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Abstract
In this paper, we introduce a class of distributions which generalizes
the power hazard rate distribution and is obtained by combining the
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construct the HPD credible interval for the parameters. A real data set
is analyzed and observed that the present hazard rate distribution can
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1. Introduction
The hazard rate function plays an important role in reliability studies. The hazard rate

measures the propensity to fail or to die depending on the age reached and it thus plays
a key role in characterizing the process of aging and in classifying lifetime distributions.
The hazard rate function describe the failure rate of the life test. It is known as the force
of mortality or force of decrement in actuarial work and the intensity function in extreme
value theory. The term age-specific death rate has also been used in vital statistics and
in economics its reciprocal is known as Mill’s rate. The hazard rate function is used in
reliability applications to describe the instantaneous failure rate at any time (Rinne [27]).
If the life time of a unit be a random variable X with probability density function (pdf)
f(x) and cumulative distribution function (cdf) F (x), then the hazard rate function h(x)
is defined by

h(x) =
f(x)

1− F (x)
.

In reliability theory, lifetime distributions are often specified by choosing a particular
hazard rate function. One of these hazard rate functions is the linear hazard rate function
which has been considered by several researchers. The linear hazard rate function has
the form

h(x) = a+ bx, x > 0, a, b ≥ 0,

where a and b are the parameters such that a + b > 0. The linear hazard rate function
induce the pdf

f(x) = (a+ bx)e−(ax+
b
2
x2), x > 0, a, b ≥ 0,

which is known as linear hazard rate distribution (LHRD). The linear hazard rate func-
tion was first introduced by Bain [2]. He provided a comprehensive statistical inference
procedures for the estimation of the parameters a and b based on complete samples. The
Bayes estimation of the parameters of LHRD is considered by Pandey et al. [23]. Sen
and Bhattacharyya [30] studied the maximum likelihood and least squares type estima-
tion based on type II censored samples from the LHRD, while Lin et al. [15] computed
the maximum likelihood estimates of the parameters of the LHRD based on records and
inter-record times. Monte Carlo methods for Bayesian inference on the LHRD are dis-
cussed by Lin et al. [16]. Bayesian inference of the LHRD under a progressively censoring
scheme is also discussed by Sen et al. [31]. Recently, some authors considered general-
izations of the LHRD for obtaining more flexible new families of distributions (see, e.g.
Ghitany and Kotz [11], Sarhan and Kundu [28] and Cordeiro et al. [7]).

Another type of hazard rate function is the power hazard rate function which is defined
as

h(x) = axk, x > 0, a > 0, k > −1,

and induce the power hazard rate distribution (PHRD) with pdf

f(x) = axke−
a

k+1
xk+1

, x > 0, a > 0, k > −1.

Mugdadi [20] obtained the least squares type estimators of the parameters of the PHRD.
Mugdadi and Min [21] investigated the Bayes estimation of the power hazard rate func-
tion. The problem of estimating the stress-strength reliability for the PHRD is considered
by Kinaci [13].

Although the linear and power hazard rate distributions are very useful for model-
ing lifetime data, they have monotone hazard rates and are not reasonable to apply to
phenomena with non-monotone hazard rates. In this paper, by combining the linear haz-
ard rate function and the power hazard rate function, we consider a more general hazard
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rate function which can also cover non-monotone hazard rate. We define the power-linear
hazard rate function in the form

h(x) = axk + bx, x > 0, a, b ≥ 0, k > −1,(1.1)

where a, b and k are the parameters such that a + b > 0 and k ̸= 1 (which gives the
identifiability of the parameters of the new hazard rate function).

The power-linear hazard rate function is very simple and can cover constant, decreas-
ing, increasing and bathtub-shaped hazard rates, while the hazard rate functions of most
of the three-parameter distributions are either complicated (see, for example, the distri-
butions discussed in Section 5) or cannot cover non-monotone cases (for example, the
Gompertz-Makeham distribution by Makeham [18] and the Modified Weibull distribu-
tion by Sarhan and Zeindin [29]). We obtain the cdf and the pdf corresponding to this
hazard rate function and call it the power-linear hazard rate distribution (P-LHRD). The
maximum likelihood estimates (MLEs) of the unknown parameters via the NR and the
EM algorithms and the Bayes estimators of the parameters under different loss functions
based on progressively type-II censored data are derived. The asymptotic and bootstrap
confidence intervals of the parameters and the highest posterior density (HPD) credible
intervals are also obtained. A real data set is analyzed to illustrate application of the
proposed distribution and to show that the present hazard rate distribution can provide
a better fit than some three-parameter distributions. The different proposed methods
have been compared by using a Monte Carlo simulation study.

The rest of the paper is organized as follows. In Section 2, we present the power-linear
hazard rate distribution. In Section 3, the MLEs of the unknown parameters via the NR
and the EM algorithms and the Bayes estimates of the parameters under SEL, LINEX
and Stein loss functions based on progressively type-II censored sample are considered.
In Section 4, we obtain the asymptotic and bootstrap confidence intervals and construct
the HPD credible interval for the parameters of the P-LHRD. The application of the
P-LHRD is illustrated by analyzing a real data set in Section 5. A simulation study is
presented in Section 6. Finally, some conclusions are given in Section 7.

2. The P-LHRD
Suppose X denotes the random variable having hazard rate function given in (1.1).

Then the cdf and reliability function of X are given by

F (x) = 1− e−(
b
2
x2+ a

k+1
xk+1), x > 0, a, b ≥ 0, k > −1, k ̸= 1,(2.1)

R(t) = 1− F (t) = e−(
b
2
x2+ a

k+1
xk+1),

respectively, and the pdf of X is given by

f(x) = (bx+ axk)e−(
b
2
x2+ a

k+1
xk+1), x > 0, a, b ≥ 0, k > −1, k ̸= 1.(2.2)

For the random variable X with pdf given by (2.2), we write X ∼ P-LHRD(b, a, k).
Taking the first derivative of the hazard rate function of the P-LHRD given in (1.1), we
have h′(x) = b + akxk−1, x > 0. Hence, it can be easily verify that the hazard rate
function of this distribution has a bathtub-shape when a, b > 0 and k < 0, and reaches
a minimum at x = (−b/ak)1/(k−1). The hazard rate function of this distribution can
also be constant, increasing or decreasing for the other parameter values. Figure 1 shows
different patterns of the probability density function and the hazard rate function of the
P-LHRD for selected values of the parameters b, a and k.
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Figure 1. The probability density function and the hazard rate func-
tion of the P-LHRD for different parameter values.

The P-LHRD contains the following well-known lifetime distributions:
(1) When b = k = 0, the P-LHRD reduces to the exponential distribution with

parameter a.

(2) When a = 0, the P-LHRD reduces to the Rayleigh distribution with parameter
1/b.

(3) When k = 0, the P-LHRD reduces to the LHRD with parameters a and b.

(4) When k = 2, the P-LHRD reduces to the quadratic hazard rate distribution
with parameters 0, a and b introduced by Bain [2].

(5) When b = 0, the P-LHRD reduces to the PHRD with parameters a and k.

(6) When b = 0, k = α − 1 and a = α/θ, the P-LHRD reduces to the Weibull
distribution with parameters α and θ.

The rth moment (µr) of the P-LHRD(b, a, k) by using (2.2) is given by

µr = E(Xr) =

∫ ∞

0

xr(bx+ axk)e−(
b
2
x2+ a

k+1
xk+1)dx, r = 1, 2, ....

Using the Taylor expansion e−
a

k+1
xk+1

and then the transformation y = x2, we obtain

µr =

∞∑
i=0

(−1)i

i!

(
a

k + 1

)i
[
Γ
(
1
2
[r + (k + 1)i] + 1

)
(b/2)

1
2
[r+(k+1)i]

+
aΓ
(
1
2
[r + (k + 1)i+ k + 1]

)
2(b/2)

1
2
[r+(k+1)i+k+1]

]
(2.3)
where Γ(.) is the gamma function.

3. Point estimation
In reliability and survival analysis studies, the experimenter may not always obtain

complete information on failure times for all experimental units. During experimentation,
such situations arise because of removal or loss of items before they actually fail. However
in general, such experiments are purposeful and preplanned in order to save time and cost
associated with the testing. Data obtained through such experiments are called censored
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data. The two well-known censoring schemes are type-I and type-II censoring. However,
these censoring schemes do not allow for removal of items other than the terminal point of
the experiment (Rastogi et al. [25]). A more general censoring scheme where removal of
the items is also allowed in between was introduced by Cohen [6]. This general censoring
is referred to as the progressive censoring scheme and it has gained special attention
in theoretical and applied statistics due to the flexibility in removing the pre-specified
number of item during the test. For a comprehensive treatment of progressive censoring
detailing and application of likelihood based inference under progressive censoring, see
the book by Balakrishnan and Aggarwala [3].

In this study, we consider progressive type-II censoring. Suppose that n units are
placed on a life testing experiment. At the time of occurrence of the first failure, the R1

out of n− 1 surviving units are withdrawn randomly from the experiment. In a similar
manner, at the time of occurrence of the second failure, the R2 out of n−R1−2 surviving
units are withdrawn from the experiment. Finally, at the time of mth (1 ≤ m ≤ n) failure,
the Rm = n − m − R1 − ... − Rm−1 remaining surviving units are withdrawn from the
experiment. The observed sample is referred to as progressive type-II censored sample of
size m and the corresponding scheme is referred to as progressive type-II right censoring
scheme (R1, ..., Rm). Note that, if R1 = R2 = ... = Rm = 0, the progressive censoring
scheme is reduced to complete sampling scheme and if R1 = R2 = ... = Rm−1 = 0 and
Rm = n −m, this scheme reduces to conventional type-II censoring scheme. Statistical
inference on the parameters of some distributions under progressive type-II censoring has
been investigated by several authors such as Kus and Kaya [14], Jiang et al. [12], Rastogi
and Tripathi [26] and Akdam et al. [1].

In this section, we obtain the MLEs and the Bayes estimates of unknown parameters
a, b and k under SEL, LINEX and Stein loss functions based on progressively type-II
censored data.

