

RESEARCH ARTICLE

L-paracompactness and L_2 -paracompactness

Lutfi Kalantan

King Abdulaziz University, Department of Mathematics, P.O.Box 80203, Jeddah 21589, Saudi Arabia

Abstract

A topological space X is called L-paracompact if there exist a paracompact space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$. A topological space X is called L_2 -paracompact if there exist a Hausdorff paracompact space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$. We investigate these two properties.

Mathematics Subject Classification (2010). 54C10, 54D20

Keywords. Lindelöf, paracompact, countably normal, C-paracompact, C_2 -paracompact, L-paracompact, L_2 -paracompact, L-normal, CP, C_2P

The purpose of this paper is to investigate two new properties, *L*-paracompactness and L_2 -paracompactness. Some of their aspects are similar to *L*-normality [4], and some are distinct. Throughout this paper, we denote an ordered pair by $\langle x, y \rangle$, the set of positive integers by \mathbb{N} , and the set of real numbers by \mathbb{R} . A T_4 space is a T_1 normal space and a Tychonoff space $(T_{3\frac{1}{2}})$ is a T_1 completely regular space. We do not assume T_2 in the definition of compactness, countable compactness, and paracompactness. We do not assume regularity in the definition of Lindelöfness. For a subset A of a space X, intA and \overline{A} denote the interior and the closure of A, respectively. An ordinal γ is the set of all ordinal α such that $\alpha < \gamma$. The first infinite ordinal is ω_0 , the first uncountable ordinal is ω_1 , and the successor cardinal of ω_1 is ω_2 .

Definition 1. (A. V. Arhangel'skii)

A topological space X is called C-paracompact if there exist a paracompact space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$. A topological space X is called C_2 -paracompact if there exist a Hausdorff paracompact space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$.

C-paracompactness and C_2 -paracompactness were studied in [8]. We use the idea of Arhangel'skii's definition above and give the following definition.

Email address: lnkalantan@hotmail.com; lkalantan@kau.edu.sa

Received: 21.08.2017; Accepted: 12.01.2018

Definition 2. A topological space X is called L-paracompact if there exist a paracompact space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$. A topological space X is called L_2 -paracompact if there exist a Hausdorff paracompact space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$.

Observe that a function $f: X \longrightarrow Y$ witnessing the C - paracompactness (C_2 - paracompactness) of X need not to be continuous. But it will be if it has the property that for each convergent sequence $x_n \longrightarrow x$ in X we have $f(x_n) \longrightarrow f(x)$ [8]. This happens if X is a Hausdorff sequential space or a k-space. Similarly, a function $f: X \longrightarrow Y$ witnessing the L-paracompactness (L_2 -paracompactness) of X need not to be continuous, see Example 11 below. But it will be if X is of countable tightness if for each subset A of X and each $x \in X$ with $x \in \overline{A}$ there exists a countable subset $B \subseteq A$ such that $x \in \overline{B}$ [1]. For a set A, we let $[A]^{\leq \omega_0} = \{B \subseteq A : B$ is countable $\}$.

Theorem 3. If X is L-paracompact (L_2 -paracompact) and of countable tightness and $f: X \longrightarrow Y$ is a witness function of the L-paracompactness (L_2 -paracompactness) of X, then f is continuous.

Proof. Let $A \subseteq X$ be arbitrary. We have

$$f(\overline{A}) = f(\bigcup_{B \in [A]^{\leq \omega_0}} \overline{B}) = \bigcup_{B \in [A]^{\leq \omega_0}} f(\overline{B}) \subseteq \bigcup_{B \in [A]^{\leq \omega_0}} \overline{f(B)} \subseteq \overline{f(A)}.$$

Therefore, f is continuous

Since any first countable space is Fréchet [1, 1.6.14], any Fréchet space is sequential [1, 1.6.14], and any sequential space is of countable tightness [1, 1.7.13(c)], we conclude that a witness function of the *L*-paracompactness (L_2 -paracompactness) first countable (Fréchet, sequential) space X is continuous. The following corollary is also clear.

Corollary 4. Any L_2 -paracompact space which is of countable tightness must be at least Hausdorff.

Since any compact space is Lindelöf, then any L-paracompact space is C-paracompact and any L_2 -paracompact space is C_2 -paracompact. The converse is not true in general. Obviously, no Lindelöf non-paracompact space is L-paracompact. So, no uncountable set X with countable complement topology [11] is L-paracompact, but it is C_2 -paracompact, hence C-paracompact, because the only compact subspaces are the finite subspaces, and the countable complement topology is T_1 so compact subspaces are discrete. Hence the discrete topology on X and the identity function will witness C_2 -paracompactness.

