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Abstract
In this paper, we study h-fibrations, a weak homotopical version of fibrations which have
weak covering homotopy property. We present some homotopical analogue of the notions
related to fibrations and characterize h-fibrations using them. Then we construct some
new categories by h-fibrations and deduce some results in these categories such as the
existence of products and coproducts.
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1. Introduction
1.1. Motivation

A map p : E → B is said to be a fibration (Hurewicz fibration) if it has covering
homotopy property with respect to every space, that is, for every space X, every map
f̃ : X → E and every homotopy F : X × I → B with p ◦ f̃ = F ◦ J0, there exists a
homtopy F̃ : X × I → E such that p ◦ F̃ = F and F̃ ◦ J0 = f̃ , where J0 : X → X × I is
J0(x) = (x, 0).

Covering homotopy property is not invariant under fiber homotopy equivalence and
hence any map, fiber homotopic to a fibration is not necessarily a fibration. E. Fadell [2]
introduced a new type of fibrations which do not have this defect. Also, Dold [1] considered
a weak version of covering homotopy property introduced by Fuchs [3] which enjoys useful
property of covering homotopy property such as exact homotopy sequence and spectral
sequence and also, it is invariant under fiber homotopy equivalence.

A fiber homotopy is a kind of homotopy which preserves points in their fibers during the
homotopy ([4,8]) and weak covering homotopy property is obtained by replacing F̃ ◦J0 = f̃

by F̃ ◦J0 ≃p f̃ in the definition of covering homotopy property, (see [1,3,5,6]). Dold proved
that under a weak local contractibility condition for a space B, a map p : E → B has
weak covering homotopy property if and only if it is locally fiber homotopically trivial
[1, Theorem 6.4]. A map p : E → B is called h-fibration or Dold fibration if it has
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weak covering homotopy property with respect to every space. A good characterization
of fibrations and h-fibrations can be found in [1, 6, 8].

A map p : E → B is said to have unique path lifting property (upl) if for every pair of
paths α and α′ in E such that p◦α = p◦α′ and α(0) = α′(0), we have α = α′ (see [8]). Note
that unique path lifting property does not guarantee the existence of path liftings. Unique
path lifting property has an important role for fibrations, because it makes them very
close to covering projections and also implies lifting theorem [8, Theorem 2.4.5]. In [7],
the authors presented a homotopical version of unique path lifting property and studied
its properties for fibrations.

Here, after recalling the definition of fiber homotopic maps with respect to arbitrary
maps (instead of fibrations), we study h-fibrations with weakly unique path homotopically
lifting property and give a sufficient condition which makes an h-fibration to be a fibra-
tion. We prove that an h-fibration has the homotopically path lifting property, which is a
homotopical version of path lifting property. Also, we show that an h-fibration has homo-
topically lifting function. In Section 3, by proving that the composition of h-fibrations is
an h-fibration, we introduce some new categories of h-fibrations hFib, hFibu and hFibwu.
Then we compare them by the categories constructed by fibrations Fib, Fibu and Fibwu
(see [7, 8]). Moreover, we show that these new categories have products and coproducts
by introducing them.

1.2. Preliminaries
Throughout this paper, all spaces are path connected, unless otherwise stated. A map

f : X → Y means a continuous function. A map α : I → X is called a path from
x0 = α(0) to x1 = α(1) and its inverse α−1 is defined by α−1(t) = α(1 − t). For two paths
α, β : I → X with α(1) = β(0), α ∗ β denotes the usual concatenation of the two paths.
Also, all homotopies between paths are assumed to be relative to end points.

For given maps p : E → B and f : X → B, a map f̃ : X → E is called a lift of f if
p ◦ f̃ = f . When F : X × I −→ Y is a map, we say that F is a homotopy from F0 to F1
and write F : F0 ≃ F1, where Fi : X → Y is Fi(x) = F (x, i), for i = 0, 1. The constant
map from X to Y which sends all the points to y ∈ Y is denoted by Cy.

For a topological space Y , Y I is the space of paths in Y and for a given map f : X →
Y , Pf is the mapping path space, that is, Pf = {(x, α) ∈ X × Y I |f(x) = α(0)}. Also,
p : Pf → X by p(x, α) = x is a fibration which is called the mapping path fibration (see
[8]).

2. h-Fibrations
For the definition of fiber homotopic maps with respect to a fibration and the definition

of fiber homotopy equivalent fibrations, see [8]. We give here similar definitions for an
arbitrary map and a few basic results that we need in sequel.

Definition 2.1. Let p : E → B be a map. Two maps f0, f1 : X → E are said to be fiber
homotopic with respect to p, denoted by f0 ≃p f1 if there is a homotopy F : f0 ≃ f1 such
that p ◦ F (x, t) = p ◦ f0(x) = p ◦ f1(x) for every x ∈ X and every t ∈ I.

We recall that for given maps p1 : E1 → B and p2 : E2 → B, a map f : E1 → E2 is
called fiber-preserving if p1 = p2 ◦ f .

