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1. Introduction
Mixed norm spaces are spaces of multivariable functions in which the norm takes advan-

tage of the product structure in the domain. They were first named and formally studied
in [4], as a tool to study generalizations of Sobolev’s theorem regarding the continuity of
certain potencial operators and the Hausdorff-Young theorem. Spaces of this type arise
naturally in harmonic and functional analysis. See [11, 14] for some history and related
work.

The multiplication operator, defined roughly speaking as the pointwise multiplication by
a real-valued measurable function, is a well-studied transformation. This operator received
considerable attention over the past several decades. Multiplication operators generalize
the notion of operator given by a diagonal matrix. More precisely, one of the results of
operator theory is a spectral theorem, which states that every self-adjoint operator on a
Hilbert space is unitarily equivalent to a multiplication operator on an L2 space (see e.g.
[12]). There exist several papers devoted to the study of the multiplication operator, on Lp

spaces [13,18], on Lorentz spaces [2], on Orlicz-Lorentz spaces [6], on Weak Lp spaces [9],
on Cesàro spaces [15], on variable Lp spaces [7], on Köthe sequence spaces [17], on Lorentz
sequence spaces [8] and on bounded variation spaces [3,10]. For some of the history of the
multiplication operator and open problems, see [16]. It is natural to extend the study to
mixed norm Lebesgue spaces.

In order to carry on this study, we introduce at the end of this section some previous
definitions. In Section 2 we characterize the boundedness of the multiplication operator
on mixed norm Lebesgue spaces. In Section 3, we give necessary and sufficient conditions
to guarantee the closed range of the multiplication operator. Finally, in Section 4 we
introduce a subspace of the mixed norm Lebesgue space and then we establish some
results about the compactness of the multiplication operator.
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Denote by L0
(
R2) the class of all measurable and almost everywhere finite functions

f on R2. Fix indices p, q ∈ (0, ∞). A function f ∈ L0
(
R2) belongs to the mixed norm

Lebesgue space Lq(u) [Lp(v)] if

∥f∥Lq(u)[Lp(v)] =
[∫

R

(∫
R

|f(x, y)|pv(x) dx

)q/p

u(y) dy

]1/q

< ∞.

Where u and v are weight functions, i.e., u and v are non-negative locally integrable
functions.

∥·∥Lq(u)[Lp(v)] is a norm only when p ≥ 1 and q ≥ 1, moreover Lq(u) [Lp(v)] is a Banach
space. For details, we refer the reader to [5].

We denote by m2(E) the Lebesgue measure of a measurable set E ⊂ R2.
If F (X) is a function space on a non-empty set X, and φ : X → R is a function such

that φ · f ∈ F (X) whenever f ∈ F (X), then the transformation f 7→ φ · f is denoted by
Mφ. In case F (X) is a topological space, Mφ is called the multiplication operator induced
by φ.

2. Boundedness of the multiplication operator on Lq(u) [Lp(v)]
In the following theorem we characterize the boundedness of Mφ, defined on Lq(u) [Lp(v)]

Theorem 2.1. The operator Mφ : Lq(u) [Lp(v)] → Lq(u) [Lp(v)] given by
(Mφf) (x, y) = Mφ(f(x, y)) = φ(x, y) · f(x, y)

is bounded if and only if φ is essentially bounded. Moreover,
∥Mφ∥ = ∥φ∥∞ .

Proof. We prove first the sufficiency. Let φ be an essentially bounded function. Since
|φ(x, y)| ≤ ∥φ∥∞ a.e., we have

|φ(x, y)f(x, y)| ≤ ∥φ∥∞ |f(x, y)| a.e.
Raising to p, multiplying by v(x) and integrating, we get∫

R
|φ(x, y)f(x, y)|pv(x) dx ≤

∫
R

[∥φ∥∞ |f(x, y)|]p v(x) dx.

Raising to q/p and multiplying by the weight u,(∫
R

|φ(x, y)f(x, y)|pv(x) dx

)q/p

u(y) ≤
(∫

R
[∥φ∥∞ |f(x, y)|]p v(x) dx

)q/p

u(y).

