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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

ABSTRACT  

 

 In this study, it is aimed the numerically investigation of the 

flow of liner PTT (Phan-Thien-Tanner) fluid, which is a 

viscoelastic fluid model over limited square obstacle by finite 

volume method. The finite volume method has been used for 

simultaneous solution of continuity, momentum and fluid 

model equations with appropriate boundary conditions. The 

effects of the inertia  in terms of Reynolds number, Re, (0 < Re 

< 20) and the of elasticity  in terms of Weissenberg number, 

We, (1 < We < 15) of PTT flow  on vertical and shear stress 

areas are examined in detail. 

 

 

 

Keywords: Square cylinder, confined channel, viscoelastic 

flow, PTT fluid. 

 

 

 

Kare silindir etrafindaki viskoelastik akışın 

stres davranışları 

ÖZ 

 

 Bu çalışmada viskoelastik akışkan modeli olan liner PTT 

(Phan-Thien-Tanner) akışkanın sınırlandırılmış kare engel 

üzerinden olan akışının sonlu hacimler yöntemi ile nümerik 

olarak incelenmesi hedeflenmiştir. Sonlu hacimler yöntemi, 

uygun sınır koşulları ile birlikte, süreklilik, momentum ve 

akışkan model eşitliklerinin eş zamanlı çözümü için kullamıştır. 

PTT akışın Reynolds sayısı, Re, (0 < Re < 20) cinsinden 

eylemsizliğinin ve Weissenberg sayısı, We, (1 < We < 15) 

cinsinden elastiğsitesinin, dikey ve kayma gerilim alanları 

üzerine olan etkileri detaylı bir şekilde incelenmiştir  

 

 

 

Anahtar Kelimeler: Kare silindir, sınırlandırılmış kanal, 

viskoelastik akış, PTT akışkan. 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

1. INTRODUCTION  

 

 Flow of fluids over the square obstacles is present in 

many engineering processes such as fins in heat 

exchangers, coating processes, cooling towers, extruders 

and membrane processes.
1
 With such crucial industrial 

implications, hydrodynamics of such flows has been 

subject of many computational studies in the literature. 

There are many studies on Newtonian fluid flow around 

a circular obstacle. For instance, Hassanzadeh and co-

workers.
2
 performed numerical study on the flow around 

a sphere using finite volume method. They presented 

flow structures around sphere in terms of velocity, 

streamlines, pressure distributions at high Re (Reynolds 

number) numbers. Their numerical predictions were also 

confirmed by the experimental visualizations. As an 

experimental visualization method, particle image 

velocimetry was used in this study.  Particle Image 

Velocimetry (PIV) is used to carry out flow field 

measurements experimentally. This technique enables the 

qualitative and quantitative flow visualization of the flow 

field 2. Pioneer study on this geometry was given by 

Breuer and co-workers.
3
 They analyzed laminar two-

dimensional Newtonian flow around a square cylinder 

using finite volume and lattice Boltzmann methods. 

 In this study, blockage  ratio B,  is  the  ratio over  the  
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obstacle dimension and channel height, was 1/8. The 

results obtained from two methods were also good 

agreement. They observed bigger wake size with 

increased Re. In the analysis by Sen and co-workers.
4
, 

with B = 1/100 Newtonian flow over a square obstacle 

for Re ≤ 40 was studied using a finite element 

formulation. They also modelled the flows over the 

cylinders of circular and elliptical ones. They reported 

effect of Re on the flow structure. In their recent study 

Puig-Aranega and co-workers
5
 searched Newtonian flow 

around a square cylinder obstacle using lattice 

Boltzmann method for 50 ≤ Re ≤ 100. They reported 

strong impact of imposed boundary conditions on the 

stress field around the cylinder. However, in the literature 

studies on non-Newtonian flow (inelastic flow) case over 

the obstacles are smaller than those Newtonian flows. 

Dhiman and co-workers
6 

employed power-law fluids 

flow around a confined square cylinder using finite 

volume method. Other study of Dhiman and co-workers
7
 

showed stronger impact of power law fluids at low 

values of Re compared as to the high values of Re. Ehsan 

and co-workers
8
 also studied the inertia effects on the 

flow fields under both laminar and turbulent conditions. 

Their main finding was that decreasing drag effects was 

observed when the inertial effects increased. Moreover, 

Nilmarkar and co-workers
9
 obtained numerically 

Bingham plastic fluid flow past a square cylinder at Re = 

0. The effect of Bingham number, Bi considered as a 

yielding stress parameter, on the stress and pressure 

fields was reported in their study. They observed the 

weaker dependence of flow fields on Bi at its increased 

values.  

 On the other hand, viscoelastic flow hydrodynamics 

are also significant for the industrial implications due to 

revealing both viscous and elastic effects on the flow 

field. Hence, this study mainly deals with the flow of a 

viscoelastic linear PTT (Phan-Thien-Tanner) fluid, 

around a confined square obstacle numerically. 