Any paracompact space is L-paracompact, just by taking Y = X and the identity function. It is clear from the definitions that any L_2 -paracompact is L-paracompact. In general, the converse is not true. Assume that X is Lindelöf and L_2 -paracompact, then the witness function is a homeomorphism which gives that X is Hausdorff. Thus, any paracompact Lindelöf space which is not Hausdorff is an L-paracompact space that cannot be L_2 -paracompact. In particular, any compact space which is not Hausdorff cannot be L_2 -paracompact. For examples, the modified Fort space [11], and the overlapping intervals space [11]. There is a case when the L-paracompactness implies L_2 -paracompactness given in the next theorem.

Theorem 5. If X is T_3 separable L-paracompact and of countable tightness, then X is paracompact T_4 .

Proof. Let Y be a paracompact space and $f: X \longrightarrow Y$ be a bijective witness to Lparacompactness of X. Then f is continuous because X is of countable tightness, by Theorem 3. Let D be a countable dense subset of X. We show that f is closed. Let H be any non-empty closed proper subset of X. Suppose that $f(p) = q \in Y \setminus f(H)$; then $p \notin H$. Using regularity, let U and V be disjoint open subsets of X containing p and H, respectively. Then $U \cap (D \cup \{p\})$ is open in the Lindelöf subspace $D \cup \{p\}$ containing p, so $f(U \cap (D \cup \{p\}))$ is open in the subspace $f(D \cup \{p\})$ of Y containing q. Thus $f(U \cap (D \cup \{p\})) = f(U) \cap f(D \cup \{p\}) = W \cap f(D \cup \{p\})$ for some open subset W in Y with $q \in W$. We claim that $W \cap f(H) = \emptyset$. Suppose otherwise, and take $y \in W \cap f(H)$. Let $x \in H$ such that f(x) = y. Note that $x \in V$. Since D is dense in X, D is also dense in the open set V. Thus $x \in \overline{V \cap D}$. Now since W is open in Y and f is continuous, $f^{-1}(W)$ is an open set in X; it also contains x. Thus we can choose $d \in f^{-1}(W) \cap V \cap D$. Then $f(d) \in W \cap f(V \cap D) \subseteq W \cap f(D \cup \{p\}) = f(U \cap (D \cup \{p\}))$. So $f(d) \in f(U) \cap f(V)$, a contradiction. Thus $W \cap f(H) = \emptyset$. Note that $q \in W$. As $q \in Y \setminus f(H)$ was arbitrary, f(H) is closed. So f is a homeomorphism and X is paracompact. Since X is also T_2 , X is normal. Note that X is also Lindelöf being separable and paracompact.

We conclude from Theorem 5 that the Niemytzki plane [11] and Mrówka space $\Psi(\mathcal{A})$, where $\mathcal{A} \subset [\omega_0]^{\omega_0} = \{B \subset \omega_0 : B \text{ is infinite }\}$ is mad [12], are examples of Tychonoff spaces which are not *L*-paracompact. *L*-paracompactness is not hereditary, neither is L_2 -paracompactness. Take any compactification of the Niemytzki plane. We still do not know if *L*-paracompactness is hereditary with respect to closed subspaces.

Recall that a *Dowker space* is a T_4 space whose product with I, I = [0, 1] with its usual metric, is not normal. M. E. Rudin used the existence of a Suslin line to obtain a Dowker space which is hereditarily separable and first countable [6]. Using CH, I. Juhász, K. Kunen, and M. E. Rudin constructed a first countable hereditarily separable real compact Dowker space [2]. Weiss constructed a first countable separable locally compact Dowker space whose existence is consistent with MA + \neg CH [13]. By Theorem 5, such spaces are consistent examples of Dowker space are not *L*-paracompact.

Theorem 6. L-paracompactness $(L_2$ -paracompactness) is a topological property.

Proof. Let X be an L-paracompact space and $X \cong Z$. Let Y be a paracompact space and $f: X \longrightarrow Y$ be a bijection such that $f \upharpoonright_A : A \longrightarrow f(A)$ is a homeomorphism for each Lindelöf subspace A of X. Let $g: Z \longrightarrow X$ be a homeomorphism. Then $f \circ g: Z \longrightarrow Y$ satisfies all requirements. \Box

Theorem 7. L-paracompactness $(L_2$ -paracompactness) is an additive property.