3.1. Maximum likelihood estimation. Let X = (X1:m:n, ..., Xm:m:n) be a progres-
sively type-II censored sample with the censoring scheme (R1, ..., Rm) from a continuous
population with cdf F (x) and pdf f(x). Then, the joint pdf of this sample is given by
(Balakrishnan and Aggarwala [3])

fX1:m:n,...,Xm:m:n(x1:m:n, ..., xm:m:n) = C

m∏
i=1

f(xi:m:n)(1− F (xi:m:n))
Ri ,(3.1)

where
C = n(n−R1 − 1)...(n−R1 − ...−Rm−1 −m+ 1).

Substituting F and f from (2.1) and (2.2) in (3.1), the likelihood function is obtained as

L(b, a, k|x) = C

m∏
i=1

(bxi:m:n + axk
i:m:n)e

− b
2

m∑
i=1

x2
i:m:n− a

k+1

m∑
i=1

xk+1
i:m:n

×e
− b

2

m∑
i=1

Rix
2
i:m:n− a

k+1

m∑
i=1

Rix
k+1
i:m:n

,(3.2)

and hence the log-likelihood function is given by

ℓ(b, a, k|x) ∝
m∑
i=1

ln(bxi:m:n + axk
i:m:n) − b

2

m∑
i=1

x2
i:m:n(1 +Ri)

− a

k + 1

m∑
i=1

xk+1
i:m:n(1 +Ri).(3.3)
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Next, the likelihood equations of (b, a, k) are obtained in the following form

∂ℓ

∂b
=

m∑
i=1

xi:m:n

bxi:m:n + axk
i:m:n

− 1

2

m∑
i=1

x2
i:m:n(1 +Ri) = 0,(3.4)

∂ℓ

∂a
=

m∑
i=1

xk
i:m:n

bxi:m:n + axk
i:m:n

− 1

k + 1

m∑
i=1

xk+1
i:m:n(1 +Ri) = 0,(3.5)

∂ℓ

∂k
=

m∑
i=1

axk
i:m:n lnxi:m:n

bxi:m:n + axk
i:m:n

− a

(k + 1)2

m∑
i=1

xk+1
i:m:n(1 +Ri) [(k + 1) lnxi:m:n − 1] = 0.(3.6)

To find the MLEs of the parameters b, a and k, say b̂, â and k̂, we have to solve
the above system of nonlinear equations (3.4)–(3.6) with respect to b, a and k. These
equations cannot be solved analytically and therefore, some numerical procedures such
as Newton-Raphson (NR) method have to be used to determine the estimates. Also, to
find the standard error of the MLEs of the parameters b, a and k, we can obtain the
asymptotic variance-covariance matrix of the MLEs, which need to calculate the Fisher
information matrix. Unfortunately, the expected information matrix is very difficult to
obtain and therefore, we compute the observed information matrix. The 3×3 observed
information matrix I is given by

I =

 I11 I12 I13
I21 I22 I23
I31 I32 I33


where from (3.4)–(3.6) we have

I11 = −∂2ℓ

∂b2
=

m∑
i=1

x2
i:m:n

(bxi:m:n + axk
i:m:n)

2 , I12 = − ∂2ℓ

∂b∂a
=

m∑
i=1

xk+1
i:m:n

(bxi:m:n + axk
i:m:n)

2 ,

I13 = − ∂2ℓ

∂b∂k
=

m∑
i=1

axk+1
i:m:n lnxi:m:n

(bxi:m:n + axk
i:m:n)

2 , I22 = − ∂2ℓ

∂a2
=

m∑
i=1

x2k
i:m:n

(bxi:m:n + axk
i:m:n)

2 ,

I23 = − ∂2ℓ

∂a∂k
= −

m∑
i=1

bxk+1
i:m:n lnxi:m:n

(bxi:m:n + axk
i:m:n)

2

+
1

(k + 1)2

m∑
i=1

(1 +Ri)x
k+1
i:m:n[(k + 1) lnxi:m:n − 1],

I33 = − ∂2ℓ

∂k2
= −a

m∑
i=1

bxk+1
i:m:nln

2xi:m:n

(bxi:m:n + axk
i:m:n)

2

+
a

(k + 1)3

m∑
i=1

(1 +Ri)x
k+1
i:m:n[(k + 1)2ln2xi:m:n − 2(k + 1) lnxi:m:n + 2].

Then, the variance-covariance matrix V can be approximated by the reciprocal of the
observed information matrix, i.e., V = I−1. Since V involves the parameters b, a and k,
we replace the parameters by the corresponding MLEs in order to obtain an estimate of
V, which is denoted by

V̂ =

 V̂11 V̂12 V̂13

V̂21 V̂22 V̂23

V̂31 V̂32 V̂33

 =

 Î11 Î12 Î13
Î21 Î22 I23
Î31 Î32 Î33

−1

,(3.7)

where Îij is the (i, j)th element of the observed information matrix I with b, a and k

replaced by b̂, â and k̂, respectively.
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To employ the NR algorithm, the second derivatives of the log-likelihood are required
for all iterations, which may sometimes be complicated. It is also important to point out
that the MLEs via the NR method are very sensitive to their initial parameter estimation
value and that the NR method does not converge in all the cases. Here, we suggest to use
the EM algorithm to compute the MLEs which involves solving three one-dimensional
equations.

3.1.1. EM algorithm. EM algorithm, introduced by Dempster et al. [8], is a very pow-
erful tool to handle any missing or incomplete data situation. It is an iterative method
which repeatedly replaces the missing data with estimated values and updates the pa-
rameter estimates. The progressive right censoring model problem can be viewed as an
incomplete data problem and then the EM algorithm may be applied to the problem of
obtaining the MLEs of the parameters. First of all, we denote the observed and censored
data by

X = (X1:m:n, ..., Xm:m:n), Z = (Z1, ..., Zm),

respectively, where Zj is a 1×Rj vector with Zj = (Zj1, ..., ZjRj ), for j = 1, ...,m. The
censored data vector Z can be thought of as the missing data. We combine X and Z to
form W, which is the complete data set. The corresponding log-likelihood function is
denoted by ℓc(W; θ). For the P-LHRD, we have

ℓc(W; b, a, k) =

n∑
i=1

ln(bwi + awk
i )−

b

2

n∑
i=1

w2
i − a

k + 1

n∑
i=1

wk+1
i

=

m∑
j=1

ln(bxj:m:n + axk
j:m:n)−

b

2

m∑
j=1

x2
j:m:n − a

k + 1

m∑
j=1

xk+1
j:m:n

+

m∑
j=1

Rj∑
ℓ=1

ln(bzjℓ + azkjℓ)−
b

2

m∑
j=1

Rj∑
ℓ=1

z2jℓ −
a

k + 1

m∑
j=1

Rj∑
ℓ=1

zk+1
jℓ .

(3.8)

The MLEs of the parameters based on the complete data, using the derivatives of (3.8)
with respect to b, a and k, can be obtained by solving the equations

∂ℓc
∂b

=

m∑
j=1

xj:m:n

bxj:m:n + axk
j:m:n

− 1

2

m∑
j=1

x2
j:m:n

+

m∑
j=1

Rj∑
ℓ=1

zjℓ
bzjℓ + azkjℓ

− 1

2

m∑
j=1

Rj∑
ℓ=1

z2jℓ = 0,(3.9)

∂ℓc
∂a

=

m∑
j=1

xk
j:m:n

bxj:m:n + axk
j:m:n

− 1

k + 1

m∑
j=1

xk+1
j:m:n

+

m∑
j=1

Rj∑
ℓ=1

zkjℓ
bzjℓ + azkjℓ

− 1

k + 1

m∑
j=1

Rj∑
ℓ=1

zk+1
jℓ = 0,(3.10)

∂ℓc
∂k

=

m∑
j=1

xk
j:m:n lnxj:m:n

bxj:m:n + axk
j:m:n

− 1

(k + 1)2

m∑
j=1

xk+1
j:m:n [(k + 1) lnxj:m:n − 1]

+

m∑
j=1

Rj∑
ℓ=1

zkjℓ ln zjℓ

bzjℓ + azkjℓ
− 1

(k + 1)2

m∑
j=1

Rj∑
ℓ=1

zk+1
jℓ [(k + 1) ln zjℓ − 1] = 0,(3.11)

simultaneously.
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The EM algorithm consists of two steps: The E-step and the M-step. In the expec-
tation, or E-step, the missing data are estimated given the observed data and current
estimate of the model parameters, say θ(h). Then, the E-step of the algorithm requires
the computation of

Q(θ|θ(h)) = E(ℓc(W; θ)|X = x, θ(h)),
which mainly involves the computation of the conditional expectation of functions of Z
conditional on the observed values X and the current value of the parameters. There-
fore, in order to facilitate the EM algorithm, the conditional distribution of Z, condi-
tional on X and the current value of the parameters, needs to be determined. Given
X1:m:n = x1:m:n, X2:m:n = x2:m:n..., Xj:m:n = xj:m:n, the conditional distribution of Zjl,
l = 1, ..., Rj is given by

fZ|X(zjl|X1:m:n = x1:m:n, X2:m:n = x2:m:n, ..., Xj:m:n = xj:m:n)

= fZ|X(zjl|Xj:m:n = xj:m:n) =
fW (zjl)

1− FW (xj:m:n)
, zjl > xj:m:n,(3.12)

and Zjl and Zjp , l ̸= p, are conditionally independent given Xj:m:n = xj:m:n (see Ng et
al. [24]). For the P-LHRD, using (3.12), we have

fZ|X(zjl|xj:m:n, b, a, k) = (bzjl + azkjl)

× e
− b

2
z2jl−

a
k+1

zk+1
jl

+ b
2
x2
j:m:n+ a

k+1
xk+1
j:m:n , zjl > xj:m:n.(3.13)

Using (3.13), the required conditional expectations in the EM algorithm are derived in
the Appendix.