 

2.  NUMERICAL METHODOLOGY 

 

 Two-dimensional flow of linear PTT fluid around a 

confined square is considered in this study under the 

isothermal conditions. The flow system is sketched as in 

Figure 1. The blockage ratio is 1/4. The continuity, 

momentum and constitutive PTT equations in rectangular 

coordinates (x, y) are presented in Equations (1) and (2).  

For a two-dimensional flow system equation can be 

given as:  
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Eq. (2) gives viscoelastic constitutive linear PTT 

mode.l.
10 

This viscoelastic model serves shear thinning 

and normal stress effects in the flow field. Dimensionless 

forms of the stress components τxx, τyy, τxy are given as 

follows: 

Phan-Thien-Tanner (PTT) constitutive equation: 

 

 Stress components of τxx 
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Stress components of τyy 
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Stress components of τxy 
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where u, v are the velocities, p is the pressure, wr = 1 - β  

and the parameter β is the ratio of the retardation and 

relaxation time and ε is extensibility parameter. The 

Reynolds number (Re) and the Weissenberg number (We) 

which is defined as the ratio of characteristic fluid 

relaxation time to characteristic time scale in the flow are 

given through (Re = ρUH / η0), where ƞ0  is the total 

viscosity of polymer and solvent, and We = λu / H,  

where λ is relaxation constant of the viscoelastic fluid.  

Re is important dimensionless number to characterize 

flow pattern and it compares the inertial and viscous 

forces in the flow field. We is the other dimensionless 

number  that  describes the dominance of elastic forces 

over viscous forces of the flow. The material parameters 

β and ε are set as 0.2 and 0.25, respectively.  

 A finite volume method
11,12 

is used to obtain discrete 

form of the flow equations. Convective terms in the PTT 

equations are computed by using of CUBISTA
13

 scheme. 

The detailed numerical methods have been also presented 

in the study of Tezel and co-workers.
14

 

 

3. RESULTS AND DISCUSSION   

 

 Nonhomogeneous structured mesh is employed to 

simulate the flow field with B = 1/4. Smallest mesh size 

is used near the obstacle walls in order to resolve thin 

boundary layers and high gradients in the flow as 

depicted in Figure 1. Minimum size of the mesh has Δx = 

0.02 and Δy = 0.01. Total number of the cells is 372 x 

162. 

 

Figure 1. Non-uniform mesh structure around the square 

obstacle.  

 

Viscoelastic fluids have normal stresses (τxx) due to 

revealing the elastic effects of the fluid flow rather than 

Newtonian flow. Normal stresses are resulted from 

velocity (ux) changings through the flow direction. 

Figures 2a and 2b depict the impact of the We numbers 

on the normal stress component τxx at creeping flow. In 

these figures dimensionless stress values are -0.1 and 1.  

 

 

Symmetric normal stress field is observed. In the flow 

direction, normal stresses go further at the top and 

bottom of the obstacle. As We is increased, normal stress 

contours stretch longer distances in the behind of the 

obstacle (wake region). Otherwise, at the channel wall 

there is no amending normal stress profile with respect to 

We. When We is 15, the impact of elasticity seems to be 

by the extent of the shear thinning compared to the case 

of We = 5. As in Figure 2b negative normal stresses 

occur around the obstacle. These stresses dominantly 

develop in front of the object. When at We = 15, there is 

no observation of a negative normal stress as in Figure 

2b due to high elasticity of the flow.  At the front of the 

obstacle, sudden separated flows near the front of the 

obstacle cause the formation of Hoop stresses. It can be 

explained as larger normal stress changings through the 

tangential direction in the flow field due to stretching of 

elastic forces over the surface of the square cylinder. 

Similar findings are also offered for the circular cylinder 

by Oliveira and co-workers.
13

 This formation of Hoop 

stresses comes from the sudden velocity changings in 

front surface of the square cylinder. 

 

 

 

(a) 

 

 

(b) 

Figure 2. Normal stress profile for Re = 0 at contour values a) 1 

b) -0.1. 
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 Figures 3 and 4 depict the normal stress field at Re = 

10 and Re = 20, respectively. Due to the stability 

problems encountered in the numeric solutions, We was 

capped at 4.  As increased Re, behind the obstacle (in the 

wake region), normal stress field grows up to bigger size. 

As shown in Figure 4a, at Re = 20, normal stress divides 

into two symmetric fields in the wake region. Negative 

stress fields occur in this region since dominance of 

Hoop stresses. Due to the We ranges in Figures 3b and 

4b, an increase in the extent of the stress fields is 

observed near the channel wall suggesting weaker shear 

thinning effects than We = 15 case in Figure 2b.  With the 

higher values of We, normal stresses modify 

progressively around the cylinder reported as in Norouzi 

and co-workers’s study.
15 

 

 

(a) 

 

 

(b) 

Figure 3. Normal stress profile for Re = 10 at the contour value 

a) 1, b) -0.1. 