Proof. Let X_{α} be an *L*-paracompact space for each $\alpha \in \Lambda$. We show that their sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is *L*-paracompact. For each $\alpha \in \Lambda$, pick a paracompact space Y_{α} and a bijective function $f_{\alpha} : X_{\alpha} \longrightarrow Y_{\alpha}$ such that $f_{\alpha \upharpoonright C_{\alpha}} : C_{\alpha} \longrightarrow f_{\alpha}(C_{\alpha})$ is a homeomorphism for each Lindelöf subspace C_{α} of X_{α} . Since Y_{α} is paracompact for each $\alpha \in \Lambda$, then the sum $\bigoplus_{\alpha \in \Lambda} Y_{\alpha}$ is paracompact, [1, 5.1.30]. Consider the function sum, see [1, 2.2.E], $\bigoplus_{\alpha \in \Lambda} f_{\alpha} : \bigoplus_{\alpha \in \Lambda} X_{\alpha} \longrightarrow \bigoplus_{\alpha \in \Lambda} Y_{\alpha}$ defined by $\bigoplus_{\alpha \in \Lambda} f_{\alpha}(x) = f_{\beta}(x)$ if $x \in X_{\beta}, \beta \in \Lambda$. Now, a subspace $C \subseteq \bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is Lindelöf if and only if the set $\Lambda_0 = \{\alpha \in \Lambda : C \cap X_{\alpha} \neq \emptyset\}$ is countable and $C \cap X_{\alpha}$ is Lindelöf in X_{α} for each $\alpha \in \Lambda_0$. If $C \subseteq \bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is Lindelöf, then $(\bigoplus_{\alpha \in \Lambda} f_{\alpha}) \upharpoonright_C$ is a homeomorphism because $f_{\alpha \upharpoonright_{C} \cap X_{\alpha}}$ is a homeomorphism for each $\alpha \in \Lambda_0$.

Theorem 8. Every second countable L_2 -paracompact space is metrizable.

Proof. If X is a second countable space, then X is Lindelöf. If X is also L_2 -paracompact, then X will be homeomorphic to a T_2 paracompact space Y and, in particular, Y is T_4 . Thus X is second countable and regular, hence metrizable [1, 4.2.9].

Corollary 9. Every T_2 second countable L-paracompact space is metrizable.

Recall that a topological space X is called L-normal if there exist a normal space Y and a bijective function $f : X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$ [4]. Since any T_2 paracompact space is normal, it is clear that any L_2 -paracompact space is L-normal. In general, Lparacompactness does not imply L-normality. Observe that any finite space which is not discrete is compact, hence paracompact, thus L-paracompact. So, any finite space which is not normal will be an example of an L-paracompact which is neither L_2 -paracompact nor L-normal. In general, L-normality does not imply L-paracompactness. Here is an example.

Example 10. Let $X = [0, \infty)$. Define $\tau = \{\emptyset, X\} \cup \{[0, x) : x \in \mathbb{R}, 0 < x\}$. Observe that (X, τ) is normal because there are no two non-empty closed disjoint subsets. Thus (X, τ) is *L*-normal. Observe that (X, τ) is second countable, hence hereditarily Lindelöf. (X, τ) cannot be paracompact because τ is coarser than the particular point topology on X [11], where the particular point is 0. That's because any non-empty open set contains 0. Therefore, X is *L*-normal but not *L*-paracompact.

Recall that a subset A of a space X is called *closed domain* [1], called also *regularly* closed, κ -closed, if $A = \overline{\text{int}A}$. A space X is called *mildly normal* [10], called also κ -normal [9], if for any two disjoint closed domains A and B of X there exist two disjoint open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$, see also [5] and [3]. Any uncountable set Xwith countable complement topology is mildly normal, because the only closed domains are the empty set and the ground set X, but not L-paracompact. Here is an example of a Tychonoff L_2 -paracompact space which is not mildly normal.