In the maximization or M-step of the EM algorithm, the value of θ which maximizes
Q(θ|θ(h)) will be used as the next estimate of θ(h+1). In the M-step of the (h + 1)th
iteration of the EM algorithm, using (3.9)–(3.11), the value of b(h+1) is first obtained by
solving the equation

m∑
j=1

xj:m:n

b(h+1)xj:m:n + a(h)x
k(h)

j:m:n

+

m∑
j=1

RjE

(
Zj

bZj + aZk
j

∣∣xj:m:n, b(h), a(h), k(h)

)

−1

2

m∑
j=1

x2
j:m:n − 1

2

m∑
j=1

RjE(Z2
j |xj:m:n, b(h), a(h), k(h)) = 0,(3.14)

then a(h+1) is obtained by solving the equation

m∑
j=1

x
k(h)

j:m:n

b(h+1)xj:m:n + a(h+1)x
k(h)

j:m:n

+

m∑
j=1

RjE

(
Zk

j

bZj + aZk
j

∣∣xj:m:n, b(h+1), a(h), k(h)

)

− 1

k(h) + 1

m∑
j=1

x
k(h)+1

j:m:n − 1

k(h) + 1

m∑
j=1

RjE(Zk+1
j |xj:m:n, b(h+1), a(h), k(h)) = 0,

(3.15)

and finally, k(h+1) is obtained by solving the equation
m∑

j=1

x
k(h+1)

j:m:n lnxj:m:n

b(h+1)xj:m:n + a(h+1)x
k(h+1)

j:m:n

+

m∑
j=1

RjE

(
Zk

j lnZj

bZj + aZk
j

∣∣xj:m:n, b(h+1), a(h+1), k(h)

)

− 1

(k(h+1) + 1)2

m∑
j=1

x
k(h+1)+1

j:m:n

[
(k(h+1) + 1) lnxj:m:n − 1

]
− 1

(k(h+1) + 1)2

m∑
j=1

RjE
(
Zk+1

j [(k + 1) lnZj − 1]
∣∣xj:m:n, b(h+1), a(h+1), k(h)

)
= 0,

(3.16)
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where the desired expectations are computed from (7.2)–(7.7). The MLEs of (b, a, k) can
be obtained by repeating the E-step and M-step until convergence occurs. Although the
EM algorithm is relatively robust against the initial values, it may not converge when
initial values are far from good ones. A reasonable starting value is the estimates of the
parameters based on the pseudo-complete sample by replacing the censored observations
Zj by Xj:m:n, j = 1, 2, ...,m (Ng et al., [22]).

3.2. Bayesian estimation. In this subsection, we discuss Bayesian estimation of the
parameters of the P-LHRD based on progressively type-II censored sample. An important
element of Bayesian analysis is the selection of a loss function L(θ, δ), where δ is a decision
rule based on the data. One of the most commonly used loss function is squared error
loss (SEL) function, L(θ, δ(X)) = (δ(X)− θ)2. The SEL function is a symmetric loss
function that assigns equal losses to overestimation and underestimation. However, such
a restriction may not be practical because in some cases overestimation may by more
serious than underestimation or vice versa. For example, overestimation is usually more
serious than underestimation in the estimation of reliability and failure rate functions. In
these cases, the use of symmetric loss functions may be inappropriate. On the other hand,
the use of an asymmetric loss function which assigns greater importance to overestimation
or underestimation may be more appropriate.

A useful alternative to the SEL function is convex but asymmetric loss function pro-
posed by Varian [34], which is known as LINEX loss function and is defined as

L(θ, δ) = ec(δ−θ) − c(δ − θ)− 1, c ̸= 0(3.17)
where θ is the unknown parameter. The shape parameter c is known and gives the degree
of asymmetry. If c > 0, the overestimation is more serious than underestimation and if
c < 0, underestimation is more serious than overestimation. If c close to zero, the LINEX
loss is approximately SEL and therefore almost symmetric. Under the LINEX loss func-
tion (3.17), the Bayes estimator of θ that minimizes the posterior risk E [L(θ, δ(X))|X]
is given by

δBL(X) = −1

c
lnE

(
e−cθ|X

)
,(3.18)

provided that the expectation exists and is finite.
Another useful asymmetric loss function is the Stein loss function which is also known

as entropy loss function. This loss function has the form

L(θ, δ) =
δ

θ
− ln

δ

θ
− 1,(3.19)

where θ is the unknown parameter. This loss is a convex function of δ and more penal-
ized underestimation than overestimation. Under this loss function the Bayes estimator
δBST (X) that minimizes the posterior risk E [L(θ, δ(X))|X] is given by

δBST (X) =

{
E

(
1

θ
|X
)}−1

,(3.20)

provided that the expectation exists. For more details and estimation under entropy loss
function, see Parsian and Nematollahi [24].

To obtain Bayes estimates, we assume that b, a and (k+1) have independent gamma
priors as Gamma(α1, β1), Gamma(α2, β2) and Gamma(α3, β3), respectively, with pdfs
given by

π(b|α1, β1) =
βα1
1 bα1−1e−β1b

Γ(α1)
, b > 0, α1, β1 > 0,

π(a|α2, β2) =
βα2
2 aα2−1e−β2a

Γ(α2)
, a > 0, α2, β2 > 0,
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π(k|α3, β3) =
βα3
3 (k + 1)α3−1e−β3(k+1)

Γ(α3)
, k > −1, α3, β3 > 0,

where the hyperparameters α1, α2 and α3 are known but β1, β2 and β3 are unknown.
Here, we assign conjugate prior distributions to the hyperparameters β1, β2 and β3 as
Gamma(η1, γ1), Gamma(η2, γ2) and Gamma(η3, γ3), respectively. Then the hierarchical
prior density function of b is given by

π(b) =

∫ ∞

0

π(b|α1, β1)π(β1)dβ1 =
γη1
1 bα1−1

Γ(α1)Γ(η1)

∫ ∞

0

βα1+η1−1
1 e−(b+γ1)β1dβ1

=
Γ(α1 + η1)

Γ(α1)Γ(η1)

γη1
1 bα1−1

(b+ γ1)
α1+η1

, b > 0.(3.21)

Similarly, the hierarchical prior density functions of a and k are given by

π(a) =
Γ(α2 + η2)

Γ(α2)Γ(η2)

γη2
2 aα2−1

(a+ γ2)
α2+η2

, a > 0,(3.22)

π(k) =
Γ(α3 + η3)

Γ(α3)Γ(η3)

γη3
3 (k + 1)α3−1

(k + γ3 + 1)α3+η3
, k > −1.(3.23)

Now, using (3.2) and (3.21)–(3.23), the joint posterior density function of b, a and k can
be written as

π(b, a, k|x) ∝ π(b)π(a)π(k)L(b, a, k|x)

∝ bα1−1

(b+ γ1)
α1+η1

aα2−1

(a+ γ2)
α2+η2

(k + 1)α3−1

(k + γ3 + 1)α3+η3

m∏
i=1

(b+ axk−1
i:m:n)

×e−
b
2

∑m
i=1 (1+Ri)x

2
i:m:n− a

k+1

∑m
i=1 (1+Ri)x

k+1
i:m:n .(3.24)

The expression for π(b, a, k|x) in (3.24) can not be written in a closed form because
the integration of the joint posterior density is not easy to perform. Therefore, we
need a simulation technique to compute the Bayes estimate of the parameters and their
corresponding credible interval. We adopt the Gibbs sampling technique which use the
posterior distributions of each parameter conditional on all others (see Gelfand and Smith
[10]). The full conditional distributions of b, a and k can be obtained as follows

π(b|a, k,x) ∝ bα1−1

(b+ γ1)
α1+η1

m∏
i=1

(b+ axk−1
i:m:n)e

− b
2

∑m
i=1 (1+Ri)x

2
i:m:n ,(3.25)

π(a|b, k,x) ∝ aα2−1

(a+ γ2)
α2+η2

m∏
i=1

(b+ axk−1
i:m:n)e

− a
k+1

∑m
i=1 (1+Ri)x

k+1
i:m:n ,(3.26)

π(k|b, a,x) ∝ (k + 1)α3−1

(k + γ3 + 1)α3+η3

m∏
i=1

(b+ axk−1
i:m:n)e

− a
k+1

∑m
i=1 (1+Ri)x

k+1
i:m:n .(3.27)

Since the full conditional distributions for b, a and k do not have explicit expressions, it is
not possible to sample directly by standard methods. To do this, we use the Metropolis-
Hastings algorithm into the Gibbs sampling algorithm as explained by Tierney [33].
Therefore, the algorithm of Gibbs sampling is described as follows

Step 1. Start with an initial guess (b(0), a(0), k(0)) and set t = 1.

Step 2. Using Metropolis-Hastings method, generate b(t) from π(b|a(t−1), k(t−1),x)
with the proposal distribution as

q(b) ∝ N(b(t−1), CbV̂11)I(b > 0),

where Cb is a scaling factor, V̂11 is given in (3.7) and N(µ, σ2) is the normal distribution
with the parameters µ and σ2.
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Step 3. Using Metropolis-Hastings method, generate a(t) from π(a|b(t), k(t−1),x)
with the proposal distribution as

q(a) ∝ N(a(t−1), CaV̂22)I(a > 0),

where Ca is a scaling factor and V̂22 is given in (3.7).

Step 4. Using Metropolis-Hastings method, generate k(t) from π(k|b(t), a(t),x) with
the proposal distribution as

q(k) ∝ N(k(t−1), CkV̂33)I(k > −1),

where Ck is a scaling factor and V̂33 is given in (3.7).

Step 5. Set t = t + 1.

Step 6. Repeat Steps 2–5, N times, and obtain the posterior sample (b(t), a(t), k(t)),
t = 1, ..., N .

Now, we can use this sample to compute the Bayes estimate for the parameters b, a
and k. The approximate Bayes estimate of the parameters under the SE, the LINEX
and the Stein loss functions are given as

θ̃BS = Ê(θ|X) =
1

N −M

N∑
i=M+1

θ(i),(3.28)

θ̃BL = −1

c
ln Ê(e−cθ|X) = −1

c
ln

(
1

N −M

N∑
i=M+1

e−cθ(i)

)
,(3.29)

θ̃BST =

{
Ê

(
1

θ
|X
)}−1

=

{
1

N −M

N∑
i=M+1

1

θ(i)

}−1

,(3.30)

respectively, where M is the burn-in period and θ can be each of the parameters b, a and
k. Note that, the Stein loss function is suitable for estimation of the parameters with
positive values. So, in what follows, we will not use it for estimation of the parameter k.