Finally, we integrate and raise to 1/q, to obtain[∫
R

(∫
R

|φ(x, y)f(x, y)|pv(x) dx

)q/p

u(y) dy

]1/q

≤

[∫
R

(∫
R

[∥φ∥∞ |f(x, y)|]p v(x) dx

)q/p

u(y) dy

]1/q

.

So, ∥Mφf∥Lq(u)[Lp(v)] ≤ ∥φ∥∞ ∥f∥Lq(u)[Lp(v)], i.e.

∥Mφ∥ ≤ ∥φ∥∞ . (2.1)
Then Mφ is bounded.

Conversely, suppose that Mφ is a bounded operator. Suppose also that φ is not essen-
tially bounded. Then, the set En =

{
(x, y) ∈ R2 : |φ(x, y)| > n

}
has a positive measure.

Therefore, for any n ∈ N and any (x, y) ∈ R2, we have
|(φχEn) (x, y)| ≥ nχEn(x, y).
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Raising to p, multiplying by v and then integrating,∫
R

|(φχEn) (x, y)|p v(x) dx ≥
∫
R

[nχEn(x, y)]p v(x) dx.

Raising to q/p and then multiplying by u,(∫
R

|(φχEn) (x, y)|p v(x) dx

)q/p

u(y) ≥
(∫

R
[nχEn(x, y)]p v(x) dx

)q/p

u(y).

Now, integrating and then raising to 1/q, we have[∫
R

(∫
R

|(φχEn) (x, y)|p v(x) dx

)q/p

u(y) dy

]1/q

≥

[∫
R

(∫
R

[nχEn(x, y)]p v(x) dx

)q/p

u(y) dy

]1/q

.

Hence
∥MφχEn∥Lq(u)[Lp(v)] ≥ n ∥χEn∥Lq(u)[Lp(v)] .

This contradicts the boundedness of Mφ. So φ must be essentially bounded.
In order to prove that the norm of Mφ is actually ∥φ∥∞, for ε > 0,

let E =
{
(x, y) ∈ R2 : |φ(x, y)| ≥ ∥φ∥∞ − ε

}
. Note that m2(E) > 0. Then

|φ(x, y)χE(x, y)| ≥ (∥φ∥∞ − ε) χE(x, y) ∀ (x, y) ∈ R2.

Following the same steps as above, one concludes that
∥MφχE∥Lq(u)[Lp(v)] ≥ (∥φ∥∞ − ε) ∥χE∥Lq(u)[Lp(v)] .

Hence
∥Mφ∥ ≥ ∥φ∥∞ − ε.

Since ε > 0 is arbitrary, we have
∥Mφ∥ ≥ ∥φ∥∞ . (2.2)

From (2.1) and (2.2) we conclude that
∥Mφ∥ = ∥φ∥∞ . �

3. Closed range of the multiplication operator
Now, we study the closed range of the multiplication operator.
Although we will need Mφ to be an injective operator, this is not always the case. Take

φ(x, y) = χ[0,1]×[0,1](x, y) and f(x, y) = χ[2,3]×[2,3](x, y). Then,

(Mφf) (x, y) = φ(x, y) · f(x, y) = χ[0,1]×[0,1](x, y) · χ[2,3]×[2,3](x, y) = 0.

Hence, since ker (Mφ) ̸= {0}, Mφ is not one to one.
In order to guarantee the injectivity of Mφ, we need to take into account the support

of φ, which is defined as

supp φ =
{

(x, y) ∈ R2 : φ(x, y) ̸= 0
}

.

Take S = supp φ and define the restricted space Lq(u) [Lp(v)] (S) as
Lq(u) [Lp(v)] (S) = {fχS : f ∈ Lq(u) [Lp(v)]} .

The following result gives us a relation between the injectivity of Mφ and the restricted
space Lq(u) [Lp(v)] (S).