Example 11. We modify the Dieudonné Plank [11] to define a new topological space. Let

$$X = ((\omega_2 + 1) \times (\omega_0 + 1)) \setminus \{ \langle \omega_2, \omega_0 \rangle \}.$$

Write $X = A \cup B \cup N$, where $A = \{\langle \omega_2, n \rangle : n < \omega_0\}$, $B = \{\langle \alpha, \omega_0 \rangle : \alpha < \omega_2\}$, and $N = \{\langle \alpha, n \rangle : \alpha < \omega_2 \text{ and } n < \omega_0\}$. The topology τ on X is generated by the following neighborhood system: For each $\langle \alpha, n \rangle \in N$, let $\mathcal{B}(\langle \alpha, n \rangle) = \{\{\langle \alpha, n \rangle\}\}$. For each $\langle \omega_2, n \rangle \in A$, let $\mathcal{B}(\langle \omega_2, n \rangle) = \{V_\alpha(n) = (\alpha, \omega_2] \times \{n\} : \alpha < \omega_2\}$. For each $\langle \alpha, \omega_0 \rangle \in B$, let $\mathcal{B}(\langle \alpha, \omega_0 \rangle) = \{V_n(\alpha) = \{\alpha\} \times (n, \omega_0] : n < \omega_0\}$. Then X is Tychonoff non-normal space which is neither locally compact nor locally Lindelöf as any basic open neighborhood of any element in A is not Lindelöf. Now, define $Y = X = A \cup B \cup N$. Generate a topology τ' on Y by the following neighborhood system: Elements of $B \cup N$ have the same local base as in X. For each $\langle \omega_2, n \rangle \in A$, let $\mathcal{B}(\langle \omega_2, n \rangle) = \{\{\langle \omega_2, n \rangle\}\}$. Then Y is T_4 space because it is paracompact. Y and the identity functions gives the L-normality of the modified Dieudonné Plank X is L-normal, see [4]. Since Y is also T_2 paracompact, then X is L_2 -paracompact. Observe that the identity function is not continuous on X because it is not continuous at each point in A.

We show that X is not mildly normal. X is not normal because A and B are closed disjoint subsets which cannot be separated by two disjoint open sets. Let $E = \{n < \omega_0 : n \text{ is even}\}$ and $O = \{n < \omega_0 : n \text{ is odd}\}$. Let K and L be subsets of ω_2 such that $K \cap L = \emptyset, K \cup L = \omega_2$, and the cofinality of K and L are ω_2 ; for instance, let K be the set of limit ordinals in ω_2 and L be the set of successor ordinals in ω_2 . Then $K \times E$ and $L \times O$ are both open subsets of N. Define $C = \overline{K \times E}$ and $D = \overline{L \times O}$; then C and D are closed domains in X, being closures of open set, and they are disjoint. Note that $C = \overline{K \times E} =$ $(K \times E) \cup (K \times \{\omega_0\}) \cup (\{\omega_2\} \times E)$ and $D = \overline{L \times O} = (L \times O) \cup (L \times \{\omega_0\}) \cup (\{\omega_2\} \times O)$. Let $U \subseteq X$ be any open set such that $C \subseteq U$. For each $n \in E$ there exists an $\alpha_n < \omega_2$ such that $V_{\alpha_n}(n) \subseteq U$. Let $\beta = \sup\{\alpha_n : n \in E\}$; then $\beta < \omega_2$. Since L is cofinal in ω_2 , then there exists $\gamma \in L$ such that $\beta < \gamma$ and then any basic open set of $\langle \gamma, \omega_0 \rangle \in D$ will meet U. Thus C and D cannot be separated. Therefor, the modified Dieudonné plank X is L-normal but is not mildly normal.

A space X is called *countably normal* if there exist a normal space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each countable subspace $A \subseteq X$ [7]. By a similar way, analogous to Definition 1, we can define CP and C_2P properties, these are the best suitable names for us we could choose. A topological space X is called CP if there exist a paracompact space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each countable subspace $A \subseteq X$. A topological space X is called C_2P if there exist a Hausdorff paracompact space Y and a bijective function $f: X \longrightarrow Y$ such that the restriction $f \upharpoonright_A: A \longrightarrow f(A)$ is a homeomorphism for each countable subspace $A \subseteq X$.

It is clear that any *L*-paracompact space is CP and any *L*₂-paracompact space is C_2P . The converse is not true in general. For example, any uncountable set X with countable complement topology is C_2P because any countable subspace of X is a discrete subspace, hence the discrete topology on X and the identity function will witness the C_2P property. But it is not *L*-paracompact because it is a Lindelöf non-paracompact space. Most of the aspects of *L*-paracompactness will go for CP property, for instant Theorem 3 and Theorem 5.