Definition 2.2. Two maps p1 : E1 → B and p2 : E2 → B are said to be fiber homotopy
equivalent, if there exist fiber preserving maps f : E1 → E2 and g : E2 → E1 such that
g ◦ f ≃p1 1E1 and f ◦ g ≃p2 1E2 . Each of the maps f and g is called a fiber homotopy
equivalence.

We have the following proposition for the fiber homotopy property.
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Proposition 2.3. Let p : E → B be a map.
(i) If p′ : E′ → E and f0, f1 : X → E′ are maps such that f0 ≃p′ f1, then f0 ≃p◦p′ f1.
(ii) The fiber homotopy with respect to p is an equivalence relation on the set of maps

from X to E.
(iii) If f, g : X → E and h : Z → X are maps such that f ≃p g, then f ◦ h ≃p g ◦ h.
(iv) If f, g : X → E′ and p′ : E′ → E are maps such that f ≃p◦p′ g, then p′ ◦f ≃p p′ ◦g.

Proof.
(i) Let H : f0 ≃p′ f1. Since p′ ◦ H(x, t) = p′ ◦ f0(x) = p′ ◦ f1(x), we have

(p ◦ p′) ◦ H(x, t) = (p ◦ p′) ◦ f0(x) = (p ◦ p′) ◦ f1(x),
which implies that H : f0 ≃p◦p′ f1.
(ii) It is similar to the proof of ordinary homotopy relation.
(iii) Let H : X × I → E be a fiber homotopy from f to g with respect to p. Define
H ′ : Z × I → E by H ′(z, t) = H(h(z), t). Then H ′ is a homotopy from f ◦ h to g ◦ h and

p ◦ H ′(z, t) = p ◦ H(h(z), t) = p ◦ f(h(z)) = p ◦ g(h(z)).
(iv) Let H : X × I → E′ be the fiber homotopy H : f ≃p◦p′ g and define H ′ : X × I → E
by H ′(x, t) = p′ ◦ H(x, t). Then p ◦ H ′(x, t) = p ◦ p′ ◦ H(x, t) = p ◦ p′ ◦ f(x) = p ◦ p′ ◦ g(x)
and so H ′ : p′ ◦ f ≃p p′ ◦ g. �

A map p : E → B has weak covering homotopy property, abbreviated by wchp, if for
every space X and every maps f̃ : X → E, F : X × I → B with p ◦ f̃ = F ◦ J0, there
exists a homotopy F̃ : X × I → E such that p ◦ F̃ = F and F̃ ◦ J0 ≃p f̃ . In fact, Dold’s
definition was slightly different [1]. A map p : E → B is called an h-fibration if it has wchp
[6]. By [1, Proposition 5.2], if a map is fiber homotopy equivalent to a fibration, it has
wchp and so is an h-fibration. Also, in [5] it is mentioned that every h-fibration is fiber
homotopy equivalent to a fibration (see [6, Proposition 1.15]). Since one can not find a
detailed proof for this fact, we are going to give a proof for it. First, for f : X → Y , let Pf

be the mapping path space, p : Pf → X be the mapping path fibration and h : X → Pf

be the map h(x) = (x, Cf(x)). Then h is a section of p, moreover, h and p are homotopy
inverse ([8, Theorem 2.8.9]).

Theorem 2.4. A map is an h-fibration if and only if it is fiber homotopy equivalent to a
fibration.

Proof. Let f : X → Y be fiber homotopy equivalent to a fibration f ′ : X ′ → Y . There
exist two maps s : X → X ′ and s′ : X ′ → X such that s◦s′ ≃f ′ 1X′ , s′◦s ≃f 1X , f ◦s′ = f ′

and f ′ ◦ s = f . If f̃ : Z → X and F : Z × I → Y are maps such that f ◦ f̃ = F ◦ J0, then
f ′ ◦ s ◦ f̃ = F ◦ J0. Therefore by assumption, there is a homotopy F̃ : Z × I → X ′ such
that f ′ ◦ F̃ = F and F̃ ◦ J0 = s ◦ f̃ . Let G̃ = s′ ◦ F̃ . Then

f ◦ G̃ = f ◦ s′ ◦ F̃ = f ′ ◦ F̃ = F,

and by Proposition 2.3
G̃ ◦ J0 = s′ ◦ F̃ ◦ J0 = s′ ◦ s ◦ f̃ ≃f 1X ◦ f̃ = f̃ .

Hence f is an h-fibration.
Conversely, let f : X → Y be an h-fibration and define a map p1 : Pf → Y by p1(x, α) =
α(1). p1 is a fibration ([8, Theorem 2.8.9]), and we show that f and p1 are fiber homotopy
equivalent. Let γ : Pf × I → Y be defined by γ(x, α, t) = α(t) . Note that

f ◦ p(x, α) = f(x) = α(0) = γ(x, α, 0) = γ ◦ J0(x, α),
where J0 : Pf → Pf × I is the map J0(x, α) = (x, α, 0). Since f is an h-fibration, there
exist homotopies γ̃ : Pf × I → X and T : Pf × I → X such that f ◦ γ̃ = γ and
T : γ̃ ◦ J0 ≃f p. Let g : Pf → X be defined by g(x, α) = γ̃(x, α, 1). It is sufficient to show
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that g ◦ h ≃f 1X and h ◦ g ≃p1 1Pf
. We have that p1 ◦ h = f and also f ◦ g = p1, because