 

 

 

 

 

 

(a) 

 

 

(b) 

Figure 4. Normal stress profiles for Re = 20 at the contour 

value a) 1, b) -0.1. 

 

 

 Figure 5 shows the effect of the Re on the shear stress 

field, τxy. Shear stress is caused by viscous forces 

between the fluid molecules. Hence, ux changes with 

respect to the perpendicular direction to the flow field. At 

the front corners of obstacle, hoop stresses cause the 

higher shear stress distribution due to instantaneous 

variation in viscoelastic flow velocity. At creeping flow, 

as shown in Figure 5a, at the back corners of the obstacle 

shear stresses also occur. As Re increases, at the front 

corners’ higher values of the shear stress distend to the 

upper and lower surfaces of the obstacle as in Figure 5b 

and 5c due to flow separation effect of viscoelastic flow 

especially in the front corners. 
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(a) 

 
(b) 

       
(c) 

 
Figure 5. Shear stress profile for We = 3, a) Re = 0, b) Re = 10, 

c) Re = 20. 

 

4. CONCLUSIONS 

 

 In the present study, normal and shear stresses 

distribution of viscoelastic fluid flowing over the 

obstacle is studied using numerical method. The results 

of the study can be summarized as follows. 

 

 For stable solutions, at higher value of Re there is the 

lowest limit of We and at lower value of Re there is 

highest limit of We. 

 

 Low We and high Re conditions supply the occurrence 

of negative normal stresses in the flow field. 

 

 

 

 

 When the fluid inertia increases, in the wake region 

normal stresses get bigger size and the stress region is 

observed at the top and bottom surfaces of the pipe. 

 

 Shear stresses occur in the flow region when the fluid 

flow is tangential to the boundaries of the obstacle at 

increased Re 

 

Conflict of interests 

 

Authors declare that there is no a conflict of interest with 

any person, institute, company, etc. 

 

REFERENCES 

  

1. Liang, C.; Papadakis, G.; Luo, X. Comput. Fluids 

2009, 38, 950-964.  

2. Hassanzadeh, R.; Sahin, B.; Ozgoren, M. Int. J. 

Comput. Fluid D. 2011,  25,  535-545.  

3. Breuer M.; Bernsdorf, M.; Zeiser, T.; Durst, T. Int. J. 

Heat Fluid Fl. 2000, 21, 186-196. 

4. Sen, S.; Mittal, S.; Biswas, G. Int. J. Numer. Meth. Fl. 

2011, 67, 1160-1174.  

5. Puig-Aranega, A.; Burgos, J.; Cito, S.; Cuesta, I.; 

Saluena, C. Int. J. Comput. Fluid D. 2015,  29, 434-446. 

6. Dhiman, A.K.; Chhabra,  R.P.; Eswaran, V. J. Non-

Newton. Fluid Mech. 2008, 148, 141-150.  

7. Dhiman, A.K.; Chhabra,  R.P.; Eswaran, V.  J. Chem. 

Eng. Res. Des. 2006, 84, 300-310. 

 8. Ehsan, I.; Mohammad, S.; Reza, N.; Ali, J. Int. J. 

Phys. Sci. 2012, 7, 988-1000. 

9. Nirmalkar, N., Chhabra R.P.; Poole R.J. J. Non-

Newton. Fluid Mech. 2012, 171-172, 17–30. 

10. Phan-Thien,  N.; Tanner,  R.I. J. Non-Newton. Fluid 

Mech. 1977, 2, 353-365. 

11. Patankar, S.V.; Spalding,  D.B. Int. J. Heat Mass 

Tran. 1972, 15, 1787.  

12. Versteeg  H. K.; Malalasekera W.  An introduction to 

computational fluid dynamics: The finite volume 

method, 2nd Edition, Prentice Hall, USA, 1995. 

13. Alves, M.A., Oliveira P.J.; Pinho F.T. Int. J. Numer. 

Meth. Fl. 2003, 4, 47-75. 

 

 



 

Int. J. Chem. Technol. 2019, 3 (1), 61-66                                                                                                                              Tezel and co-workers                                          

         

DOI: http://dx.doi.org/10.32571/ijct.549930                                E-ISSN:2602-277X 

66 

 

14. Tezel, G. B.; Yapici, K.; Uludag, Y. Period Polytech. 

Chem. Eng. 2019, 63, 190-199. 

 

15. Norouzi, M.;  Varedi, S.R.;  Zamani, M.  Korea-Aust. 

Rheol. J. 2015, 27, 213-225. 

 

 

 

  https://orcid.org/0000-0002-0671-208X (G.B. Tezel) 

 

 https://orcid.org/0000-0002-3902-9375  (K. Yapici) 

 
 https://orcid.org/0000-0002-2151-5818  (Y. Uludag) 

 

https://orcid.org/0000-0002-3902-9375
https://orcid.org/0000-0002-2151-5818

