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Abstract

A topological space X is called L-paracompact if there exist a paracompact space Y and a
bijective function f : X — Y such that the restriction f [4: A — f(A) is a homeomor-
phism for each Lindelof subspace A C X. A topological space X is called Lo-paracompact
if there exist a Hausdorff paracompact space Y and a bijective function f : X — Y such
that the restriction f [4: A — f(A) is a homeomorphism for each Lindel6f subspace
A C X. We investigate these two properties.
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The purpose of this paper is to investigate two new properties, L-paracompactness and
Lo-paracompactness. Some of their aspects are similar to L-normality [4], and some are
distinct. Throughout this paper, we denote an ordered pair by (x,y), the set of positive
integers by N, and the set of real numbers by R. A T, space is a 77 normal space
and a Tychonoff space (7} 1 ) is a T1 completely regular space. We do not assume T in

the definition of compactness, countable compactness, and paracompactness. We do not
assume regularity in the definition of Lindel6fness. For a subset A of a space X, intA and
A denote the interior and the closure of A, respectively. An ordinal 7 is the set of all
ordinal « such that o < . The first infinite ordinal is wy, the first uncountable ordinal is
w1, and the successor cardinal of wy is wo.

Definition 1. (A. V. Arhangel’skii)

A topological space X is called C-paracompact if there exist a paracompact space Y
and a bijective function f : X — Y such that the restriction f [4: A — f(A) is
a homeomorphism for each compact subspace A C X. A topological space X is called
Cs-paracompact if there exist a Hausdorff paracompact space Y and a bijective function
f + X — Y such that the restriction f [4: A — f(A) is a homeomorphism for each
compact subspace A C X.

C-paracompactness and Ch-paracompactness were studied in [8]. We use the idea of
Arhangel’skii’s definition above and give the following definition.
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Definition 2. A topological space X is called L-paracompact if there exist a paracompact
space Y and a bijective function f : X — Y such that the restriction f [4: A — f(A)
is a homeomorphism for each Lindelof subspace A C X. A topological space X is called
Lo-paracompact if there exist a Hausdorff paracompact space Y and a bijective function
f X — Y such that the restriction f [4: A — f(A) is a homeomorphism for each
Lindel6f subspace A C X.

Observe that a function f : X — Y witnessing the C' - paracompactness (Co - para-
compactness) of X need not to be continuous. But it will be if it has the property that
for each convergent sequence z,, — z in X we have f(z,) — f(z) [8]. This happens
if X is a Hausdorff sequential space or a k-space. Similarly, a function f : X — Y
witnessing the L-paracompactness (Lo-paracompactness) of X need not to be continuous,
see Example 11 below. But it will be if X is of countable tightness. Recall that a space X
is of countable tightness if for each subset A of X and each € X with € A there exists
a countable subset B C A such that z € B [1]. For a set A, we let [A]° ={B C A: B
is countable }.

Theorem 3. If X is L-paracompact (La-paracompact) and of countable tightness and
f: X —Y is a witness function of the L-paracompactness (La-paracompactness) of X,
then f is continuous.

Proof. Let A C X be arbitrary. We have
= U B)= U B U B crA.

Be[A]swo Be[A]swo Be[A]swo

Therefore, f is continuous O

Since any first countable space is Fréchet [1, 1.6.14], any Fréchet space is sequential
[1, 1.6.14], and any sequential space is of countable tightness [1, 1.7.13(c)], we conclude
that a witness function of the L-paracompactness (Leg-paracompactness) first countable
(Fréchet, sequential) space X is continuous. The following corollary is also clear.

Corollary 4. Any Lo-paracompact space which is of countable tightness must be at least
Hausdorff.

Since any compact space is Lindelof, then any L-paracompact space is C-paracompact
and any Lo-paracompact space is Co-paracompact. The converse is not true in general.
Obviously, no Lindel6f non-paracompact space is L-paracompact. So, no uncountable set
X with countable complement topology [11] is L-paracompact, but it is Co-paracompact,
hence C-paracompact, because the only compact subspaces are the finite subspaces, and
the countable complement topology is 77 so compact subspaces are discrete. Hence the
discrete topology on X and the identity function will witness Co-paracompactness.