f ◦ g(x, α) = f ◦ γ̃(x, α, 1) = γ(x, α, 1) = α(1) = p1(x, α). Let F : X × I → X be the map
F (x, t) = γ̃(x, Cf(x), t). Since F : F0 ≃ F1 and

f ◦ F (x, t) = f ◦ γ̃(x, Cf(x), t) = γ(x, Cf(x), t) = Cf(x)(t) = f(x),

f ◦ F0(x) = f ◦ F (x, 0) = f ◦ γ̃(x, Cf(x), 0) = γ(x, Cf(x), 0) = Cf(x)(0) = f(x),
f ◦ F1(x) = f ◦ F (x, 1) = f ◦ γ̃(x, Cf(x), 1) = γ(x, Cf(x), 1) = Cf(x)(1) = f(x),

F1(x) = F (x, 1) = γ̃(x, Cf(x), 1) = g(x, Cf(x)) = g ◦ h(x),
we have F : F0 ≃f g ◦ h.
Define T ′ : X × I → X by T ′(x, t) = T (x, Cf(x), t). Then T ′ : F0 ≃f 1X since

T ′(x, 0) = T (x, Cf(x), 0) = γ̃ ◦ J0(x, Cf(x)) = F (x, 0) = F0(x),

T ′(x, 1) = T (x, Cf(x), 1) = p(x, Cf(x)) = x = 1X(x),
f ◦ T ′(x, t) = f ◦ T (x, Cf(x), t) = f ◦ γ̃ ◦ J0(x, Cf(x)) = f ◦ F0(x),

f ◦ T ′(x, t) = f ◦ T (x, Cf(x), t) = f ◦ p(x, Cf(x)) = f(x) = f ◦ 1X(x).
Hence, transitivity of fiber homotopy implies that g ◦ h ≃f 1X .
For the second fiber homotopy, define H : Pf × I → Pf by H(x, α, s) = (γ̃(x, α, s), αs),
for in which αs is the path αs(t) = α(s + t − st), for every s, t ∈ I. Clearly, H : H0 ≃ H1.
Moreover,

p1 ◦ H(x, α, s) = p1(γ̃(x, α, s), αs) = αs(1) = α(1),
p1 ◦ H0(x, α) = p1 ◦ H(x, α, 0) = p1(γ̃(x, α, 0), α0) = α0(1) = α(1),

p1◦H1(x, α) = p1◦H(x, α, 1) = p1(γ̃(x, α, 1), α1) = p1(γ̃(x, α, 1), Cα(1)) = Cα(1)(1) = α(1),
and hence H : H0 ≃p1 H1. On the other hand,

h ◦ g(x, α) = h(γ̃(x, α, 1)) = (γ̃(x, α, 1), Cf◦γ̃(x,α,1)) =

(γ̃(x, α, 1), Cγ(x,α,1)) = (γ̃(x, α, 1), Cα(1)) = H1(x, α).
Thus h ◦ g = H1 and so H : H0 ≃p1 h ◦ g. Now, define T ′′ : Pf × I → Pf by T ′′(x, α, s) =
(T (x, α, s), α). Note that T ′′ is well-define because

f ◦ T (x, α, s) = f ◦ p(x, α) = f(x) = α(0).
Moreover, T ′′ : H0 ≃p1 1Pf

since

T ′′(x, α, 0) = (T (x, α, 0), α) = (γ̃(x, α, 0), α) = H0(x, α),

T ′′(x, α, 1) = (T (x, α, 1), α) = (p(x, α), α) = (x, α) = 1Pf
(x, α),

p1 ◦ T ′′(x, α, s) = p1(T (x, α, s), α) = α(1),
p1 ◦ H0(x, α) = p1 ◦ H(x, α, 0) = p1(γ̃(x, α, 0), α) = α(1),

p1 ◦ 1Pf
(x, α) = p1(x, α) = α(1).

Therefore, using H and T ′′, we have h ◦ g ≃p1 1Pf
. �

For fibrations with path connected base space, any two fibers have the same homo-
topy type. Since, every h-fibration is fiber homotopy equivalent to a fibration, and a fiber
homotopy equivalence can be thought as a family of homotopy equivalences between corre-
sponding fibers ([4, Page 406]), hence we have another proof for the following proposition.

Proposition 2.5. ([6, Proposition 1.12]). The fibers of an h-fibration have the same
homotopy type.