Proposition 3.1. Mφ : Lq(u) [Lp(v)] (S) → Lq(u) [Lp(v)] (S) is an injective operator.
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Proof. If Mφf̃ = 0 where f̃ = fχS , we have φ(x, y)f̃(x, y) = 0 for all (x, y) ∈ R2, i.e.
φ(x, y)f(x, y)χS(x, y) = 0 for all (x, y) ∈ R2 and since S = supp φ, then

φ(x, y)f(x, y) = 0, ∀ (x, y) ∈ S

f(x, y) = 0, ∀ (x, y) ∈ S

f(x, y)χS(x, y) = 0, ∀ (x, y) ∈ R2.

Then f̃(x, y) = 0. Hence ker (Mφ) = {0} and then we have injectivity of Mφ on the set
Lq(u) [Lp(v)] (S). �

We recall the definition of a bounded below operator.

Definition 3.2. An operator T : X → Y between normed spaces is said to be bounded
below if there exists a constant C > 0 such that

∥Tx∥ ≥ C ∥x∥
for each x ∈ X.

The following theorem (see e.g. [1]) allows us to obtain some results about the range of
Mφ.

Theorem 3.3. Let T be a bounded linear operator, T : X → Y , where X and Y are
Banach spaces. Then T is bounded below if and only if T is one-to-one and has closed
range.

As an immediate consequence of Proposition 3.1 and Theorem 3.3, we have the following
corollary.

Corollary 3.4. The multiplication operator
Mφ : Lq(u) [Lp(v)] (S) → Lq(u) [Lp(v)] (S)

is bounded below if and only if Mφ has closed range.

Now we show the main theorem of this section.

Theorem 3.5. The multiplication operator Mφ : Lq(u) [Lp(v)] → Lq(u) [Lp(v)] has closed
range if and only if there exists δ > 0 such that |φ(x, y)| ≥ δ for m2-almost all (x, y) ∈
supp φ.

Proof. We prove first the converse implication. Write S = supp φ. Suppose that there
exists δ > 0 for which |φ(x, y)| ≥ δ a.e. on supp φ. Then

|φ(x, y)f(x, y)χS(x, y)| ≥ δ |f(x, y)χS(x, y)| a.e.
From this we have(∫

R
|φ(x, y)f(x, y)χS(x, y)|p v(x) dx

)q/p

≥
(∫

R
[δ |f(x, y)χS(x, y)|]p v(x) dx

)q/p

.

And then[∫
R

(∫
R

|φ(x, y)f(x, y)χS(x, y)|p v(x) dx

)q/p

u(y) dy

]1/q

≥

[∫
R

(∫
R

[δ |f(x, y)χS(x, y)|]p v(x) dx

)q/p

u(y) dy

]1/q

.

Hence
∥MφfχS∥Lq(u)[Lp(v)] ≥ δ ∥fχS∥Lq(u)[Lp(v)] .

This means that Mφ is bounded below on Lq(u) [Lp(v)] (S). Following similar lines to
[18, Lemma 2.2], one concludes that Mφ : Lq(u) [Lp(v)] → Lq(u) [Lp(v)] has closed range.
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Now we prove the reverse implication. Suppose that Mφ has closed range on Lq(u) [Lp(v)].
Again, by [18, Lemma 2.2], there exists ε > 0 such that∥∥∥Mφf̃

∥∥∥
Lq(u)[Lp(v)]

≥ ε
∥∥∥f̃∥∥∥

Lq(u)[Lp(v)]
(3.1)

for all f̃ ∈ Lq(u) [Lp(v)] (S). Let E = {(x, y) ∈ S : |φ(x, y)| < ε/2}. If m2(E) > 0, we can
find a measurable set F ⊂ E such that 0 < m2(E) < m2(F ) and so χF ∈ Lq(u) [Lp(v)] (S).
Then we have

|φ(x, y)χF (x, y)| ≤ ε

2
|χF (x, y)| .

Following the same steps as above, one concludes that[∫
R

(∫
R

|φ(x, y)χF (x, y)|p v(x) dx

)q/p

u(y) dy

]1/q

≤

[∫
R

(∫
R

[
ε

2
|χF (x, y)|

]p

v(x) dx

)q/p

u(y) dy

]1/q

.