Any paracompact space is L-paracompact, just by taking ¥ = X and the identity
function. It is clear from the definitions that any Ls-paracompact is L-paracompact. In
general, the converse is not true. Assume that X is Lindel6f and Lo-paracompact, then
the witness function is a homeomorphism which gives that X is Hausdorff. Thus, any
paracompact Lindelof space which is not Hausdorff is an L-paracompact space that cannot
be Ls-paracompact. In particular, any compact space which is not Hausdorff cannot be
Lo-paracompact. For examples, the modified Fort space [11], and the overlapping intervals
space [11]. There is a case when the L-paracompactness implies Lo-paracompactness given
in the next theorem.

Theorem 5. If X is T3 separable L-paracompact and of countable tightness, then X is
paracompact Ty.
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Proof. Let Y be a paracompact space and f : X — Y be a bijective witness to L-
paracompactness of X. Then f is continuous because X is of countable tightness, by
Theorem 3. Let D be a countable dense subset of X. We show that f is closed. Let H
be any non-empty closed proper subset of X. Suppose that f(p) = ¢ € Y\ f(H); then
p € H. Using regularity, let U and V be disjoint open subsets of X containing p and H,
respectively. Then U N (D U {p}) is open in the Lindel6f subspace D U {p} containing
p, so f(UN (DU {p})) is open in the subspace f(D U {p}) of Y containing ¢q. Thus
FUN(DU{p})) =fU)Nf(DU{p}) =W N f(DU{p}) for some open subset W in Y’
with ¢ € W. We claim that W N f(H) = (). Suppose otherwise, and take y € W N f(H).
Let z € H such that f(z) =y. Note that z € V. Since D is dense in X, D is also dense in
the open set V. Thus € V N D. Now since W is open in Y and f is continuous, f~(W)
is an open set in X; it also contains x. Thus we can choose d € f~*(W)NV N D. Then
f(d) €W f(VAD)C W F(DU{p}) = f(UN(DUp)). So f(d) € f(U)NF(V),
contradiction. Thus W N f(H) = (). Note that ¢ € W. As ¢ € Y\ f(H) was arbitrary,
f(H) is closed. So f is a homeomorphism and X is paracompact. Since X is also T, X
is normal. Note that X is also Lindelof being separable and paracompact. ]

We conclude from Theorem 5 that the Niemytzki plane [11] and Mréwka space W(A),
where A C [wo]*® = { B C wp : Bis infinite } is mad [12], are examples of Tychonoff
spaces which are not L-paracompact. L-paracompactness is not hereditary, neither is
Lo-paracompactness. Take any compactification of the Niemytzki plane. We still do not
know if L-paracompactness is hereditary with respect to closed subspaces.

Recall that a Dowker space is a Ty space whose product with I, I = [0, 1] with its usual
metric, is not normal. M. E. Rudin used the existence of a Suslin line to obtain a Dowker
space which is hereditarily separable and first countable [6]. Using CH, I. Juhész, K.
Kunen, and M. E. Rudin constructed a first countable hereditarily separable real compact
Dowker space [2]. Weiss constructed a first countable separable locally compact Dowker
space whose existence is consistent with MA + — CH [13]. By Theorem 5, such spaces are
consistent examples of Dowker spaces are not L-paracompact.

Theorem 6. L-paracompactness (Lo-paracompactness) is a topological property.

Proof. Let X be an L-paracompact space and X = Z. Let Y be a paracompact space
and f: X — Y be a bijection such that f [4: A — f(A) is a homeomorphism for each
Lindelof subspace A of X. Let g : Z — X be a homeomorphism. Then fog: Z — Y
satisfies all requirements. O

Theorem 7. L-paracompactness (Lo-paracompactness) is an additive property.