Corollary 2.6. If an h-fibration has the path connected base space with a path connected
fiber, then its total space is also path connected.
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Proof. Let p : E → B be an h-fibration with a path connected fiber. Then by Proposition
2.5, every fiber of p is path connected. Let p′ : E′ → B be a fibration which is fiber
homotopy equivalent to p. Then the fibers of p′ are path connected and so by [8, Exercise
2.8.E.2], E′ is path connected. By definition, there exist fiber preserving maps f : E → E′

and g : E′ → E. If x, y ∈ E, then there exists a path α in E′ from f(x) to f(y). Since
g ◦ f ≃p 1E , we have x, g(f(x)) ∈ p−1(x), also y, g(f(y)) ∈ p−1(y). Let β be a path in
p−1(x) from x to g(f(x)) and γ be a path in p−1(y) from g(f(y)) to y. Therefore β∗(g◦α)∗γ
is a path in E from x to y. �

By definitions, every fibration is an h-fibration. But an h-fibration is not necessarily a
fibration (for an example see [1]). In order to find a sufficient condition which makes an
h-fibration a fibration, first consider the following lemma.

Lemma 2.7. If a map p : E → B has upl and f0, f1 : X → E are fiber homotopic with
respect to p, then f0 = f1.

Proof. Let H : f0 ≃p f1. Then for every x ∈ X and every t ∈ I, p ◦ H(x, t) = p ◦
f0(x) = p ◦ f1(x). For a fixed x ∈ X, H(x, −) is a path in the fiber p−1(p ◦ f0(x)) and so
p ◦ H(x, −) = Cp◦f0(x). Since p ◦ Cf0(x) = Cp◦f0(x), H(x, 0) = f0(x) = Cf0(x)(0) and p has
upl, we have H(x, −) = Cf0(x). Hence f0(x) = H(x, 0) = H(x, 1) = f1(x), as desired. �
Theorem 2.8. Every h-fibration with upl is a fibration.

Proof. Let p : E → B be an h-fibration. Also let X be a topological space, f̃ : X → E
and F : X × I → B be maps such that p ◦ f̃ = F ◦ J0. Then, there exists a homotopy
F̃ : X × I → E such that p ◦ F̃ = F and F̃ ◦ J0 ≃p f̃ . By Lemma 2.7, F̃ ◦ J0 = f̃ which
implies that p is a fibration. �

Unique path lifting property is important in the study of fibrations because make them
a covering map, when the base space is locally nice, i.e, locally path connected and semi-
locally simply connected [8]. The authors introduced a homotopical version of upl in [7]
and studied its role in fibrations. Since here we are working with a weak homotopical
version of fibrations, we are going to study h-fibrations with the homotopical version of
upl.

A map p : E → B is said to have weakly unique path homotopically lifting property
abbreviated by wuphl, if by given two paths α and β in E with α(0) = β(0), α(1) = β(1)
and p ◦ α ≃ p ◦ β, rel İ, then it follows that α ≃ β, rel İ (see [7]).
The unique path lifting property for fibrations is equivalent to the fact that every path in
any fiber is constant [8, Theorem 2.2.5]. Also, the weakly unique path homotopically lifting
property for fibrations is equivalent to the fact that every loop in any fiber is nullhomotopic
[7, Theorem 3.4]. In the following, we show that these facts hold for h-fibrations.

Proposition 2.9. An h-fibration p : E → B has upl if and only if every path in any fiber
is constant.

Proof. If p has upl, then it is easy to see that every path in any fiber is constant. For
the converse, let α, β : I → E be two lifts of a path in B started from the same point
α(0) = β(0). Let t ∈ I and consider the path γt in E from α(t) to β(t) by

γt(t′) =
{

α((1 − 2t′)t), t′ ∈ [0, 1
2 ]

β((2t′ − 1)t), t′ ∈ [1
2 , 1].

By assumption p ◦ α = p ◦ β, then there exists a homotopy F : p ◦ γt ≃ Cp◦α(t), rel İ. Since
p has wchp, there exist homotopies F̃ , H : I × I → E with p ◦ F̃ = F and H : F̃ ◦ J0 ≃p γt.
Thus

p ◦ F̃ (0, t) = F (0, t) = Cp◦α(t)(0) = p ◦ α(t),
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p ◦ F̃ (t, 1) = F (t, 1) = Cp◦α(t)(t) = p ◦ α(t),
and

p ◦ F̃ (1, t) = F (1, t) = Cp◦α(t)(1) = p ◦ α(t).

Therefore, F̃ (0, −) ∗ F̃ (−, 1) ∗ (F̃ (1, −))−1 is a path in the fiber p−1(p ◦ α(t)). So by
assumption it is constant, which implies that F̃ (0, 0) = F̃ (1, 0). Now, note that H(0, −) is
a path from F̃ (0, 0) to γt(0) = α(t) in the fiber p−1(p ◦ γt(0)), and also H(1, −) is a path
from F̃ (1, 0) to γt(1) = β(t) in the fiber p−1(p ◦ γt(1)). Then, since F̃ (0, 0) = F̃ (1, 0) and

p−1(p ◦ γt(0)) = p−1(p ◦ α(t)) = p−1(p ◦ β(t)) = p−1(p ◦ γt(1)),

there exists a path in this fiber from α(t) to β(t), which by assumption it must be constant.
Then, α(t) = β(t) and since t is arbitrary we will have α = β. �

Proposition 2.10. An h-fibration p : E → B has wuphl if and only if every loop in any
fiber is nullhomotopic.