Thus,
∥MφχF ∥Lq(u)[Lp(v)] ≤ ε

2
∥χF ∥Lq(u)[Lp(v)] . (3.2)

Inequalities (3.1) and (3.2) together lead to a contradiction. Therefore m2(E) = 0. In
other words, |φ(x, y)| ≥ ε/2 for m2-almost all (x, y) ∈ S. �

4. Compactness of the multiplication operator
Before we continue, we recall the definition of invariant subspace.

Definition 4.1. Let T : X → X be an operator. A subspace V of X is said to be invariant
under T (or T -invariant) if T (V ) ⊆ V .

The next lemma will be useful later.

Lemma 4.2. Let T : X → X be an operator. If T is compact and V is a closed T -invariant
subspace of X, then T |V is compact.

A proof of the above lemma may be found in [6].
For ε > 0, we define

Aε(φ) =
{

(x, y) ∈ R2 : |φ(x, y)| ≥ ε
}

,

and we also define
Lq(u) [Lp(v)] (Aε(φ)) =

{
fχAε(φ) : f ∈ Lq(u) [Lp(v)]

}
.

Lemma 4.3. Let Mφ be a compact operator. Then Lq(u) [Lp(v)] (Aε(φ)) is a closed
invariant subspace of Lq(u) [Lp(v)] under Mφ. Moreover,

Mφ|Lq(u)[Lp(v)](Aε(φ))

is a compact operator.

Proof. Let F, G ∈ Lq(u) [Lp(v)] (Aε(φ)), then F = fχAε(φ) and G = gχAε(φ) with f, g ∈
Lq(u) [Lp(v)]. So,

λF + µG = λfχAε(φ) + µgχAε(φ)

= (λf + µg)χAε(φ).

Since λf + µg ∈ Lq(u) [Lp(v)], the above equation shows that
λF + µG ∈ Lq(u) [Lp(v)] (Aε(φ)) .

So this is a subspace of Lq(u) [Lp(v)] (Aε(φ)).
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Now, let h ∈ Mφ (Lq(u) [Lp(v)] (Aε(φ))). Then there exist F such that F belongs to
Lq(u) [Lp(v)] (Aε(φ)) and MφF = h. Since F = fχAε(φ) for some f ∈ Lq(u) [Lp(v)], we
have

h = MφF = φF = φ
(
fχAε(φ)

)
= (φf)χAε(φ).

Since φf ∈ Lq(u) [Lp(v)], the above equation shows that h ∈ Lq(u) [Lp(v)] (Aε(φ)). This
proves that Lq(u) [Lp(v)] (Aε(φ)) is Mφ-invariant.

To prove the closedness of Lq(u) [Lp(v)] (Aε(φ)), let {Fk}k∈N be a sequence in
Lq(u) [Lp(v)] (Aε(φ)) such that

Fk → F in Lq(u) [Lp(v)] (Aε(φ)).
We need to show that F ∈ Lq(u) [Lp(v)] (Aε(φ)). In order to do this, we write

F = FχAε(φ) + FχA{
ε(φ).

It is enough to prove that FχA{
ε(φ) = 0. For any ε > 0, there exists n0 such that

∥F − Fn0∥Lq(u)[Lp(v)] < ε, but∥∥∥FχA{
ε(φ)

∥∥∥
Lq(u)[Lp(v)]

=
∥∥∥(F − Fn0 + Fn0) χA{

ε(φ)

∥∥∥
Lq(u)[Lp(v)]

≤
∥∥∥(F − Fn0) χA{

ε(φ)

∥∥∥
Lq(u)[Lp(v)]

+
∥∥∥Fn0χA{

ε(φ)

∥∥∥
Lq(u)[Lp(v)]

=
∥∥∥(F − Fn0) χA{

ε(φ)

∥∥∥
Lq(u)[Lp(v)]

+
∥∥∥fχAε(φ)χA{

ε(φ)

∥∥∥
Lq(u)[Lp(v)]

=
∥∥∥(F − Fn0) χA{

ε(φ)

∥∥∥
Lq(u)[Lp(v)]

< ε.