4. Interval estimation
In this section, we discuss interval estimation of the parameters of the P-LHRD based

on progressively type-II censored sample.

4.1. Asymptotic confidence interval. As discussed earlier, the MLEs of the unknown
parameters b, a and k can not be obtained in closed forms. Therefore, it is not easy to
derive the exact distributions of the MLEs. In this subsection, we derive the approximate
confidence intervals of these parameters based on the asymptotic distributions of their
MLEs. The asymptotic distribution of the MLE of the parameters b, a and k is given by
(see Miller [19])  b̂

â

k̂

 ∼ N

 b
a
k

 , V̂

 ,(4.1)

where V̂ is given in (3.7). Now, using (4.1), the 100(1 − α)% approximate confidence
intervals for the parameters b, a and k are given by

b̂± zα/2

√
V̂11, â± zα/2

√
V̂22, k̂ ± zα/2

√
V̂33,(4.2)

respectively, where zα/2 is the (1− α/2) quantile of the standard normal distribution.
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4.2. Bootstrap confidence intervals. When the effective sample size m is small, the
normal approximations may not work well. In such situations, resampling techniques
such as the bootstrap may provide more accurate approximate confidence intervals. In
this subsection, we propose two confidence intervals for the parameters b, a and k based
on the parametric bootstrap methods as suggested by Efron and Tibshirani [9]: the
percentile bootstrap (Boot-p) confidence interval and the student’s t bootstrap (Boot-
t) confidence interval. Firstly, by using the algorithm suggested in Balakrishnan and
Sandhu [4], we perform the following steps to generate progressively type-II censored
samples from P-LHRD:

Step 1. Generate m independent samples U1, U2, ..., Um from the standard uniform
distribution U(0, 1).

Step 2. For given values of the progressive censoring scheme (R1, R2, ..., Rm), set

Vi = U
1/(i+

∑m
j=m−i+1 Rj)

i , i = 1, 2, ...,m.

Step 3. Set Ui:m:n = 1 − VmVm−1...Vm−i+1 for i = 1, 2, ...,m. Then U1:m:n, U2:m:n,
...,Um:m:n is a progressively type-II censored sample of size m from U(0, 1) distribution.

Step 4. Finally, for given values of the parameters b, a and k, set

b

2
X2

i:m:n +
a

k + 1
Xk+1

i:m:n + ln(1− Ui:m:n) = 0, i = 1, 2, ...,m.

Then from (2.1) X1:m:n, X2:m:n, ..., Xm:m:n is the required progressively type-II censored
sample from the P-LHRD.

Now, we use the following steps to generate parametric bootstrap samples.

Step 1. Compute b̂, â and k̂, the MLEs of the parameters b, a and k based on the
progressive type-II censored samples x = (x1:m:n, ..., xm:m:n).

Step 2. Generate the bootstrap progressive type-II censored samples x∗ = (x∗
1:m:n, ..., x

∗
m:m:n)

from the P-LHRD with the parameters b̂, â and k̂ by using the above proposed algorithm.
By using these data, we compute the bootstrap estimates say, b̂∗, â∗ and k̂∗.

Step 3. Repeat step 2, B times to obtain a set of bootstrap progressive type-II
censored samples of b, a and k, say (b̂∗1, ..., b̂

∗
B), (â∗

1, ..., â
∗
B) and (k̂∗

1 , ..., k̂
∗
B).

Using the above bootstrap samples, we obtain two different bootstrap confidence in-
tervals for the parameter θ (in our case, θ could be b, a or k) based on the following
methods:
(I) Boot-p method

Let G(x) = Pr(θ̂∗ ≤ x) be the cdf of θ̂∗. Define θ̂Boot(x) = G−1(x) for a given x.
Then the 100(1− α)% bootstrap percentile interval for θ is defined by(

θ̂Boot

(α
2

)
, θ̂Boot

(
1− α

2

))
(4.3)

that is, just use the α/2 and (1− α/2) quantiles of the bootstrap sample θ̂∗1 , ..., θ̂
∗
B .

(II) Boot-t method

Let

T ∗
b =

(θ̂∗i − θ̂)

ŝe∗i
, i = 1, 2, ..., B,
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where ŝe∗i is an estimate of the standard error of θ̂∗i and can be replaced by its asymptotic
standard error. Then the 100(1− α)% bootstrap student’s t interval is given by

(θ̂ − t∗1−α/2ŝeboot, θ̂ − t∗α/2ŝeboot)(4.4)

where t∗α is the α quantile of T ∗
1 , ..., T

∗
B and ŝeboot is the bootstrap estimate of the standard

error based on θ̂∗1 , ..., θ̂
∗
B .

4.3. HPD credible interval. We apply the posterior sample (b(t), a(t), k(t)), t = 1, ..., N ,
generated by the algorithm described in Subsection 3.2, to construct the 100(1 − γ)%
HPD credible intervals for the parameters of the P-LHRD. We use the method of Chen
and Shao [5] and construct the HPD interval as follow(

θ[ γ2 N], θ[(1− γ
2 )N]

)
,(4.5)

where θ[ γ2 N] and θ[(1− γ
2 )N] are the

[
γ
2
N
]
-th smallest integer and the

[(
1− γ

2

)
N
]
-th

smallest integer of {θ(t), t = M + 1,M + 2, ..., N}, respectively.

5. Application
In this section, we analyze a real data set to demonstrate the performance of the P-

LHRD in practice and compare its goodness-of-fit with other distributions using Kolmogorov-
Smirnov (K-S) statistic. We consider the real data consist of failure times of the air
conditioning system of an airplane (in hours), which are obtained from Linhart and Zuc-
chini [17] and are presented in Table 1. Tian et al. [32] have fitted a new four-parameter
generalized linear exponential distribution (NGLED) to this data and have compared the
results of fitting the NGLED with some of the three-parameter distributions such as the
exponentiated Weibull distribution (EWD), the generalized linear failure rate distribu-
tion (GLFRD) and the modified Weibull distribution (MWD).

Table 1. Data set (failure times of the air conditioning system)

1 3 5 7 11 11 11 12 14 14 14 16 16 20 21
23 42 47 52 62 71 71 87 90 95 120 120 225 246 261

First, we fit the P-LHRD to this data set and compare it with its sub-models and
the distributions reported in Tian et al. [32]. The MLEs of the unknown parameters
are obtained and then the values of Kolmogorov-Smirnov (K-S) statistics and their cor-
responding p-values are calculated. The results are reported in Table 2. It is clear from
Table 2 that P-LHRD has the highest p-value of K-S test statistic. Thus, we observe that
P-LHRD yields a better fit than LHRD, PHRD, EWD, GLFRD, MWD and NGLED.
Moreover, we plot the empirical cdf versus fitted cdfs and the histogram of the data
versus fitted pdfs in Figure 2. These figures support our conclusion.

It is important here to note that EWD, GLFRD and MWD are three-parameter
distributions with the complicated hazard rate functions. Clearly, it is merit of the P-
LHRD that provide a better fit than other three-parameter distributions while its hazard
rate function is very simple and flexible.
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Table 2. MLEs of parameters (standard errors in parentheses), K-S
statistic and corresponding p-value

Distribution Estimates K-S statistic p-value
LHRD(b,a) 6×10−6 0.0164 - - 0.2179 0.1159

(0.0030) (0.0004)
PHRD(a,k) 0.0215 -0.0532 - - 0.1761 0.3103

(0.0149) (0.2083)
P-LHRD(b,a,k) 2 ×10−5 0.0377 -0.2671 - 0.1290 0.7005

(0.0001) (0.0154) (0.1484)
EWD(α,β,γ) 0.8384 0.0161 0.9832 - 0.1728 0.3322

(0.2617) (0.0283) (0.3034)
GLFRD(α,λ,β) 0.8064 0.0144 4×10−7 - 0.1729 0.3312

(0.1858) (0.0131) (0.0006)
MWD(λ,β,γ) 6 ×10−5 0.0214 0.9466 - 0.1918 0.2198

(0.0016) (0.0384) (0.2784)
NGLED(α,λ,β,γ) 0.8348 0.0055 0.0107 0.9718 0.1708 0.3455

(0.1986) (0.0084) (0.0647) (0.3032)

Figure 2. (a) The empirical cdf versus fitted cdfs. (b) Histogram of
the data versus fitted pdfs.

For illustrative purposes, we have generated a progressively type-II censored sample
of size m = 20 from above data set with respect to the censoring scheme (R1 = ... =
R8 = 0, R9 = ... = R13 = 1, R14 = 0, R15 = 3, R16 = ... = R19 = 0, R20 = 2). The
generated data are as follows:

1, 3, 5, 7, 11, 11, 12, 14, 16, 20, 21, 47, 52, 62, 71, 87, 120, 120, 225, 246.

For these progressively censored data, we obtain the MLEs of the parameters with
initial values b(0) = 0.00002, a(0) = 0.0377 and k(0) = −0.2671, which are the estimates
of the parameters based on the complete data. The MLEs of the parameters b, a and k
using the EM algorithm from (3.14)–(3.16) are given as

b̂ = 5× 10−7, â = 0.02242, k̂ = −0.17253
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with the corresponding standard errors (Se) as

Se(b̂) = 0.0001, Se(â) = 0.0062, Se(k̂) = 0.0003.

Also, the MLEs via the NR algorithm from (3.4)–(3.6) yield the same results with the
EM algorithm.

Substituting the MLE of the unknown parameters in (3.7), we obtain the estimate of
the variance-covariance matrix V̂ as

V̂ =

 8.04× 10−10 −1.03× 10−7 −5.54× 10−9

−1.03× 10−7 3.83× 10−5 2.05× 10−6

−5.54× 10−9 2.05× 10−6 1.11× 10−7

 .

Therefore, the approximate 95% confidence intervals of the parameters b, a and k us-
ing (4.2) are given as (-0.00005, 0.00006), (0.01028, 0.03455) and (-0.17318, -0.17187),
respectively. Based on 1000 bootstrap samples, the 95% Boot-p confidence intervals of
the parameters b, a and k from (4.3) are obtained as (3.07× 10−7, 3.07× 10−5), (0.0126,
0.0695) and (-0.5083, 0.0344), respectively. Also, the 95% Boot-t confidence intervals of
the parameters b, a and k from (4.4) are obtained as (-0.0050, 0.0002), (-0.0069, 0.0731)
and (-13.38, 20.89), respectively.