Proof. Let X, be an L-paracompact space for each o« € A. We show that their sum
BacarXa is L-paracompact. For each a € A, pick a paracompact space Y, and a bijective
function f, : Xo — Y, such that fu, @ Co — fa(Cy) is a homeomorphism for each
Lindelof subspace C, of X,. Since Y, is paracompact for each a« € A, then the sum
@qenYa is paracompact, [1, 5.1.30]. Consider the function sum, see [1, 2.2.E], ®qen fa :
BoecAXa — PaenrYa defined by @qenfolr) = fa(x) if 2 € Xg, 8 € A. Now, a subspace
C C ®penXq is Lindelof if and only if the set Ag = {a € A : CNX, # 0} is countable and
C' N X, is Lindelof in X, for each o € Ag. If C' C ®yep X, is Lindelof, then (Boepfa) o

is a homeomorphism because fq|c.y, is @ homeomorphism for each a € A. ]

Theorem 8. FEvery second countable Lo-paracompact space is metrizable.
Proof. If X is a second countable space, then X is Lindelof. If X is also Le-paracompact,

then X will be homeomorphic to a Ts paracompact space Y and, in particular, Y is Tj.
Thus X is second countable and regular, hence metrizable [1, 4.2.9]. O
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Corollary 9. Every Ty second countable L-paracompact space is metrizable.

Recall that a topological space X is called L-normal if there exist a normal space Y
and a bijective function f : X — Y such that the restriction f [4: A — f(A) is
a homeomorphism for each Lindel6f subspace A C X [4]. Since any T paracompact
space is normal, it is clear that any Ls-paracompact space is L-normal. In general, L-
paracompactness does not imply L-normality. Observe that any finite space which is not
discrete is compact, hence paracompact, thus L-paracompact. So, any finite space which
is not normal will be an example of an L-paracompact which is neither Lo-paracompact
nor L-normal. In general, L-normality does not imply L-paracompactness. Here is an
example.

Example 10. Let X = [0, 00). Define 7= {0, X} U{[0,2) : z € R,0 < z}. Ob-
serve that (X, 7)) is normal because there are no two non-empty closed disjoint subsets.
Thus (X, 7) is L-normal. Observe that (X, 7 ) is second countable, hence hereditarily
Lindelof. (X, T ) cannot be paracompact because T is coarser than the particular point
topology on X [11], where the particular point is 0. That’s because any non-empty open
set contains 0. Therefore, X is L-normal but not L-paracompact.

Recall that a subset A of a space X is called closed domain [1], called also regularly
closed, k-closed, if A =1intA. A space X is called mildly normal [10], called also k-normal
[9], if for any two disjoint closed domains A and B of X there exist two disjoint open sets
U and V of X such that A C U and B C V, see also [5] and [3]. Any uncountable set X
with countable complement topology is mildly normal, because the only closed domains
are the empty set and the ground set X, but not L-paracompact. Here is an example of
a Tychonoff Le-paracompact space which is not mildly normal.

Example 11. We modify the Dieudonné Plank [11] to define a new topological space.
Let
X = ((w2+ 1) x (wo + 1)) \ {(w2, wo) }-

Write X = AU BUN, where A = {(w2,n) : n < wo}, B = {{,wp) : @ < wa}, and
N = {{ayn) : @ < wy and n < wp}. The topology T on X is generated by the fol-
lowing neighborhood system: For each (o,n) € N, let B({a,n)) = {{{a,n)}}. For each
(wa,n) € A, let B((w2,n)) = {Va(n) = (a,wa] x {n} : @ < wy}. For each (a,wp) € B, let
B((a,wp)) = {Va(a) = {a} x (n,wp] : n < wo}. Then X is Tychonoff non-normal space
which is neither locally compact nor locally Lindel6f as any basic open neighborhood of
any element in A is not Lindeléf. Now, define Y = X = AU BU N. Generate a topology
7" on Y by the following neighborhood system: Elements of B U N have the same local
base as in X. For each (wy,n) € A, let B({we,n)) = {{{w2,n)}}. Then Y is T, space
because it is paracompact. Y and the identity functions gives the L-normality of the
modified Dieudonné Plank X is L-normal, see [4]. Since Y is also T paracompact, then
X is Le-paracompact. Observe that the identity function is not continuous on X because
it is not continuous at each point in A.

