 1 \le i \le k+1,$$

with the restriction that

$$f_t(v_1^i) = \begin{cases} \left(\frac{k+2}{2} - 1\right)k + i & \text{for } 1 \le i \le \frac{k}{2} \\ \left(\frac{k}{2} - 1\right)k + i & \text{for } \frac{k}{2} + 1 \le i \le k. \end{cases}$$

Then for $1 \le i \le k+1$ we get

$$wt_{f_t}(S_k^i) = \sum_{k} f_t(V(S_k^i)) + \sum_{k} f_t(E(S_k^i)) = \sum_{k} X_i + \sum_{k} Y_i^t$$

= $\frac{k(k+1)^2}{2} + i + k(k^2 + k + 1) + \Delta_t + di = a_t + (d+1)i$,

where $a_t = k(k+1)^2/2 + k(k^2 + k + 1) + \Delta_t$.

Since k is even and d=k-2t for $0 \le t \le k/2$ we have $d \in \{0,2,4,6,\ldots,k\}$. Hence the banana tree Bt_k^k admits a super (a,d^*) - S_k -antimagic labeling for $d^* \in \{1,3,5,\ldots,k+1\}$.

Figure 1 illustrates a super (a,6)- S_5 -antimagic labeling of the banana tree Bt_5^5 and a super (a,3)- S_6 -antimagic labeling of the banana tree Bt_6^6 .

By the symbol St_n^p , $n \ge 1$, $p \ge 0$, we denote the graph obtained from the star S_n by attaching p pendant edges to every vertex of degree 1 in S_n . Let us denote the vertices and edges in St_n^p such that

$$V(St_n^p) = \{v, v_i, v_i^j : i = 1, 2, \dots, n; j = 1, 2, \dots, p\},$$

$$E(St_n^p) = \{v_i v_i^j : i = 1, 2, \dots, n; j = 1, 2, \dots, p\} \cup \{vv_i : i = 1, 2, \dots, n\}.$$

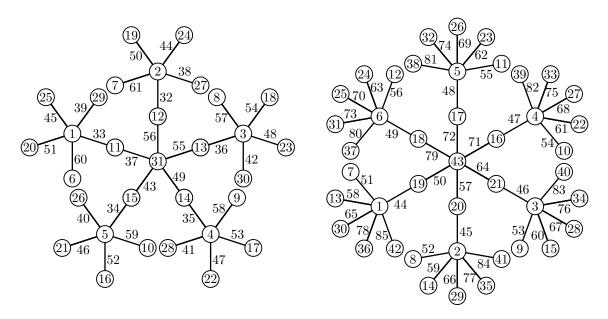


Figure 1. A super (a, 6)- S_5 -antimagic labeling of the banana tree Bt_5^5 and a super (a, 3)- S_6 -antimagic labeling of the banana tree Bt_6^6 .

Evidently, the graph St_n^p admits a S_{p+1} -covering. If $p \geq n$ then the S_{p+1} -covering of St_n^p consists of n stars isomorphic to S_{p+1} . Let us denote the (p+1)-stars by the symbols $\{S_{p+1}^1, S_{p+1}^2, \ldots, S_{p+1}^n\}$ such that the edge set of S_{p+1}^i , $i=1,2,\ldots,n$, is

$$V(S_{p+1}^i) = \{v, v_i, v_i^j : j = 1, 2, \dots, p\}$$

and its edge set is

$$E(S_{p+1}^i) = \{vv_i, v_iv_i^j : j = 1, 2, \dots, p\}.$$

If p = n - 1 then the graph St_n^{n-1} contains n + 1 subgraphs isomorphic to S_n . We denote them $\{S_n^1, S_n^2, \dots, S_n^{n+1}\}$, where for $i = 1, 2, \dots, n$, is $V(S_n^i) = \{v, v_i, v_i^j : j = 1, 2, \dots, n - 1\}$ and $E(S_n^i) = \{vv_i, v_iv_j^i : j = 1, 2, \dots, n - 1\}$. Moreover, $V(S_n^{n+1}) = \{v, v_i : i = 1, 2, \dots, n\}$ and $E(S_n^{n+1}) = \{vv_i : i = 1, 2, \dots, n\}$.

Theorem 3.2. Let n, p be positive integers, $p \ge n$. Then the graph St_n^p admits a super (a,d)- S_{p+1} -antimagic labeling for $d \in \{0,2,\ldots,2(p+1)\}$. Moreover, if n and p are odd, $n \ge 3$, then differences $d \in \{1,3,\ldots,p+2\}$ are also feasible.