To obtain Bayes estimates of the parameters b, a and k, we used small values of
the hyperparameters as (α1, η1, γ1) = (0.5, 0.25, 0.75), (α2, η2, γ2) = (0.75, 0.5, 1) and
(α3, η3, γ3) = (1, 0.25, 0.75) to reflect little prior information. We computed the Bayes
estimates and 95% HPD credible intervals of the parameters based on N = 10000 MCMC
samples and discard the first M = 2000 values as burn-in period. The simulated values
and Histogram of the parameters b, a and k generated by the algorithm of Gibbs sampling
are plotted in Figure 3. Based on these simulated values, the Bayes estimate of the
parameters b, a and k under the SEL function using (3.28) are computed as

b̃BS = 0.00005, ãBS = 0.03269, k̃BS = −0.41309.

From (3.29), the Bayes estimate of the parameters b, a and k under the LINEX loss
function for c = 2 are given as

b̃BL = 0.00005, ãBL = 0.03251, k̃BL = −0.43293,

and for c = −1 are given as

b̃BL = 0.00005, ãBL = 0.03278, k̃BL = −0.40271

Also under the Stein loss function, the Bayes estimate of the parameters b and a using
(3.30) are given as

b̃BST = 0.00003, ãBST = 0.02686.

Furthermore, from (4.5) the 95% HPD credible interval of the parameters b, a and k
are obtained as (8.45 × 10−6, 1.03 × 10−4), (0.01071,0.06426) and (-0.66441,-0.11864),
respectively.
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Figure 3. Simulated values and Histogram of the parameters b, a and k

6. A simulation study
In this section, a simulation study is conducted to investigate and compare the perfor-

mance of the presented estimators in the previous sections. We compare the performance
of the MLEs using the EM and NR algorithms and Bayes estimators in terms of their
estimated risk (ER). The performances of the confidence and credible intervals are also
compared in terms of their coverage probability and expected length. When θ is esti-
mated by θ̂, the ER of θ under the SEL function is given by

ERBS(θ) =
1

T

T∑
i=1

(θ̂i − θ)
2
,

where T is the number of replications and θ̂i is the estimate of θ in ith replication.
Moreover, the ER of θ under the LINEX and Stein loss functions are given by

ERBL(θ) =
1

T

T∑
i=1

(
ec(θ̂i−θ) − c(θ̂i − θ)− 1

)
,

ERBST (θ) =
1

T

T∑
i=1

(
θ̂i
θ

− ln
θ̂i
θ

− 1

)
,

respectively. We generate progressively type-II censored sample of size m from a sample
of size n drawn from P-LHRD using the algorithm suggested in Subsection 4.2. For each
value of n = 20, 50, we consider three values of m with different censoring schemes. Note
that, for example, (0∗4) denotes (0, 0, 0, 0). We use two different values for the parameters
(b, a, k), namely (1, 0.5, -0.25) and (0.25, 0.5, 0.1), respectively. To compute different
Bayes estimates, we use the small hyperparameter values as αi = 1.5, ηi = γi = 0.5,
i = 1, 2, 3. We generate N = 10000 MCMC samples and discard the first M = 2000
values as burn-in period as described in Subsection 3.2. We report the average estimates
and ER of the parameters in Tables 3–6. The expected length and coverage probability of
the confidence and credible intervals for confidence level (1−α) = 0.95 are also reported
in Tables 7 and 8. To compute the bootstrap confidence intervals, we use 500 bootstrap
iterations. All the results are reported based on 1000 replications.
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Table 3. Average estimates and estimated risk (in parentheses) of the
parameters for values of (b = 1, a = 0.5, k = −0.25) with n = 20.

m Scheme θ θ̂EM θ̂NR θ̃BS θ̃BL θ̃BL θ̃BST

(c = 2) (c = −1)
b 1.2802 1.2061 1.2739 0.8579 1.3118 0.6112

(0.6798) (0.8006) (0.3667) (0.3393) (0.2961) (0.2653)
(10, 0∗9) a 0.5781 0.6610 0.9558 0.7027 1.0394 0.6668

(0.2334) (0.4618) (0.3512) (0.3847) (0.3997) (0.2178)
k -0.2116 -0.1528 0.1559 0.0514 0.1423

(0.0726) (0.1487) (0.4161) (0.5969) (0.6182)
b 1.3663 1.6984 0.6867 0.5862 1.3056 1.3774

(0.8287) (1.8454) (0.8650) (0.9943) (0.4355) (0.4445)
10 (0∗9, 10) a 0.4172 0.5989 0.8928 0.8827 0.8036 0.8400

(0.1827) (0.5528) (0.7119) (0.7480) (0.4799) (0.5536)
k -0.3571 -0.1336 0.0771 0.1125 0.0979

(0.0915) (0.1850) (0.3054) (0.7029) (0.3542)
b 1.3476 1.5485 1.4174 0.8245 1.4945 0.7110

(0.7093) (1.5313) (0.5432) (0.6143) (0.4271) (0.4276)
(1∗10) a 0.5639 0.6282 1.0411 0.8419 0.9012 0.6980

(0.1987) (0.5211) (0.4449) (0.5146) (0.3727) (0.3594)
k -0.3454 -0.1202 0.1042 0.0983 0.1183

(0.0824) (0.1572) (0.3124) (0.3968) (0.3865)
b 1.2774 1.1992 1.1445 0.7987 1.3844 0.6506

(0.5596) (0.7004) (0.2792) (0.2225) (0.2023) (0.2180)
(8, 0∗11) a 0.5529 0.6402 0.9473 0.7076 1.0483 0.5918

(0.2110) (0.3633) (0.3263) (0.3485) (0.3193) (0.1577)
k -0.2219 -0.1681 0.1093 0.0609 0.1264

(0.0609) (0.1322) (0.3202) (0.4770) (0.4953)
b 1.3377 1.4832 1.5193 1.1204 1.3663 1.2294

(0.7502) (1.2551) (0.7687) (0.9785) (0.3919) (0.3854)
12 (0∗11, 8) a 0.4259 0.6064 0.9867 0.9706 0.8103 0.8999

(0.1618) (0.4606) (0.6287) (0.6810) (0.3836) (0.4976)
k -0.3338 -0.1416 0.0474 0.0186 0.0524

(0.0818) (0.1784) (0.2510) (0.6096) (0.2956)
b 01.3430 1.3784 1.2384 0.8438 1.3343 0.7028

(0.6476) (1.1239) (0.4087) (0.4616) (0.3273) (0.3520)
(0∗2, 1∗8, 0∗2) a 0.5474 0.6301 0.9352 0.8043 1.0603 0.6806

(0.1865) (0.4127) (0.3405) (0.3847) (0.2995) (0.2444)
k -0.2713 -0.1522 0.0313 -0.0181 0.0527

(0.0700) (0.1440) (0.2118) (0.3399) (0.3012)
b 1.1501 1.1469 1.0655 0.7787 1.2941 0.6481

(0.4085) (0.5172) (0.2678) (0.1964) (0.1628) (0.1899)
(5, 0∗14) a 0.5438 0.6044 0.8841 0.6824 1.1013 0.5647

(0.1818) (0.3053) (0.2529) (0.2581) (0.2277) (0.1381)
k -0.2309 -0.1875 0.0858 -0.0421 0.0603

(0.0549) (0.1102) (0.2875) (0.3741) (0.4019)
b 1.2945 1.3106 1.6044 1.2801 1.3843 1.1282

(0.6656) (0.8236) (0.6162) (0.8462) (0.3165) (0.3344)
15 (0∗14, 5) a 0.4722 0.5973 1.0517 0.8964 0.7104 0.8684

(0.1408) (0.4127) (0.5738) (0.6163) (0.2573) (0.4227)
k -0.2717 -0.1788 0.0846 0.0895 0.0804

(0.0664) (0.1501) (0.1679) (0.5188) (0.2563)
b 1.2601 1.1328 1.2983 0.7627 1.4351 0.6188

(0.5585) (0.7085) (0.3681) (0.3727) (0.2594) (0.2756)
(0∗5, 1∗5, 0∗5) a 0.5229 0.7004 0.9182 0.9043 1.0435 0.6026

(0.1539) (0.3853) (0.2786) (0.3226) (0.2458) (0.1993)
k -0.2858 -0.1458 -0.0116 -0.0401 0.0877

(0.0595) (0.1248) (0.1986) (0.2427) (0.2224)
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Table 4. Average estimates and estimated risk (in parentheses) of the
parameters for values of (b = 1, a = 0.5, k = −0.25) with n = 50.

m Scheme θ θ̂EM θ̂NR θ̃BS θ̃BL θ̃BL θ̃BST

(c = 2) (c = −1)

b 1.1220 1.0360 0.9636 0.7582 1.1036 0.6316
(0.2581) (0.3329) (0.1231) (0.1831) (0.0823) (0.1732)

(25, 0∗24) a 0.5483 0.5774 0.8056 0.6718 0.9017 0.6002
(0.1419) (0.1579) (0.1720) (0.2152) (0.1079) (0.1048)

k -0.2439 -0.2114 -0.0388 -0.1010 0.0140
(0.0499) (0.0518) (0.1170) (0.1896) (0.2129)

b 1.3004 1.2652 1.3825 0.9454 1.7811 0.8201
(0.4599) (0.8045) (0.5353) (0.7698) (0.2426) (0.2597)

25 (0∗24, 25) a 0.4662 0.5454 0.9465 0.8451 0.7173 0.7982
(0.1252) (0.2918) (0.5212) (0.5809) (0.1906) (0.3519)

k -0.2676 -0.2373 -0.0238 -0.0686 0.0552
(0.0542) (0.0730) (0.1645) (0.4245) (0.2167)

b 1.1040 1.1773 1.1310 0.8283 1.4021 0.6927
(0.3603) (0.6286) (0.3433) (0.3373) (0.2162) (0.2049)