We show that X is not mildly normal. X is not normal because A and B are closed
disjoint subsets which cannot be separated by two disjoint open sets. Let E = {n <
wp:miseven} and O = {n < wp : nisodd}. Let K and L be subsets of ws such that
KNL =0, KUL = wy, and the cofinality of K and L are wo; for instance, let K be the set
of limit ordinals in w9 and L be the set of successor ordinals in wy. Then K x E and L x O
are both open subsets of N. Define C' = K x F and D = L x O; then C and D are closed
domains in X, being closures of open set, and they are disjoint. Note that C' = K x F =
(K x E)U(K x{wo})U({wa} x E)and D=L x O = (LxO)U (L X {wp}) U ({wa} x O).
Let U C X be any open set such that C' C U. For each n € E there exists an a, < ws
such that V,, (n) C U. Let § = sup{ay, : n € E}; then 8 < wq. Since L is cofinal in wo,
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then there exists v € L such that § < 7 and then any basic open set of (y,wp) € D will
meet U. Thus C and D cannot be separated. Therefor, the modified Dieudonné plank X
is L-normal but is not mildly normal.

A space X is called countably normal if there exist a normal space Y and a bijective
function f : X — Y such that the restriction f [4: A — f(A) is a homeomorphism for
each countable subspace A C X [7]. By a similar way, analogous to Definition 1, we can
define C'P and CyP properties, these are the best suitable names for us we could choose.
A topological space X is called C'P if there exist a paracompact space Y and a bijective
function f : X — Y such that the restriction f [4: A — f(A) is a homeomorphism
for each countable subspace A C X. A topological space X is called CoP if there exist
a Hausdorff paracompact space Y and a bijective function f : X — Y such that the
restriction f [4: A — f(A) is a homeomorphism for each countable subspace A C X.

It is clear that any L-paracompact space is C P and any Lo-paracompact space is CoP.
The converse is not true in general. For example, any uncountable set X with countable
complement topology is C5 P because any countable subspace of X is a discrete subspace,
hence the discrete topology on X and the identity function will witness the Co P property.
But it is not L-paracompact because it is a Lindel6f non-paracompact space. Most of
the aspects of L-paracompactness will go for C'P property, for instant Theorem 3 and
Theorem 5.

In general, L-paracompactness and Ls-paracompactness are not preserved by a discrete
extension. Let us recall the definitions. Let M be a non-empty proper subset of a topo-
logical space ( X, 7). Define a new topology 7 (5 on X as follows: Ty ={UUK : U €
Tand K C X\ M}. (X, Ty ) is called a discrete extension of (X, T) and we de-
note it by X, see [11, Examples 70 and 71] and also [1, 5.1.22]. Thus the spaces X
and Xjs have the same underlying set, but their topologies are in general distinct. The
topology of Xy is finer than the topology of X, i.e., T C T (3. The set X \ M and all
its subsets are open in X)s, so that X \ M is an open discrete subspace of X,;. The
subspace M C X,y is closed and its topology coincides with the topology induced on M
by the topology of X. The space Xs has the following neighborhood system: For each
x € X\ M,let B(x) = {{z}} and for each z € M, let B(x) ={U € T: 2 € U}. Some
topological properties are shared by X and Xj; for any non-empty proper subset M for
X. For examples, if X is first countable or T}, where i € {0,1,2,3, 3%}, then so is Xy for
any ) £ M C X, see [1, 5.1.22]. Here is an example of an Lo-paracompact space whose a
discrete extension of it is Tychonoff but not L-paracompact.

Example 12. It is will-known that R with the rational sequence topology is a first count-
able Tychonoff locally compact separable space which is neither normal nor paracompact
[11, Example 65]. Thus R with the rational sequence topology has a one-point compact-
ification. Let X = R U {p}, where p ¢ R, be a one-point compactification of R. Since X
is T compact, then it is Lo-paracompact. We prove that the discrete extension Xpg is not
Lo-paracompact. Observe that in Xgp = R U {p}, the singleton {p} is closed-and-open.
XR is first countable and T35 because R with the rational sequence topology is, thus Xg is
of countable tightness. Xp is also separable because Q U {p} is a countable dense subset
of Xg. Now, R with the rational sequence topology is not normal. Pick any two closed
disjoint subsets A and B of R that cannot be separated by disjoint open sets in R. Then
A and B will be also closed and disjoint in X that cannot be separated by disjoint open
sets in Xg. We conclude that Xg is not normal. By Theorem 5, we conclude that Xg
cannot be L-paracompact.

Observe that Example 12 above shows that, in general, CP and CsP are not preserved
by the discrete extension.
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