Proof. The graph St_n^p has (n(p+1)+1) vertices and n(p+1) edges. If $p \ge n$ then the graph St_n^p contains n subgraphs isomorphic to S_{p+1} .

By Lemma 2.1, for each integer $0 \le t \le \lfloor (p+1)/2 \rfloor$ there is a n-equipartition $\mathbb{Q} = \{Q_1^t, Q_2^t, \dots, Q_n^t\}$ of [1, n(p+1)] such that $\sum Q_i^t = \Delta_t + di$, where d = p+1-2t and $\Delta_t = \sum Q_1^t - d$.

Hence we have a n-equipartition $\mathbb{Y}^{t_1}=\{Y_1^{t_1},Y_2^{t_1},\ldots,Y_n^{t_1}\}$ of the set [2,n(p+1)+1] such that

$$\sum Y_i^{t_1} = n + \Delta_{t_1} + (p + 1 - 2t_1)i \quad \text{for } 1 \le i \le n,$$

where $0 \le t_1 \le |(p+1)/2|$.

Moreover, we have a n-equipartition $\mathbb{Z}^{t_2}=\{Z_1^{t_2},Z_2^{t_2},\ldots,Z_n^{t_2}\}$ of the set [n(p+1)+2,2n(p+1)+1] such that

$$\sum Z_i^{t_2} = n(n(p+1)+1) + \Delta_{t_2} + (p+1-2t_2)i \quad \text{for } 1 \le i \le n,$$

where $0 \le t_2 \le \lfloor (p+1)/2 \rfloor$.

We define a total labeling $f: V(St_n^p) \cup E(St_n^p) \to [1, 2n(p+1) + 1]$ such that

$$\begin{split} f(v) &= 1, \\ f(V(S_{p+1}^i) - \{v\}) &= Y_i^{t_1} & \text{for } 1 \leq i \leq n, \\ f(E(S_{p+1}^i)) &= Z_i^{t_2} & \text{for } 1 \leq i \leq n. \end{split}$$

Then for $1 \le i \le n$ we get

$$wt_f(S_{p+1}^i) = \sum f(V(S_{p+1}^i)) + \sum f(E(S_{p+1}^i))$$

$$= f(v) + \sum f(V(S_{p+1}^i) - \{v\}) + \sum f(E(S_{p+1}^i))$$

$$= 1 + \sum Y_i^{t_1} + \sum Z_i^{t_2} = 1 + (n + \Delta_{t_1} + (p + 1 - 2t_1)i)$$

$$+ (n(n(p+1) + 1) + \Delta_{t_2} + (p + 1 - 2t_2)i)$$

$$= a + (2p + 2 - 2t_1 - 2t_2)i,$$

where $a = n^2(p+1) + 2n + 1 + \Delta_{t_1} + \Delta_{t_2}$.

Thus, the weights of stars S_{p+1} for arithmetic sequence with difference $d=(2p+2-2t_1-2t_2)$. As $0 \le t_1 \le \lfloor (p+1)/2 \rfloor$ and $0 \le t_2 \le \lfloor (p+1)/2 \rfloor$ we get that for p odd

$$d \in \{0, 2, \dots, 2(p+1)\}$$

and for p even

$$d \in \{2, 4, \dots, 2(p+1)\}.$$

Moreover, for p even we define a total labeling $f_0: V(St_n^p) \cup E(St_n^p) \to [1, 2n(p+1)+1]$ such that

$$f_0(v) = 1,$$

$$f_0(V(S_{p+1}^i) - \{v\}) = Y_i^0 \qquad \text{for } 1 \le i \le n,$$

$$f_0(E(S_{p+1}^i)) = Z_{n+1-i}^0 \qquad \text{for } 1 \le i \le n.$$

For $1 \le i \le n$ we get

$$wt_{f_0}(S_{p+1}^i) = \sum_{i} f_0(V(S_{p+1}^i)) + \sum_{i} f_0(E(S_{p+1}^i))$$

$$= f_0(v) + \sum_{i} f_0(V(S_{p+1}^i) - \{v\}) + \sum_{i} f_0(E(S_{p+1}^i))$$

$$= 1 + \sum_{i} Y_i^0 + \sum_{i} Z_{n+1-i}^0 = 1 + (n + \Delta_0 + 2(p+1)i)$$

$$+ (n(n(p+1)+1) + \Delta_0 + 2(p+1)(n+1-i))$$

$$= n^2(p+1) + 2n + 1 + 2(p+1)(n+1).$$

Thus also for p even we have a S_{p+1} -supermagic labeling of St_n^p .