Proof. Necessity is trivial. For the sufficiency, let α̃, β̃ : I → E be two paths with α̃(0) =
β̃(0), α̃(1) = β̃(1) and p ◦ α̃ ≃ p ◦ β̃, rel İ. Let γ := α̃ ∗ β̃−1 which is a loop at α̃(0). Put
x̃0 = α̃(0) and x0 = p(x̃0), then we have

p ◦ γ = p ◦ (α̃ ∗ β̃−1) = (p ◦ α̃) ∗ (p ◦ β̃−1) = (p ◦ α̃) ∗ (p ◦ β̃)−1 ≃ Cx0 , rel İ .

Let F : p◦γ ≃ Cx0 , rel İ. Since p is an h-fibration, there exist homotopies F̃ , H : I ×I → E

such that p ◦ F̃ = F and H : γ ≃p F̃ ◦ J0. Let f := F̃ (0, −), f ′ := H(0, −), g :=
F̃ (−, 1), h := F̃ (1, −) and h′ := H(1, −) which are paths in E with f ′(1) = f(0), f(1) =
g(0), g(1) = h(1) = h−1(0) and h−1(1) = h′−1(0), so we can define η := f ∗ g ∗ h−1 and
δ := f ′ ∗ η ∗ h′−1. Note that δ is a closed path because

δ(0) = f ′(0) = H(0, 0) = γ(0) = α̃(0) = β̃(0) =

β̃−1(1) = γ(1) = H(1, 0) = h′(0) = h′−1(1) = δ(1).
Also, since

p ◦ f ′(t) = p ◦ H(0, t) = p ◦ F̃ ◦ J0(0) = p ◦ F̃ (0, 0) = F (0, 0) = x0 = Cx0(t),
p ◦ η = (p ◦ f) ∗ (p ◦ g) ∗ (p ◦ h)−1 = F (0, −) ∗ F (−, 1) ∗ (F (1, −))−1 =
Cx0 ∗ Cx0 ∗ (Cx0)−1 = Cx0 ,

p ◦ h′(t) = p ◦ H(1, t) = p ◦ F̃ ◦ J0(1) = p ◦ F̃ (1, 0) = F (1, 0) = x0 = Cx0(t),

we have p ◦ δ = (p ◦ f ′) ∗ (p ◦ η) ∗ (p ◦ h′−1) = Cx0 . Hence δ belongs to the fiber p−1(x0) and
so by assumption, δ is null. On the other hand, by definitions of γ, δ, H and F̃ , γ ∗δ ≃ Cx̃0 ,
rel İ, which implies γ ≃ Cx̃0 , rel İ and so α̃ ≃ β̃, rel İ. �

Obviously, if every loop in fibers of an h-fibration p is constant, then p has wuphl, but
the converse is not necessarily true. For example, the h-fibration pr1 : X × Y → X, when
Y is any non-singleton simply connected space, has wuphl and also has nonconstant paths
in its fibers. Since the fibers of two fiber homotopy equivalence fibrations (h-fibrations)
have the same homotopy type, by Proposition 2.10 we have the following result.

Corollary 2.11. (i) If two h-fibrations are fiber homotopy equivalent and one of them
has wuphl, then so has the other one.

(ii) If an h-fibration is fiber homotopy equivalent to a fibration and one of them has
wuphl, then so has the other one.
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A map p : E → B has path lifting property if for a given path α : I → B with
α(0) ∈ p(E) and every e ∈ p−1(α(0)) there exists a path α̃ in E started at e, such that
p ◦ α̃ = α. We know that every fibration has the path lifting property and the following
example shows that an h-fibration does not necessarily have the path lifting property.

Example 2.12. Let E = ([−1, 0] × [−1, 0]) ∪ ([0, 1] × [0, 1]), B = [−1, 1] and p be the
projection on the first component. Then p is an h-fibration because for given maps F :
X × I → B and f̃ : X → E with p ◦ f̃ = F ◦ J0 it suffices to define F̃ : X × I → E by
F̃ (x, t) = (F (x, t), 0). But, there is no lift for the path α(t) = t, started from (0, −1

2
).

In the following we give a homotopical analogue of path lifting property and show that
h-fibrations enjoy this property.

Definition 2.13. A map p : E → B has homotopically path lifting property if for a given
b ∈ B, e ∈ p−1(b) and a path α in B beginning at b, there exists a path α̃ in E such that
α̃(0) = e and p ◦ α̃ ≃ α, rel İ.

Theorem 2.14. An h-fibration has homotopically path lifting property.

Proof. Let p : E → B be an h-fibration, α be a path in B and e ∈ p−1(α(0)). Also, let
F : {∗} × I → B be the homotopy F (∗, t) = α(t) and f̃ : {∗} → E be the map f̃(∗) = e.
Then p◦ f̃ = F ◦J0 and since p is an h-fibration, there is a homotopy F̃ : {∗}×I → E and
a fiber homotopy H : {∗} × I → E such that p ◦ F̃ = F and H : F̃ ◦ J0 ≃p f̃ . Let α̃ be the
path in E defined by α̃(t) = F̃ (∗, t). Then H(∗, 0) = F̃ ◦ J0(∗) = α̃(0), H(∗, 1) = f̃(∗) = e
and

p ◦ H(∗, t) = p ◦ F̃ ◦ J0(∗) = p ◦ f̃(∗) = α(0).
Let γ̃ := H(∗, −) which is a path in the fiber p−1(α(0)) from α̃(0) to e. Then β̃ = γ̃−1 ∗ α̃
is a homotopical lift of α started from e, because

p ◦ β̃ = p ◦ (γ̃−1 ∗ α̃) = (p ◦ γ̃−1) ∗ (p ◦ α̃) ≃ Cα(0) ∗ α ≃ α, rel İ.