(1∗25) a 0.5250 0.5734 0.8543 0.7237 1.6121 0.6658
(0.1311) (0.2102) (0.2582) (0.2458) (0.1935) (0.1663)

k -0.2513 -0.2266 -0.0099 -0.0923 0.0054
(0.0501) (0.0520) (0.1734) (0.2123) (0.1927)

b 1.0359 1.0257 0.9241 0.7590 1.0254 0.6470
(0.1825) (0.2487) (0.0878) (0.1803) (0.0517) (0.1723)

(15, 0∗34) a 0.5372 0.6001 0.7674 0.6599 0.8366 0.5950
(0.1281) (0.1433) (0.1301) (0.1917) (0.0754) (0.0977)

k -0.2510 -0.2280 -0.0619 -0.1140 0.0381
(0.0410) (0.0497) (0.1014) (0.1681) (0.1121)

b 1.0952 1.0675 1.0813 0.7880 1.2722 0.6566
(0.3479) (0.4067) (0.3992) (0.6567) (0.1921) (0.2420)

35 (0∗34, 15) a 0.4825 0.5773 0.8766 0.7015 0.7955 0.7357
(0.1054) (0.1617) (0.3124) (0.3308) (0.0831) (0.2162)

k -0.2549 -0.2372 -0.0389 -0.0803 0.0101
(0.0491) (0.0604) (0.1176) (0.2910) (0.1743)

b 1.0284 1.0818 0.9934 0.7972 1.1195 0.6911
(0.2142) (0.3411) (0.1471) (0.2301) (0.0859) (0.1620)

(0∗10,1∗15,0∗10) a 0.5380 0.5675 0.7549 0.6499 0.8263 0.5929
(0.1145) (0.1541) (0.1396) (0.1987) (0.0833) (0.1104)

k -0.2988 -0.2246 -0.0847 -0.1309 0.0345
(0.0475) (0.0518) (0.0889) (0.1436) (0.1212)

b 1.0181 1.0128 0.8835 0.7466 0.9627 0.6424
(0.1384) (0.1921) (0.0813) (0.1734) (0.0426) (0.1635)

(5, 0∗44) a 0.5135 0.5800 0.7583 0.6657 0.8146 0.6148
(0.0897) (0.1222) (0.1229) (0.1896) (0.0688) (0.0907)

k -0.2459 -0.2324 -0.0936 -0.1311 -0.0562
(0.0348) (0.0442) (0.0675) (0.1205) (0.0494)

b 1.0728 1.0243 0.8998 0.7455 0.9924 0.6337
(0.2006) (0.2691) (0.1171) (0.2287) (0.0615) (0.1866)

45 (0∗44, 5) a 0.4796 0.1035 0.7240 0.6368 0.7771 0.5824
(0.0796) (0.1465) (0.1096) (0.1686) (0.0614) (0.0974)

k -0.2888 -0.2459 -0.0936 -0.1364 0.0512
(0.0358) (0.0543) (0.0786) (0.1266) (0.1483)

b 1.0131 1.0166 0.8932 0.7563 0.9722 0.6593
(0.1872) (0.2169) (0.0970) (0.1935) (0.0504) (0.1601)

(0∗20,1∗5,0∗20) a 0.5320 0.5903 0.7373 0.6526 0.7894 0.6041
(0.0866) (0.1336) (0.1106) (0.1742) (0.0618) (0.0917)

k -0.2527 -0.2215 -0.1052 -0.1387 -0.0743
(0.0354) (0.0485) (0.0607) (0.1182) (0.0380)
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Table 5. Average estimates and estimated risk (in parentheses) of the
parameters for values of (b = 0.25, a = 0.5, k = 0.1) with n = 20.

m Scheme θ θ̂EM θ̂NR θ̃BS θ̃BL θ̃BL θ̃BST

(c = 2) (c = −1)

b 0.4247 0.3065 0.5360 0.4488 0.5973 0.3305
(0.1408) (0.1766) (0.1536) (0.2136) (0.0886) (0.1479)

(10, 0∗9) a 0.3703 0.6164 0.5418 0.4379 0.5873 0.3184
(0.0763) (0.2046) (0.0483) (0.0511) (0.0346) (0.1669)

k -0.0545 0.2877 0.4662 0.2541 0.8091
(0.1292) (0.3131) (0.3680) (0.3854) (0.3327)

b 0.4456 0.4216 0.7140 0.6581 0.7420 0.4692
(0.2033) (0.2868) (0.3984) (0.6484) (0.1977) (0.4020)

10 (0∗9, 10) a 0.3512 0.7110 0.5668 0.4259 0.6423 0.3118
(0.1110) (0.4313) (0.0915) (0.3115) (0.1599) (0.3093)

k -0.0826 0.3776 0.6425 0.3823 0.9674
(0.1572) (0.3837) (0.5854) (0.4879) (0.5383)

b 0.4596 0.3201 0.6499 0.5277 0.7381 0.3992
(0.1869) (0.2166) (0.2777) (0.4485) (0.1512) (0.2789)

(1∗10) a 0.3623 0.7203 0.5441 0.4565 0.6184 0.3282
(0.0944) (0.3790) (0.0558) (0.1134) (0.0365) (0.1948)

k -0.0811 0.3686 0.6399 0.3202 0.9328
(0.1479) (0.3495) (0.5532) (0.4641) (0.4503)

b 0.4054 0.2845 0.4956 0.4246 0.5415 0.3091
(0.1179) (0.1283) (0.1100) (0.1543) (0.0627) (0.1056)

(8, 0∗11) a 0.3868 0.6158 0.5377 0.4584 0.5908 0.3067
(0.0681) (0.1588) (0.0433) (0.0481) (0.0302) (0.1608)

k -0.0308 0.2819 0.4167 0.2655 0.5597
(0.1107) (0.2724) (0.2916) (0.3292) (0.2437)

b 0.4241 0.3550 0.6390 0.5250 0.7662 0.4188
(0.1641) (0.1817) (0.2371) (0.5034) (0.1452) (0.3320)

12 (0∗11, 8) a 0.3667 0.6508 0.5441 0.4619 0.6805 0.3365
(0.0997) (0.2653) (0.0757) (0.2925) (0.0912) (0.2685)

k -0.0772 0.3675 0.5821 0.3218 0.4354
(0.1435) (0.3654) (0.3805) (0.3012) (0.4736)

b 0.4327 0.2801 0.5590 0.4695 0.6175 0.3430
(0.1345) (0.1406) (0.1722) (0.2842) (0.0916) (0.1529)

(0∗2, 1∗8, 0∗2) a 0.3606 0.6531 0.5468 0.4289 0.6116 0.3164
(0.0761) (0.2464) (0.0521) (0.0828) (0.0355) (0.1835)

k -0.0777 0.3025 0.5038 0.2761 0.8986
(0.1318) (0.2940) (0.3822) (0.3420) (0.3992)

b 0.3813 0.2261 0.4541 0.3968 0.4894 0.2898
(0.0880) (0.0945) (0.0826) (0.1180) (0.0468) (0.1017)

(5, 0∗14) a 0.4177 0.5991 0.4825 0.4217 0.5216 0.3176
(0.0591) (0.1405) (0.0240) (0.0370) (0.0160) (0.1546)

k -0.0115 0.2789 0.4238 0.2276 0.6023
(0.0996) (0.2689) (0.2423) (0.2645) (0.2033)

b 0.4112 0.3149 0.5512 0.4652 0.6051 0.3329
(0.1387) (0.1431) (0.1842) (0.4067) (0.0997) (0.3175)

15 (0∗14, 5) a 0.3829 0.6093 0.4822 0.4249 0.5468 0.2957
(0.0890) (0.1683) (0.0366) (0.0888) (0.0213) (0.1848)

k -0.0308 0.3313 0.4392 0.1945 0.7645
(0.1284) (0.3319) (0.3224) (0.2960) (0.3893)

b 0.4248 0.2498 0.5068 0.4365 0.5507 0.3249
(0.1063) (0.1204) (0.1222) (0.1856) (0.0673) (0.1442)

(0∗5, 1∗5, 0∗5) a 0.3751 0.6283 0.4980 0.4349 0.5383 0.3267
(0.0674) (0.1595) (0.0313) (0.0757) (0.0184) (0.1561)

k -0.0696 0.3180 0.4022 0.2022 0.7462
(0.1145) (0.2759) (0.3017) (0.2904) (0.3357)
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Table 6. Average estimates and estimated risk (in parentheses) of the
parameters for values of (b = 0.25, a = 0.5, k = 0.1) with n = 50.

m Scheme θ θ̂EM θ̂NR θ̃BS θ̃BL θ̃BL θ̃BST

(c = 2) (c = −1)

b 0.3666 0.2387 0.3818 0.3457 0.4019 0.2517
(0.0552) (0.0606) (0.0373) (0.0570) (0.0207) (0.0718)

(25, 0∗24) a 0.4114 0.5671 0.4673 0.4217 0.4937 0.3563
(0.0483) (0.0809) (0.0139) (0.0285) (0.0069) (0.1119)

k -0.0011 0.2301 0.2057 0.1177 0.2976
(0.0752) (0.1833) (0.0799) (0.0971) (0.0684)

b 0.3987 0.3089 0.6017 0.5250 0.6453 0.3957
(0.0720) (0.0887) (0.1783) (0.3508) (0.0893) (0.2743)

25 (0∗24, 25) a 0.3784 0.5977 0.4347 0.3852 0.4699 0.2955
(0.0768) (0.1405) (0.0184) (0.0381) (0.0113) (0.1714)

k -0.0701 0.2864 0.2839 0.1781 0.5912
(0.0913) (0.2371) (0.1498) (0.2086) (0.3215)

b 0.4074 0.2428 0.4561 0.4018 0.4877 0.2900
(0.0691) (0.0763) (0.0648) (0.0918) (0.0369) (0.0767)

(1∗25) a 0.3784 0.5980 0.4804 0.4369 0.5049 0.3381
(0.0539) (0.1271) (0.0166) (0.0309) (0.0091) (0.1270)

k -0.0826 0.2187 0.2722 0.1433 0.6408
(0.0802) (0.1765) (0.1285) (0.1370) (0.3006)

b 0.3100 0.2376 0.3598 0.3314 0.3750 0.2468
(0.0364) (0.0425) (0.0236) (0.0352) (0.0132) (0.0598)