Let n and p are odd, $n \geq 3$. Then according to Lemma 2.3 there exists a n-equipartition $\mathbb{P} = \{P_1, P_2, \dots, P_n\}$ of X = [1, n(p+1)] such that $\sum P_i = p((p+1)n + n + 1)/2 + i$ for $1 \leq i \leq n$.

Hence we have a *n*-equipartition $\mathbb{T} = \{T_1, T_2, \dots, T_n\}$ of the set [2, n(p+1) + 1] such that

$$\sum T_i = n + \frac{p((p+1)n + n + 1)}{2} + i$$
 for $1 \le i \le n$.

We define a total labeling $g: V(St_n^p) \cup E(St_n^p) \to [1, 2n(p+1) + 1]$ such that

$$g(v) = 1,$$

$$g(V(S_{p+1}^i) - \{v\}) = Y_i^{t_1}$$
 for $1 \le i \le n$,
$$g(E(S_{p+1}^i)) = T_i$$
 for $1 \le i \le n$.

The star weights of S_{p+1}^i , $1 \le i \le n$, are

$$wt_g(S_{p+1}^i) = \sum g(V(S_{p+1}^i)) + \sum g(E(S_{p+1}^i))$$

$$= g(v) + \sum g(V(S_{p+1}^i) - \{v\}) + \sum g(E(S_{p+1}^i))$$

$$= 1 + \sum Y_i^{t_1} + \sum T_i = 1 + (n + \Delta_{t_1} + (p + 1 - 2t_1)i)$$

$$+ \left(n + \frac{p((p+1)n + n + 1)}{2} + i\right)$$

$$= \left(2n + \frac{p((p+1)n + n + 1)}{2} + \Delta_{t_1} + 1\right) + (p + 2 - 2t_1)i.$$

As $0 \le t_1 \le (p+1)/2$ we get that

$$p+2-2t_1 \in \{1,3,\ldots,p+2\}.$$

This concludes the proof.

Theorem 3.3. The graph St_n^{n-1} admits a super (a,d)- S_n -antimagic labeling for $d \in \{0,2(n-2)\}$.

Proof. The graph St_n^{n-1} has (n^2+1) vertices and n^2 edges and contains n+1 subgraphs isomorphic to S_n .

We define a total labeling $h, f: V(St_n^{n-1}) \cup E(St_n^{n-1}) \to \{1, 2, \dots, 2n^2 + 1\}$ such that

$$h(v) = 1,$$

$$\left\{h(u) : u \in V(St_n^{n-1}) - \{v\}\right\} = \{2, 3, \dots, n^2 + 1\},$$

$$h(vv_i) = 2n^2 + 3 - h(v_i) \quad \text{for } 1 \le i \le n,$$

$$h(v_iv_i^j) = 2n^2 + 3 - h(v_i^j) \quad \text{for } 1 \le i \le n, \ 1 \le j \le n - 1.$$

For the weights of the stars S_n^i , $1 \le i \le n$ we get

$$wt_h(S_n^i) = h(v_i) + h(v) + \sum_{j=1}^{n-1} h(v_i^j) + \sum_{j=1}^{n-1} h(v_i v_i^j) + h(v v_i)$$

$$= h(v_i) + 1 + \sum_{j=1}^{n-1} h(v_i^j) + \sum_{j=1}^{n-1} \left(2n^2 + 3 - h(v_i^j)\right)$$

$$+ (2n^2 + 3 - h(v_i)) = n(2n^2 + 3) + 1.$$
(3.5)

Moreover,

$$wt_h(S_n^{n+1}) = h(v) + \sum_{i=1}^n h(v_i) + \sum_{i=1}^n h(vv_i)$$

= $1 + \sum_{i=1}^n h(v_i) + \sum_{i=1}^n \left(2n^2 + 3 - h(v_i)\right) = n(2n^2 + 3) + 1.$ (3.6)

Using (3.5) and (3.6) we proved that h is a S_n -supermagic labeling of St_n^{n-1} . We distinguish two cases to obtain the difference 2(n-2).

Case i: n is odd.