�
We know that restriction of a fibration on each of whose path components is a fibration

and for maps with locally path connected total space, we have the converse (see, [8, Lemma
2.3.1 and Theorem 2.3.2]). These results are satisfied for h-fibrations with a similar proof
which is left to the readers.

Proposition 2.15. Let p : E → B be a map. If E is locally path connected, then p is an
h-fibration if and only if for each path component A of E, p(A) is a path component of B
and p|A : A → p(A) is an h-fibration.

Let p : E → B be a map and define a subspace B ⊆ E × BI as follows:
B = {(e, ω) ∈ E × BI |ω(0) = p(e)}.

Recall that, a lifting function for p is a map λ : B → EI which assigns to each point e ∈ E
and every path ω in B starting at p(e) a path λ(e, ω) in E starting at e that is a lift of ω.
Existence of a lifting function for a map p : E → B is equivalent to p is a fibration (see
[8, Theorem 2.7.8]). For h-fibrations we introduce a homotopical version of lifting function
and show that every h-fibration has one of them.

Definition 2.16. A homotopically lifting function for p is a map λ : B → EI which
assigns to each point e ∈ E and every path ω in B starting at p(e) a path λ(e, ω) in E
starting at e that is a homotopical lift of ω.
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Theorem 2.17. Every h-fibration has a homotopically lifting function.

Proof. Let p : E → B be an h-fibration. Define two maps f̃ : B → E and F : B×I → B by
f̃(e, ω) = e and F ((e, ω), t) = ω(t), respectively. Since F ◦ J0(e, ω) = F ((e, ω), 0) = ω(0) =
p(e) = p ◦ f̃(e, ω) and p is an h-fibration, there exist homotopies F̃ , H : B × I → E such
that p ◦ F̃ = F and H : F̃ ◦ J0 ≃p f̃ . Define λ : B → EI by λ(e, ω)(t) = F̃ ((e, ω), t) which
is continuous. Let x̃ := λ(e, ω)(0). Then x̃ ∈ p−1(p(e)) because p(x̃) = p ◦ λ(e, ω)(0) =
p ◦ F̃ ◦ J0(e, ω) = p ◦ f̃(e, ω) = p(e). Similar to the proof of Proposition 2.14, there is a
path γ in the fiber p−1(p(e)) from e to x̃. Define λ′ : B → EI by λ′(e, ω) = γ ∗ λ(e, ω).
Then λ′(e, ω)(0) = γ(0) = e and

p ◦ λ′(e, ω) = p ◦ (γ ∗ λ(e, ω)) = (p ◦ γ) ∗ (p ◦ λ(e, ω)) = Cp(e) ∗ p ◦ λ(e, ω)

= Cp(e) ∗ p ◦ F̃ ((e, ω), −) = Cp(e) ∗ F ((e, ω), −) = Cp(e) ∗ ω ≃ ω, rel İ.

Therefore λ′ is a homotopically lifting function for p. �
Remark 2.18. The converse of Theorem 2.17 is not true. As an example, let E = I ×
I − {(0, 1

2)}, B = I and p be the projection on the first component. Since the fibers of p
do not have the same homotopy, p is not an h-fibration. However, p has a homotopically
lifting function. For, let e ∈ E and ω be a path in B starting at p(e). Also define two
paths α, β in E by α(t) = (1 − t)e + tA and β(t) = (1 − t)A + t(ω(1), 0), where A = (1, 1

2).
Define λ : B → EI such that λ(e, ω)(t) = (α ∗ β)(t). Then λ(e, ω) is a path starting at
λ(e, ω)(0) = α(0) = e. Moreover, since

p ◦ λ(e, ω)(0) = p ◦ α(0) = p(e) = ω(0),
p ◦ λ(e, ω)(1) = p ◦ β(1) = p(ω(1), 0) = ω(1)

and B is simply connected, p ◦ λ(e, ω)(t) ≃ ω(t) rel İ, as desired.

3. Category of h-Fibrations
In this section, Fib and Fib(B) are the category of fibrations and fibrations over B, and

have the categories Fibu and Fibu(B) (with the extra assumption unique path lifting) as
subcategory, respectively (see [8]). When we deal with fibrations with wuphl instead of
upl, we have the categories Fibwu and Fibwu(B) [7], for which

Fibu ≤ Fibwu, Fibu(B) ≤ Fibwu(B).
To construct new categories by h-fibrations, we need to the following essential proposi-

tion.

Proposition 3.1. Composition of two h-fibrations is an h-fibration.