(15, 0∗34) a 0.4240 0.5541 0.4673 0.4311 0.4869 0.3648
(0.0355) (0.0675) (0.0130) (0.0275) (0.0066) (0.1025)

k 0.0490 0.2278 0.1800 0.1072 0.2341
(0.0660) (0.1496) (0.0660) (0.0957) (0.0439)

b 0.3552 0.2622 0.4210 0.3763 0.4457 0.2708
(0.0525) (0.0699) (0.0528) (0.0798) (0.0290) (0.0845)

35 (0∗34, 15) a 0.3895 0.5562 0.4388 0.4115 0.4697 0.3469
(0.0674) (0.0903) (0.0181) (0.0338) (0.0083) (0.1108)

k -0.0293 0.2368 0.2424 0.1314 0.2775
(0.0786) (0.1894) (0.1196) (0.1202) (0.0834)

b 0.3258 0.2420 0.3755 0.3421 0.3939 0.2512
(0.0483) (0.0539) (0.0329) (0.0492) (0.0184) (0.0705)

(0∗10,1∗15,0∗10) a 0.3946 0.5588 0.4687 0.4326 0.4884 0.3669
(0.0408) (0.0810) (0.0140) (0.0292) (0.0069) (0.1095)

k -0.0762 0.2147 0.1993 0.0768 0.2533
(0.0711) (0.1651) (0.0831) (0.1088) (0.0533)

b 0.3072 0.2258 0.3361 0.3128 0.3483 0.2458
(0.0256) (0.0369) (0.0188) (0.0306) (0.0102) (0.0461)

(5, 0∗44) a 0.4397 0.5514 0.4625 0.4315 0.4791 0.3758
(0.0285) (0.0659) (0.0122) (0.0263) (0.0060) (0.0824)

k 0.0521 0.2129 0.1352 0.0791 0.1689
(0.0586) (0.1347) (0.0309) (0.0484) (0.0192)

b 0.3329 0.2466 0.3708 0.3422 0.3860 0.2590
(0.0490) (0.0508) (0.0275) (0.0448) (0.0149) (0.0716)

45 (0∗44, 5) a 0.3964 0.5281 0.4699 0.4382 0.4768 0.3677
(0.0583) (0.0713) (0.0135) (0.0268) (0.0066) (0.0914)

k -0.0036 0.1871 0.1363 0.0752 0.1718
(0.0697) (0.1592) (0.0382) (0.0646) (0.0219)

b 0.3223 0.2448 0.3384 0.3158 0.3454 0.2302
(0.0394) (0.0453) (0.0198) (0.0346) (0.0117) (0.0652)

(0∗20,1∗5,0∗20) a 0.3905 0.5433 0.4643 0.4347 0.4800 0.3816
(0.0375) (0.0666) (0.0125) (0.0265) (0.0062) (0.0868)

k -0.0723 0.1967 0.1320 0.0778 0.1636
(0.0655) (0.1451) (0.0369) (0.0614) (0.0214)
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Table 7. Expected lengths and coverage probabilities (in parentheses)
of the parameters for values of (b = 1, a = 0.5, k = −0.25).

(n,m) Scheme Methods b a k

(10, 0∗9) AMLE 3.4958(0.926) 2.7145(0.868) 1.6283(0.872)
Boot-p 2.3552(0.986) 1.6946(0.979) 1.2693(0.970)
Boot-t 2.7587(0.981) 1.9182(0.963) 2.8534(0.954)
MCMC 2.7733(0.972) 2.2483(0.968) 1.9145(0.884)

(20,10) (0∗9, 10) AMLE 5.1430(0.929) 2.9574(0.847) 1.5228(0.839)
Boot-p 2.4491(0.982) 1.7015(0.970) 1.1113(0.964)
Boot-t 2.9148(0.969) 1.9243(0.966) 2.5006(0.953)
MCMC 2.5423(0.959) 2.8899(0.949) 2.1130(0.880)

(1∗10) AMLE 4.6610(0.941) 2.8399(0.856) 1.5652(0.853)
Boot-p 2.4777(0.987) 1.7099(0.983) 1.1045(0.958)
Boot-t 2.6734(0.975) 1.8833(0.961) 2.0569(0.955)
MCMC 2.7704(0.964) 2.5157(0.955) 2.0374(0.883)

(8, 0∗11) AMLE 3.3371(0.936) 2.5627(0.866) 1.5484(0.846)
Boot-p 2.3097(0.981) 1.5445(0.949) 1.0972(0.954)
Boot-t 2.7483(0.985) 1.6167(0.943) 2.3354(0.961)
MCMC 2.4922(0.975) 2.1043(0.965) 1.7921(0.883)

(20,12) (0∗11, 8) AMLE 4.9543(0.933) 2.8318(0.857) 1.4512(0.833)
Boot-p 2.4463(0.989) 1.6032(0.941) 1.0596(0.945)
Boot-t 2.7134(0.978) 1.7057(0.950) 2.1490(0.968)
MCMC 2.7708(0.953) 2.7218(0.947) 1.9228(0.876)

(0∗2,1∗8,0∗2) AMLE 3.6079(0.925) 2.6241(0.848) 1.4062(0.849)
Boot-p 2.4399(0.982) 1.6404(0.951) 1.0599(0.951)
Boot-t 2.6109(0.990) 1.6851(0.955) 1.9091(0.957)
MCMC 2.6784(0.958) 2.3982(0.961) 1.8374(0.875)

(5, 0∗14) AMLE 3.0648(0.931) 2.4497(0.878) 1.4578(0.868)
Boot-p 2.2626(0.977) 1.4745(0.960) 1.0763(0.951)
Boot-t 2.6690(0.973) 1.5950(0.949) 1.5504(0.947)
MCMC 2.2858(0.975) 1.7547(0.969) 1.5034(0.865)

(20,15) (0∗14, 5) AMLE 4.7238(0.934) 2.7064(0.874) 1.4186(0.831)
Boot-p 2.3815(0.981) 1.5996(0.958) 1.0413(0.945)
Boot-t 2.6676(0.984) 1.6504(0.955) 1.5612(0.953)
MCMC 2.9359(0.969) 1.9693(0.955) 1.7213(0.860)

(0∗5,1∗5,0∗5) AMLE 3.5573(0.926) 2.5570(0.876) 1.3951(0.857)
Boot-p 2.3353(0.982) 1.5753(0.959) 1.0188(0.954)
Boot-t 2.5549(0.985) 1.6549(0.948) 1.4686(0.941)
MCMC 2.7883(0.973) 1.8635(0.960) 1.6656(0.858)

(25, 0∗24) AMLE 2.5966(0.928) 2.0389(0.895) 1.1536(0.904)
Boot-p 2.0606(0.979) 1.4611(0.961) 0.8981(0.952)
Boot-t 2.4521(0.967) 1.5423(0.957) 0.9983(0.938)
MCMC 1.8072(0.982) 1.4684(0.958) 0.9876(0.862)

(50,25) (0∗24, 25) AMLE 4.2745(0.930) 2.1567(0.904) 1.1522(0.864)
Boot-p 2.2814(0.971) 1.5799(0.959) 0.9981(0.958)
Boot-t 2.6548(0.973) 1.6257(0.955) 1.1306(0.942)
MCMC 2.7038(0.959) 1.9323(0.935) 1.0946(0.855)

(1∗25) AMLE 3.4424(0.927) 1.9206(0.908) 1.1005(0.897)
Boot-p 2.1813(0.968) 1.5065(0.956) 0.8986(0.949)
Boot-t 2.5146(0.975) 1.6299(0.948) 1.0352(0.945)
MCMC 2.3355(0.970) 1.5544(0.940) 1.0396(0.854)
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Table 7: (Continued)
(n,m) Scheme Methods b a k

(15, 0∗34) AMLE 2.3368(0.943) 1.9098(0.888) 1.1319(0.932)
Boot-p 1.8475(0.988) 1.3346(0.950) 0.8348(0.963)
Boot-t 2.2181(0.980) 1.4190(0.944) 0.9539(0.952)
MCMC 1.5992(0.985) 1.2869(0.943) 0.8513(0.883)

(50,35) (0∗34, 15) AMLE 3.2584(0.924) 1.8918(0.910) 1.0821(0.886)
Boot-p 2.0374(0.972) 1.3799(0.952) 0.9628(0.955)
Boot-t 2.5873(0.976) 1.5886(0.957) 0.9773(0.946)
MCMC 2.0712(0.971) 1.2474(0.927) 0.8211(0.865)

(0∗10,1∗15,0∗10) AMLE 2.4897(0.926) 1.7900(0.897) 1.0831(0.913)
Boot-p 2.0087(0.982) 1.3245(0.947) 0.8364(0.957)
Boot-t 2.3760(0.973) 1.5771(0.946) 0.9541(0.949)
MCMC 1.7441(0.976) 1.2481(0.932) 0.8855(0.876)

(5, 0∗44) AMLE 2.1386(0.914) 1.6701(0.902) 1.1308(0.912)
Boot-p 1.7012(0.968) 1.2542(0.953) 0.7785(0.956)
Boot-t 1.9831(0.959) 1.3102(0.945) 0.8993(0.945)
MCMC 1.4441(0.973) 1.1742(0.936) 0.7143(0.869)

(50,45) (0∗44, 5) AMLE 2.5908(0.932) 1.6896(0.913) 1.0309(0.904)
Boot-p 1.8332(0.975) 1.2337(0.952) 0.8321(0.941)
Boot-t 2.1141(0.966) 1.2581(0.943) 0.9529(0.946)
MCMC 1.5262(0.961) 1.1254(0.915) 0.7605(0.863)

(0∗20,1∗5,0∗20) AMLE 2.3220(0.925) 1.6883(0.898) 1.0487(0.923)
Boot-p 1.7418(0.970) 1.2315(0.956) 0.7994(0.950)
Boot-t 2.1021(0.972) 1.2563(0.946) 0.8740(0.942)
MCMC 1.4428(0.963) 1.1215(0.923) 0.6755(0.856)
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Table 8. Expected lengths and coverage probabilities (in parentheses)
of the parameters for values of (b = 0.25, a = 0.5, k = 0.1).