We define a total labeling f of St_n^{n-1} as follows:

$$f(v) = 1,$$

$$f(v_i) = i + 1 \quad \text{for } 1 \le i \le n,$$

$$f(v_i^j) = \begin{cases} nj + 1 + i & \text{for } 1 \le i \le n, \ 1 \le j \le n - 2, \\ n^2 + 2 - i & \text{for } 1 \le i \le n, \ j = n - 1, \end{cases}$$

$$f(v_i v_i^j) = \begin{cases} n(n-1) + nj + 1 + i & \text{for } 1 \le i \le n, \\ i \ne \frac{n+3}{2}, \ 2 \le j \le n-1, \\ 2n^2 - \frac{n-1}{2} & \text{for } i = \frac{n+3}{2}, \ j = 1, \end{cases}$$
$$f(vv_i) = \begin{cases} 2n^2 + 2 - i & \text{for } 1 \le i \le n, \ i \ne \frac{n+3}{2}, \\ n^2 + \frac{n-1}{2} + 3 & \text{for } i = \frac{n+3}{2}. \end{cases}$$

We find the S_n -weights of the stars in the covering.

$$wt_f(S_n^{n+1}) = f(v) + \sum_{i=1}^n f(v_i) + \sum_{i=1}^n f(vv_i)$$

$$= 1 + \sum_{i=1}^n [i+1] + \sum_{\substack{i=1\\i \neq \frac{n+3}{2}}}^n \left[2n^2 + 2 - i \right] + n^2 + \frac{n-1}{2} + 3$$

$$= 2n^3 - n^2 + 4n + 3. \tag{3.7}$$

For $1 \le i \le n$, $i \ne (n+3)/2 + 2$ is

$$wt_{f}(S_{n}^{i}) = f(v_{i}) + f(v) + \sum_{j=1}^{n-1} f(v_{i}^{j}) + \sum_{j=1}^{n-1} f(v_{i}v_{i}^{j}) + f(vv_{i})$$

$$= (i+1) + 1 + \left(\sum_{j=1}^{n-2} [nj+1+i] + n^{2} + 2 - i\right)$$

$$+ \left(\sum_{j=1}^{n-1} [n(n-1) + nj + 1 + i]\right) + \left(2n^{2} + 2 - i\right)$$

$$= 2n^{3} - n^{2} + 4n + 3 + 2(n-2)i$$
(3.8)

and

$$wt_{f}\left(S_{n}^{\frac{n+3}{2}}\right) = f\left(v_{\frac{n+3}{2}}\right) + f(v) + \sum_{j=1}^{n-1} f\left(v_{\frac{n+3}{2}}^{j}\right) + \sum_{j=1}^{n-1} f\left(v_{\frac{n+3}{2}}v_{\frac{n+3}{2}}^{j}\right)$$

$$+ f\left(vv_{\frac{n+3}{2}}\right) = \left(\frac{n-1}{2} + 2 + 1\right) + 1$$

$$+ \left(\sum_{j=1}^{n-2} \left[nj + 1 + \frac{n-1}{2} + 2\right] + n^{2} + 2 - \frac{n-1}{2} - 2\right)$$

$$+ \left(\sum_{j=2}^{n-1} \left[n(n-1) + nj + 1 + \frac{n-1}{2} + 2\right] + 2n^{2} - \frac{n-1}{2}\right)$$

$$+ \left(n^{2} + \frac{n-1}{2} + 3\right) = 2n^{3} - n^{2} + 4n + 3 + 2(n-2)\frac{n+3}{2}. \tag{3.9}$$

From (3.7), (3.8) and (3.9) we proved that the graph St_n^{n-1} admits a super (a, 2(n-2))- S_n -antimagic labeling when n is odd.

Case ii: n is even.

We define a total labeling g of St_n^{n-1} as follows:

$$g(v) = 1,$$

$$g(v_i) = i + 1 \quad \text{for } 1 \le i \le n,$$

$$g(v_i^j) = \begin{cases} nj + 1 + i & \text{for } 1 \le i \le n, \ 1 \le j \le n - 2, \\ n^2 + 2 - i & \text{for } 1 \le i \le n, \ j = n - 1, \end{cases}$$

$$g(v_i v_i^j) = n(n-1) + nj + 1 + i \quad \text{for } 1 \le i \le n, \ 1 \le j \le n-2,$$

$$g(v_{\frac{n}{2}} v_{\frac{n}{2}}^{n-1}) = 2n(n-1) + 1 + \frac{n}{2},$$

$$g(v_n v_n^{n-1}) = (2n-1)n + 1,$$

$$g(v_i v_i^{n-1}) = n(n-1) + nj + 1 + i \quad \text{for } 1 \le i \le n-1, \ i \ne \frac{n}{2},$$

$$g(vv_{\frac{n}{2}}) = 2n^2 + 2 - \frac{n}{2},$$

$$g(vv_n) = 2n^2 + 2 - n,$$

$$g(vv_i) = 2n(n-1) + 1 + i \quad \text{for } 1 \le i \le n-1, \ i \ne \frac{n}{2}.$$