In general, L-paracompactness and L_2 -paracompactness are not preserved by a discrete extension. Let us recall the definitions. Let M be a non-empty proper subset of a topological space (X, τ) . Define a new topology $\tau_{(M)}$ on X as follows: $\tau_{(M)} = \{U \cup K : U \in$ <math><math>and $K \subseteq X \setminus M \}$. $(X, \tau_{(M)})$ is called a *discrete extension* of (X, τ) and we denote it by X_M , see [11, Examples 70 and 71] and also [1, 5.1.22]. Thus the spaces Xand X_M have the same underlying set, but their topologies are in general distinct. The topology of X_M is finer than the topology of X, i.e., $\tau \subseteq \tau_{(M)}$. The set $X \setminus M$ and all its subsets are open in X_M , so that $X \setminus M$ is an open discrete subspace of X_M . The subspace $M \subseteq X_M$ is closed and its topology coincides with the topology induced on Mby the topology of X. The space X_M has the following neighborhood system: For each $x \in X \setminus M$, let $\mathcal{B}(x) = \{\{x\}\}$ and for each $x \in M$, let $\mathcal{B}(x) = \{U \in \tau : x \in U\}$. Some topological properties are shared by X and X_M for any non-empty proper subset M for X. For examples, if X is first countable or T_i , where $i \in \{0, 1, 2, 3, 3\frac{1}{2}\}$, then so is X_M for any $\emptyset \neq M \subset X$, see [1, 5.1.22]. Here is an example of an L_2 -paracompact space whose a discrete extension of it is Tychonoff but not L-paracompact.

Example 12. It is will-known that \mathbb{R} with the rational sequence topology is a first countable Tychonoff locally compact separable space which is neither normal nor paracompact [11, Example 65]. Thus \mathbb{R} with the rational sequence topology has a one-point compactification. Let $X = \mathbb{R} \cup \{p\}$, where $p \notin \mathbb{R}$, be a one-point compactification of \mathbb{R} . Since X is T_2 compact, then it is L_2 -paracompact. We prove that the discrete extension $X_{\mathbb{R}}$ is not L_2 -paracompact. Observe that in $X_{\mathbb{R}} = \mathbb{R} \cup \{p\}$, the singleton $\{p\}$ is closed-and-open. $X_{\mathbb{R}}$ is first countable and T_3 because \mathbb{R} with the rational sequence topology is, thus $X_{\mathbb{R}}$ is of countable tightness. $X_{\mathbb{R}}$ is also separable because $\mathbb{Q} \cup \{p\}$ is a countable dense subset of $X_{\mathbb{R}}$. Now, \mathbb{R} with the rational sequence topology is not normal. Pick any two closed disjoint subsets A and B of \mathbb{R} that cannot be separated by disjoint open sets in \mathbb{R} . Then A and B will be also closed and disjoint in $X_{\mathbb{R}}$ that cannot be separated by disjoint open sets in \mathbb{R} . Then and B will be also closed and disjoint in $X_{\mathbb{R}}$ that cannot be separated by disjoint open sets in \mathcal{R} and B conclude that $X_{\mathbb{R}}$ is not normal. By Theorem 5, we conclude that $X_{\mathbb{R}}$ cannot be L-paracompact.

Observe that Example 12 above shows that, in general, CP and C_2P are not preserved by the discrete extension.

L. Kalantan

References

- [1] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [2] I. Juhász, K. Kunen and M.E. Rudin, Two More Hereditarily Separable non-Lindelöf spaces, Cand. J. Math. 28, 998-1005, 1976.
- [3] L. Kalantan, Results about κ-normality, Topology Appl. 125, 47-62, 2002.
- [4] L. Kalantan and M. Saeed, *L-Normality*, Topology Proceedings 50, 141-149, 2017.
- [5] L. Kalantan and P. Szeptycki, κ-normality and products of ordinals, Topology Appl. 123 (3), 537-545, 2002.
- [6] M.E. Rudin, A Separable Dowker space, Symposia Mathematica, Instituto Nazionale di Alta Mathematica, 1973.
- [7] M.M. Saeed, Countable Normality, J. Math. Anal. 9 (1), 116-123, 2018.
- [8] M.M. Saeed, L. Kalantan and H. Alzumi, C Paracompactness and C₂ Paracompactness, Turk. J. Math. 43, 9-20, 2019.
- [9] E.V. Shchepin, Real Valued Functions and Spaces Close to Normal, Sib. J. Math. 13, 1182-1196, 1972.
- [10] M.K. Singal and A.R. Singal, *Mildly Normal Spaces*, Kyungpook Math J. 13, 29-31, 1973.
- [11] L. Steen and J.A. Seebach, *Counterexamples in Topology*, Dover Publications, INC. 1995.
- [12] E.K. van Douwen, *The Integers and Topology*, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 111-167, 1984.
- [13] W. Weiss, Small Dowker Spaces, Pacific J. Math. 94, 485-492, 1981.