Proof. Let p′ : E′ → E and p : E → B be two h-fibrations, f̃ : X → E′ and F :
X × I → B be two maps such that (p ◦ p′) ◦ f̃ = F ◦ J0. Since p is an h-fibration, there
exist homotopies F̃ , H : X × I → E such that p ◦ F̃ = F and H : p′ ◦ f̃ ≃p F̃ ◦ J0. Since
p′ ◦ f̃ = H ◦ J0 and p′ is an h-fibration, there exist homotopies H̃, D : X × I → E′ such
that p′ ◦ H̃ = H and D : f̃ ≃p′ H̃ ◦ J0. Let J1 : X → X × I be the map J1(x) = (x, 1).
Since p′ ◦ (H̃ ◦ J1(x)) = p′ ◦ H̃(x, 1) = H(x, 1) = F̃ ◦ J0(x) and p′ is an h-fibration, there
exist homotopies K̃, T : X × I → E′ such that p′ ◦ K̃ = F̃ and T : H̃ ◦ J1 ≃p′ K̃ ◦ J0.
Since, (p ◦ p′) ◦ K̃ = p ◦ F̃ = F , K̃ is the desired homotopy. Also, by Proposition 2.3,
D : f̃ ≃p◦p′ H̃0 and T : H̃1 ≃p◦p′ K̃0. Moreover,
(p ◦ p′) ◦ H̃(x, t) = p ◦ H(x, t) = p ◦ H(x, 0) = (p ◦ p′) ◦ H̃(x, 0) = (p ◦ p′) ◦ H̃0(x),
(p◦p′)◦H̃(x, t) = p◦H(x, t) = p◦H(x, 1) = (p◦p′)◦H̃(x, 1) = (p◦p′)◦H̃1(x), which imply
that H̃ : H̃0 ≃p◦p′ H̃1. Since fiber homotopy is an equivalence relation, f̃ ≃p◦p′ K̃ ◦ J0 and
so the result holds. �
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It is straightforward that composition of two maps with wuphl is a map with wuphl
[7, Proposition 4.1] and so we have the following proposition.

Proposition 3.2. Composition of h-fibrations with wuphl is an h-fibration with wuphl.

Now, we can define category of h-fibrations, hFib and its subcategory, category of h-
fibrations with wuphl, hFibwu in which the objects are topological spaces and morphisms
are h-fibrations and h-fibrations with wuphl, respectively. Moreover, for a given space B,
we can consider other categories, hFib(B) and hFibwu(B), whose objects are h-fibrations
and h-fibrations with wuphl over B and morphisms are the commutative triangles.

By Theorem 2.8, since every fibration is an h-fibration, we have the following diagram
of inclusion relations between categories.

Fibu Fibwu Fib

hFibu hFibwu hFib .

-

-

-

-

? ??

6

It is notable that we have a similar diagram for the categories constructed over the base
space B. Also, note that in the above diagram, the inclusions are proper. The first row is
proper [7, Example 3.3] and the second row is proper, since a fibration is an h-fibration.
Moreover, Example 2.12 shows that the second and the third column are proper.

Now, we study the existence of products and coproducts for these categories.

Proposition 3.3. Product of two h-fibrations is an h-fibration.

Proof. Let p : E → B and p′ : E′ → B′ be two h-fibrations, f̃ : X → E × E′ and
F : X ×I → B ×B′ be maps such that (p×p′)◦ f̃ = F ◦J0. Since p◦pr1 ◦ f̃ = (pr1 ◦F )◦J0,
p′ ◦ pr2 ◦ f̃ = (pr2 ◦ F ) ◦ J0 and p and p′ are h-fibration, there exist F̃1 : X × I → E and
F̃2 : X × I → E′ such that p ◦ F̃1 = pr1 ◦ F , p′ ◦ F̃2 = pr2 ◦ F , F̃1 ◦ J0 ≃p pr1 ◦ f̃ and
F̃2 ◦ J0 ≃p′ pr2 ◦ f̃ . Define F̃ : X × I → E × E′ by F̃ (x, t) = (F̃1(x, t), F̃2(x, t)). Then

(p × p′) ◦ F̃ = (p ◦ F̃1, p′ ◦ F̃2) = (pr1 ◦ F, pr2 ◦ F ) = F,

and
F̃ ◦ J0 = (F̃1 ◦ J0, F̃2 ◦ J0) ≃p×p′ (pr1 ◦ f̃ , pr2 ◦ f̃) = f̃ .

�
It is easy to see that product of two maps with wuphl is a map with wuphl. Hence we

have the following result.

Proposition 3.4. The categories hFib and hFibwu have the product.

To present products for hFib(B) and hFibwu(B), consider the Whitney sum of h-
fibrations (with wuphl). If {pj : Ej → B|j ∈ J} is an indexed collection of h-fibrations
(with wuphl ) over the space B, define

⊕B,JEj = {(ej)j ∈ ⊓jEj |ej ∈ Ej , and pj(ej) = pi(ei), for i, j ∈ J}
and also define

⊕B,Jpj : ⊕B,JEj → B

(ej)j � pj(ej).