We find the S_n -weights of the stars in the covering.

$$wt_g(S_n^{n+1}) = g(v) + \sum_{i=1}^n g(v_i) + \sum_{i=1}^n g(v_i) = 1 + \sum_{i=1}^n [i+1] + \sum_{i=1}^n [2n(n-1) + 1 + i] + 2n^2 + 2 - \frac{n}{2} + 2n^2 + 2 - n$$

$$= 2n^3 - n^2 + 4n + 3.$$
(3.10)

For $1 \le i \le n-1$, $i \ne n/2$ we have

$$wt_g(S_n^i) = g(v_i) + g(v) + \sum_{j=1}^{n-1} g(v_i^j) + \sum_{j=1}^{n-1} g(v_i v_i^j) + g(v v_i)$$

$$= (i+1) + 1 + \left(\sum_{j=1}^{n-2} [nj+1+i] + n^2 + 2 - i\right)$$

$$+ \left(\sum_{j=1}^{n-2} [n(n-1) + nj + 1 + i] + 2n^2 + 2 - i\right)$$

$$+ (2n(n-1) + 1 + i) = 2n^3 - n^2 + 4n + 3 + 2(n-2)i$$
(3.11)

and

$$wt_{g}(S_{n}^{\frac{n}{2}}) = g(v_{\frac{n}{2}}) + g(v) + \sum_{j=1}^{n-1} g(v_{\frac{n}{2}}^{j}) + \sum_{j=1}^{n-1} g(v_{\frac{n}{2}}v_{\frac{n}{2}}^{j}) + g(vv_{\frac{n}{2}})$$

$$= (\frac{n}{2} + 1) + 1 + \left(\sum_{j=1}^{n-2} \left[nj + 1 + \frac{n}{2}\right] + n^{2} + 2 - \frac{n}{2}\right)$$

$$+ \left(\sum_{j=1}^{n-2} \left[n(n-1) + nj + 1 + \frac{n}{2}\right] + 2n(n-1) + 1 + \frac{n}{2}\right)$$

$$+ \left(2n^{2} + 2 - \frac{n}{2}\right) = 2n^{3} - n^{2} + 4n + 3 + n(n-2). \tag{3.12}$$

$$wt_{g}(S_{n}^{n}) = g(v_{n}) + g(v) + \sum_{j=1}^{n-1} g(v_{n}^{j}) + \sum_{j=1}^{n-1} g(v_{n}v_{n}^{j}) + g(vv_{n})$$

$$= (n+1) + 1 + \left(\sum_{j=1}^{n-2} \left[nj + 1 + n\right] + n^{2} + 2 - n + 2\right)$$

$$+ \left(\sum_{j=1}^{n-2} \left[n(n-1) + nj + 1 + n\right] + 2n(n-1) + 1 + n\right)$$

$$+ (2n^{2} + 2 - n) = 2n^{3} - n^{2} + 4n + 3 + 2(n - 2)n.$$
(3.13)

According to (3.10) - (3.13) we have that for n even the graph St_n^{n-1} is super (a, 2(n-2))- S_n -antimagic.

Figure 2 illustrates a super (248,6)- S_5 -antimagic labeling of graph St_5^4 .

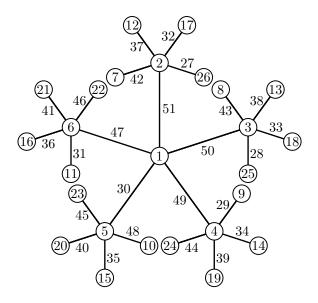


Figure 2. A super (248,6)- S_5 -antimagic labeling of graph St_5^4 .

Acknowledgment. This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116 and by VEGA 1/0233/18.

References

- [1] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, *Tree-antimagicness of disconnected graphs*, Math. Probl. Eng. **2015**, Article ID: 504251, 1–4, 2015.
- [2] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness of disconnected graphs, Bull. Aust. Math. Soc. 94, 201–207, 2016.
- [3] A. Gutiérrez and A. Lladó, *Magic coverings*, J. Combin. Math. Combin. Comput. **55**, 43–56, 2005.
- [4] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71, 273–281, 2009.
- [5] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On~(a,d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Combin. $\bf 57$, 127–138, 2013.
- [6] P. Jeyanthi and P. Selvagopal, Supermagic coverings of some simple graphs, Int. J. Math. Combin. 1, 33–48, 2011.
- [7] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On H-supermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Math. 83, 333–342, 2010.
- [8] A. Semaničová-Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48, 11–18, 2015.