(n,m) Scheme Methods b a k

(10, 0∗9) AMLE 2.3295(0.947) 2.9704(0.949) 2.4451(0.907)
Boot-p 1.5279(0.991) 1.5641(0.974) 1.5534(0.953)
Boot-t 1.5650(0.983) 1.6052(0.969) 1.8805(0.951)
MCMC 1.1234(0.991) 1.1250(0.993) 2.2661(0.983)

(20,10) (0∗9, 10) AMLE 3.5419(0.946) 2.8077(0.940) 2.0313(0.898)
Boot-p 1.8885(0.988) 1.9394(0.971) 1.5890(0.949)
Boot-t 1.9345(0.978) 2.1384(0.973) 2.2392(0.957)
MCMC 1.4378(0.985) 1.3825(0.985) 2.3953(0.969)

(1∗10) AMLE 2.5737(0.953) 2.5831(0.947) 2.2018(0.893)
Boot-p 1.7647(0.990) 1.7385(0.977) 1.5708(0.950)
Boot-t 1.7951(0.986) 1.8061(0.970) 1.9764(0.953)
MCMC 1.2506(0.987) 1.2956(0.989) 2.3235(0.875)

(8, 0∗11) AMLE 2.1086(0.941) 2.6822(0.952) 2.3754(0.894)
Boot-p 1.4470(0.986) 1.4512(0.980) 1.5427(0.948)
Boot-t 1.4327(0.979) 1.3773(0.971) 1.7726(0.950)
MCMC 1.0033(0.996) 1.0305(0.996) 2.1933(0.988)

(20,12) (0∗11, 8) AMLE 3.1709(0.954) 2.7692(0.945) 2.0200(0.879)
Boot-p 1.7612(0.992) 1.6456(0.974) 1.5779(0.955)
Boot-t 1.6996(0.984) 1.6040(0.968) 2.1397(0.953)
MCMC 1.2102(0.989) 1.2828(0.988) 2.3639(0.973)

(0∗2,1∗8,0∗2) AMLE 2.2824(0.951) 2.5678(0.954) 2.1603(0.886)
Boot-p 1.6100(0.986) 1.5582(0.979) 1.5580(0.952)
Boot-t 1.6308(0.985) 1.4686(0.972) 1.9639(0.956)
MCMC 1.1455(0.988) 1.1653(0.990) 2.2121(0.977)

(5, 0∗14) AMLE 2.0439(0.959) 2.6343(0.961) 2.3463(0.904)
Boot-p 1.3242(0.993) 1.3548(0.983) 1.5298(0.958)
Boot-t 1.2636(0.980) 1.1676(0.968) 1.7526(0.955)
MCMC 0.8933(0.996) 0.9459(0.996) 1.9097(0.986)

(20,15) (0∗14, 5) AMLE 2.4170(0.965) 2.5157(0.960) 2.0055(0.992)
Boot-p 1.6284(0.995) 1.3985(0.976) 1.5544(0.951)
Boot-t 1.4804(0.982) 1.3571(0.967) 1.9974(0.959)
MCMC 1.1065(0.991) 1.0934(0.990) 2.1149(0.979)

(0∗5,1∗5,0∗5) AMLE 2.2204(0.947) 2.4280(0.953) 2.1784(0.908)
Boot-p 1.5180(0.986) 1.3912(0.980) 1.5361(0.953)
Boot-t 1.4893(0.977) 1.2220(0.972) 1.8852(0.948)
MCMC 1.0195(0.995) 1.0224(0.989) 2.0424(0.980)

(25, 0∗24) AMLE 1.6822(0.948) 2.0043(0.948) 1.7254(0.918)
Boot-p 1.1591(0.988) 1.2223(0.976) 1.3896(0.959)
Boot-t 1.1233(0.980) 1.0825(0.963) 1.6813(0.956)
MCMC 0.7045(0.995) 0.8015(0.995) 1.1939(0.995)

(50,25) (0∗24, 25) AMLE 2.4964(0.929) 2.0865(0.943) 1.8982(0.881)
Boot-p 1.6240(0.991) 1.3451(0.969) 1.4991(0.949)
Boot-t 1.4754(0.984) 1.3215(0.965) 1.9777(0.950)
MCMC 1.0548(0.990) 0.8530(0.992) 1.6332(0.989)

(1∗25) AMLE 2.0768(0.952) 2.0207(0.951) 1.7735(0.893)
Boot-p 1.4209(0.987) 1.2578(0.978) 1.4285(0.955)
Boot-t 1.3983(0.981) 1.1819(0.969) 1.7906(0.951)
MCMC 0.8841(0.994) 0.8287(0.995) 1.3578(0.985)



841

Table 8: (Continued)
(n,m) Scheme Methods b a k

(15, 0∗34) AMLE 1.5312(0.935) 1.8924(0.942) 1.6558(0.923)
Boot-p 1.0502(0.982) 1.1449(0.968) 1.3466(0.960)
Boot-t 1.0091(0.976) 1.0229(0.960) 1.5397(0.956)
MCMC 0.6321(0.995) 0.7296(0.996) 1.0488(0.992)

(50,35) (0∗34, 15) AMLE 2.0751(0.938) 2.0139(0.954) 1.7742(0.904)
Boot-p 1.2778(0.989) 1.1525(0.975) 1.4394(0.953)
Boot-t 1.1310(0.982) 1.1002(0.966) 1.8350(0.950)
MCMC 0.7835(0.989) 0.7491(0.991) 1.2606(0.987)

(0∗10,1∗15,0∗10) AMLE 1.4405(0.942) 1.9162(0.947) 1.6804(0.913)
Boot-p 1.1314(0.984) 1.1488(0.973) 1.3243(0.952)
Boot-t 1.1243(0.978) 1.0785(0.964) 1.6680(0.952)
MCMC 0.6846(0.992) 0.7375(0.995) 1.0881(0.990)

(5, 0∗44) AMLE 1.4793(0.929) 1.8323(0.939) 1.5814(0.908)
Boot-p 0.9856(0.987) 1.0974(0.971) 1.2944(0.954)
Boot-t 0.9875(0.980) 1.0214(0.962) 1.4041(0.948)
MCMC 0.5694(0.993) 0.6735(0.993) 0.9212(0.993)

(50,45) (0∗44, 5) AMLE 1.5716(0.936) 1.9491(0.938) 1.6373(0.897)
Boot-p 1.0545(0.981) 1.0961(0.973) 1.3715(0.956)
Boot-t 1.0543(0.976) 1.0814(0.965) 1.6192(0.953)
MCMC 0.6354(0.983) 0.6864(0.990) 0.9602(0.986)

(0∗20,1∗5,0∗20) AMLE 1.3767(0.927) 1.9116(0.931) 1.6145(0.915)
Boot-p 1.0119(0.982) 1.0957(0.971) 1.2836(0.951)
Boot-t 1.0104(0.975) 1.0336(0.964) 1.5208(0.949)
MCMC 0.5721(0.987) 0.6882(0.985) 0.9504(0.995)

From Tables 3–6, it is observed that the ERs of all estimates decrease as the sample
sizes increase in all cases, as expected. The results shows that the MLEs using the EM
algorithm have smaller ERs than the MLEs using the NR algorithm.The performances
of the MLEs using the EM algorithm are satisfactory, especially when the sample size
is small. For large sample sizes, we observe that the ERs of the MLEs using the EM
algorithm and the Bayes estimators become very close in most of the cases. Also, it is
clear that the Bayes estimates under LINEX loss function are sensitive to the values of
the shape parameter c.

From Tables 7 and 8, we observe that the expected lengths of the intervals decrease
as the sample sizes increase, as expected. The results shows that the performance of the
approximate confidence intervals in comparison with bootstrap confidence intervals are
not satisfactory, especially for small sample sizes. Comparing the bootstrap confidence
intervals, we observe that the performance of Boot-p confidence intervals and Boot-t
confidence intervals are almost similar in terms of coverage probabilities but in terms of
expected lengths the Boot-p confidence intervals provides the shorter expected lengths.
In most of the cases, it is observed that the HPD credible intervals have the better
performances in comparison with the other intervals, especially when the sample size is
large.

In most of the cases, it is observed that the ERs of the estimators and the expected
lengths of the intervals are maximized when the censoring is at the end of the experiment
and are minimized when the censoring is at the first of the experiment. This may be
occurred because, the data obtained when the censoring is at the first of the experiment
would be expected to provide more information about the unknown parameters than the
data obtained when the censoring is at the end of the experiment.
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7. Conclusions
In this paper, we consider a new class of hazard rate distributions called the power-

linear hazard rate distribution. This distribution is obtained by combining the linear
hazard rate function and the power hazard rate function and it contains a number of
known lifetime distributions such as linear hazard rate distribution, power hazard rate
distribution, exponential distribution, Rayleigh distribution and Weibull distribution.
The power-linear hazard rate function can cover constant, decreasing, increasing and
bathtub-shaped hazard rates. The MLEs via the EM and NR algorithms and Bayesian
estimation of the parameters of the power-linear hazard rate distribution under SEL,
LINEX and Stein loss functions are obtained. The asymptotic confidence interval and
the HPD credible interval of the parameters are also discussed. A real data set is ana-
lyzed in order to illustrate the inferences discussed in the previous sections. It observed
that the present distribution can provide a better fit than its sub-models and some three-
parameter distributions. Finally, to investigate and compare the performance of different
types of estimators presented in this paper, a Monte Carlo simulation study is conducted.
Based on simulation results, we observed that the MLEs using the EM algorithm work
well, especially when the sample size is small. Also, the performance of the Bayes es-
timators and the HPD credible intervals based on the MCMC method are very good,
especially for large sample sizes.

Appendix
Using (3.13), the required conditional expectations in the EM algorithm are obtained

in the following form
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and then by making the change of variable v = bz2/2, we have
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where Γ(a, b) =
∫∞
b

xa−1e−xdx is the upper incomplete gamma function. Similarly,
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Note that the right hand side of (7.2)–(7.7) does not depend on l, so, we can eliminate
the index l from zjl.
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