Hence
∥∥∥FχA{

ε(φ)

∥∥∥
Lq(u)[Lp(v)]

< ε. Since ε was arbitrary, we have∥∥∥FχA{
ε(φ)

∥∥∥
Lq(u)[Lp(v)]

= 0.

Therefore FχA{
ε(φ) = 0 and F = FχAε(φ) ∈ Lq(u) [Lp(v)] (Aε(φ)).

Now, by using Lemma 4.2, we conclude that Mφ|Lq(u)[Lp(v)](Aε(φ)) is a compact operator.
�

Finally, we have the following theorem.

Theorem 4.4. Let Mφ : Lq(u) [Lp(v)] → Lq(u) [Lp(v)] be a bounded linear operator.
Then Mφ is compact if and only if Lq(u) [Lp(v)] (Aε(φ)) is finite dimensional for each
ε > 0.

Proof. Suppose that Mφ is a compact operator. Note that, for all (x, y) ∈ Aε(φ),
|φ(x, y)| ≥ ε.

Then
|φ(x, y)f(x, y)χAε(x, y)| ≥ ε |f(x, y)χAε(x, y)| ∀ (x, y) ∈ R2.

From this we have(∫
R

|φ(x, y)f(x, y)χAε(x, y)|p v(x) dx

)q/p

≥
(∫

R
[ε |f(x, y)χAε(x, y)|]p v(x) dx

)q/p

.

Consequently[∫
R

(∫
R

|φ(x, y)f(x, y)χAε(x, y)|p v(x) dx

)q/p

u(y) dy

]1/q

≥

[∫
R

(∫
R

[ε |f(x, y)χAε(x, y)|]p v(x) dx

)q/p

u(y) dy

]1/q

.
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From the last inequality we infer that
∥MφfχAε∥Lq(u)[Lp(v)] ≥ ε ∥fχAε∥Lq(u)[Lp(v)] . (4.1)

Hence Mφ|Lq(u)[Lp(v)](Aε(φ)) has closed range.
Now, if Mφ is a compact, then from Lemma 4.3, Lq(u) [Lp(v)] is a closed invariant

subspace of Mφ and by Lemma 4.2,
Mφ|Lq(u)[Lp(v)](Aε(φ))

is a compact operator. Also, Mφ : Lq(u) [Lp(v)] (Aε(φ)) → Lq(u) [Lp(v)] (Aε(φ)) is in-
vertible (in fact, its inverse is M−1

φ = Mφ−1). Therefore, Lq(u) [Lp(v)] (Aε(φ)) is finite
dimensional for each ε > 0.

Conversely, suppose that Lq(u) [Lp(v)] (Aε(φ)) is finite dimensional for any ε > 0. Par-
ticularly, Lq(u) [Lp(v)]

(
A1/n(φ)

)
is finite dimensional for all n ∈ N.

For each n, we define φn : R2 → C as follows

φn(x, y) =
{

φ(x, y), if |φ(x, y)| ≥ 1
n

0, if |φ(x, y)| < 1
n .

Then we have |φn(x, y) − φ(x, y)| ≤ 1/n. Following the same steps as above, one concludes
that

∥Mφnf − Mφf∥Lq(u)[Lp(v)] ≤ 1
n

∥f∥Lq(u)[Lp(v)] .

Then Mφn converges to Mφ uniformly.
Since each one of the spaces Lq(u) [Lp(v)]

(
A1/n(φ)

)
is finite dimensional, we have that

Mφn is a finite rank operator, which in turn implies that Mφn is compact. Finally, the
uniform convergence implies the compactness of Mφ. �
Remark 4.5. The results obtained in this paper can easily be extended to another types
of mixed norm spaces. For example, the mixed norm Lorentz spaces Λq(u) [Λp(v)], which
are the set of all functions f ∈ L0

(
R2) such that

∥f∥Λq(u)[Λp(v)] :=
(∫ ∞

0

[(∫ ∞

0
[f∗y(·, t)]p v(t) dt

)∗x

(s)
]q/p

u(s) ds

)1/q

is finite, where 0 < p, q < ∞, v, w are weights in R+, and h∗ denotes the usual decreasing
rearrangement of h.
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