Proposition 3.5. Let {pj : Ej → B|j ∈ J} be an indexed collection of h-fibrations (with
wuphl) on the space B. Then ⊕B,Jpj is an h-fibration (with wuphl).
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Proof. Let E := ⊕B,JEj and p := ⊕B,Jpj . Also, let f̃ : X → E and F : X × I → B be
two maps such that p ◦ f̃ = F ◦ J0. Then f̃ = (f̃j)j , j ∈ J , where f̃j : X → Ej is the
projection of f̃ over the j-th component. By definition of p, pj ◦ f̃j = F ◦ J0 and since pj

is an h-fibration, there exist homotopies F̃j : X × I → Ej and Hj : X × I → Ej such
that pj ◦ F̃j = F and Hj : F̃j ◦ J0 ≃pj f̃j . Since pj ◦ F̃j = F = pi ◦ F̃i, we can define
F̃ : X × I → E by F̃ (x, t) = (F̃j(x, t))j . Hence,

p ◦ F̃ = p ◦ (F̃j)j = pj ◦ F̃j = F.

Also, since pj ◦ Hj(x, t) = pj ◦ f̃j(x) = pi ◦ f̃i(x) = pi ◦ Hi(x, t), Im(H) ⊆ E and so we can
define H : X × I → E by H(x, t) = (Hj(x, t))j . Now H : F̃ ◦ J0 ≃p f̃ since

H(x, 0) = (Hj(x, 0))j = (F̃j ◦ J0(x))j = (F̃j)j ◦ J0(x) = F̃ ◦ J0(x),

H(x, 1) = (Hj(x, 1))j = (f̃j(x))j = f̃(x),

p ◦ H(x, t) = p ◦ (Hj(x, t))j = pj ◦ Hj(x, t) = pj ◦ (F̃j ◦ J0)(x) =

(pj ◦ F̃j) ◦ J0(x) = (p ◦ F̃ ) ◦ J0(x) = p ◦ (F̃ ◦ J0)(x),

p ◦ H(x, t) = p ◦ (Hj(x, t))j = pj ◦ Hj(x, t) = pj ◦ f̃j(x) = p ◦ f̃(x).

Therefore p is an h-fibration. Moreover, if every pj has wuphl, since the fibers of p are the
product of the fibers of pj ’s, then by Proposition 2.10, p has wuphl. �

The following result is a consequence of the above proposition.

Theorem 3.6. The categories hFib(B) and hFibwu(B) have products.

Suppose {pj : Ej → Bj |j ∈ J} is an indexed collection of morphisms in hFib (or hFibwu),
E := ⊔jEj and B := ⊔jBj are disjoint union of Ej ’s and Bj ’s, respectively. Define
q : E → B by q|Ej = pj . Then q is an h-fibration (with wuphl). Because let f̃ : X → E

and F : X × I → B be the maps such that q ◦ f̃ = F ◦ J0. If x0 ∈ X, then there exists one
and only one j ∈ J such that f̃(x0) ∈ Ej and F ◦ J0(x0) ∈ Bj . Since Ej ’s and Bj ’s are
disjoint, continuity of f̃ and F ◦ J0 yields that for every x ∈ X and every t ∈ I, f̃(x) ∈ Ej ,
F ◦ J0(x) ∈ Bj and F (x, t) ∈ Bj which imply that pj ◦ f̃(x) = F ◦ J0(x). By assumption,
there exist homotopies F̃j : X × I → Ej and Hj : X × I → Ej such that pj ◦ F̃j = F and
Hj : F̃j ◦J0 ≃pj f̃ . Define F̃ , H : X ×I → E by F̃ (x, t) = F̃j(x, t) and H(x, t) = Hj(x, t), if
f̃(x) ∈ Ej . Therefore q◦F̃ (x, t) = q◦F̃j(x, t) = pj ◦F̃j(x, t) = F (x, t). Also, H : F̃ ◦J0 ≃q f̃

because if f̃(x) ∈ Ej , then

H(x, 0) = Hj(x, 0) = F̃j ◦ J0(x),

H(x, 1) = Hj(x, 1) = f̃(x),

q ◦ H(x, t) = q ◦ Hj(x, t) = pj ◦ Hj(x, t) = pj ◦ (F̃j ◦ J0)(x) =

(pj ◦ F̃j) ◦ J0(x) = (q ◦ F̃ ) ◦ J0(x) = q ◦ (F̃ ◦ J0)(x),

q ◦ H(x, t) = q ◦ Hj(x, t) = pj ◦ Hj(x, t) = pj ◦ f̃(x) = q ◦ f̃(x).

Hence q is an h-fibration. Moreover, if every pj has wuphl, since a fiber of q is a fiber of
one of pj

,s, Proposition 2.10 follows that q has wuphl.
Similarly, if {pj : Ej → B|j ∈ J} is an indexed collection of objects in hFib(B) (or hFibwu(B)),
q : ⊔jEj → B defined by q|Ej = pj is also an h-fibration (with wuphl), because it is suffi-
cient that for every j ∈ J , let Bj := B. Therefore, we have the following result.

Theorem 3.7. The categories hFib, hFibwu, hFib(B) and hFibwu(B) have coproducts.
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