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Abstract

The objective of this study is to extend the usage of Newton’s method for Banach space
valued operators. We use our new idea of restricted convergence domain in combination
with the center Lipschitz hypothesis on the Fréchet-derivatives where the center is not
necessarily the initial point. This way our semi-local convergence analysis is tighter than in
earlier works (since the new majorizing function is at least as tight as the ones used before)
leading to weaker criteria, better error bounds more precise information on the solution.
These improvements are obtained under the same computational effort.

1. Introduction

Let X ,Y denote Banach spaces and Ω⊆ X be a convex set. Numerous problems in diverse areas are written as an equation like

F(x) = 0, (1.1)

where F : Ω−→ Y is a twice continuously Fréchet-differentiable operator. One wishes that a solution x∗ of equation (1.1) can be found
in closed form [1]-[10]. However, this is done only in special cases. This is why most researchers use iterative procedures to generate a
sequence {xn} approximating x∗. The most popular iterative procedure is undoubtedly Newton’s method defined for some given initial point
x0 ∈Ω by

xn+1 = xn−F ′(xn)
−1F(xn),

for each n = 0,1,2, . . . . There is literature on convergence results for Newton’s method, see [3, 8, 9, 10] and the references therein. The
convergence domain of Newton’s method is small in general under generalized-type Lipschitz conditions. This fact limits the applicability of
Newton’s method. Therefore, techniques that will enlarge the convergence domain without additional hypotheses are useful. In particular,
we are motivated by the work of Ezquerro and Hernandez in [5, 6], where the center-Lipschitz on the second Fréchet-derivative was used but
the center is not necessarily the starting point for Newton’s method. This idea has also been used but on the first Fréchet-derivative. Using
this technique in connection to majorizing functions and sequences a semi-local convergence analysis was given in [6] for the special case,
when X =Y =Rm, where m is a positive integer. The choice of a point other than x0 in the center-Lipschitz condition allows more flexibility
in the choice of majorizing functions and sequences. Moreover, the convergence domain may be extended in some cases as it was shown in
[6] for a certain class of nonlinear integral equations.
In the present study we also use the center Lipschitz condition at x0 as well as at a point other than x0. This way we locate a smaller domain
Ω where the iterates {xn} are located. Then, the majorizing function related to the smaller domain U0 is always at least as small as the
majorizing function in [5, 6] derived using the set Ω. We then provide a semi-local convergence analysis along the lines of the work in [5, 6]
but with the center-Lipschitz condition on the first derivative instead of the second leading to tighter error estimates on ‖F ′(xn)

−1‖. This
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modification together with the usage of the new majorant function instead of the old one leads to an at least tighter semi-local convergence.
Some of the advantages include weaker sufficient semi-local convergence criteria (i.e., larger convergence domain than before, tighter error
estimates on the distances ‖xn+1− xn‖, ‖xn− x∗‖ and more precise information on the location of the solution x∗. The interesting part of
this new technique is the fact that no additional conditions are utilized since the computation of the old majorant function requires the
computation of the new majorant function as a special case. Our idea can be extended in the case F(i) is center-Lipschitz continuous where
i≥ 2 [2]-[4].
The lay out of the rest of the paper contains: The semi-local convergence of Newton’s method in Section 2. Section 3 has the examples on
which the theoretical results are tested.

2. Semi-local convergence

Let γ ≥ 0. Define R = sup{t ≥ γ : U(x0, t)⊆Ω}. Throughout this paper U(x0,r),Ū(x0,r), stand respectively for the open and closed balls
in X with center at x0 and radius r. We base the semi-local convergence analysis of Newton’s method on the conditions (A ):

(A0) Operator F : Ω⊆ X −→ Y is twice Fréchet differentiable in the Fréchet sense.
(A1) Let x0 ∈Ω. There exist z ∈ D, and δ ≥ 0 such that ‖x0− z‖= δ . Set t0 = γ +δ .
(A2) There exist operator Γ0 = F ′(x0)

−1 ∈ L(Y,X), b1 > 0 such that ‖Γ0‖ ≤ b1 and a function g1 : [γ,+∞)−→ [0,+∞) continuous and
nondecreasing such that

b1‖F ′(x0)−F ′(x)‖ ≤ g1(‖x0− x‖)
for each x ∈U(x0,R− t0). Equation g1(t− t0)−1 = 0 has positive solutions t ≥ t0. Denote by ρ1 the smallest such solution.
Or

(A ′2 ) there exist operator ∆ = F ′(z)−1 ∈ L(Y,X),b2 > 0 such that ‖∆‖ ≤ b2 and a function g2 : [γ,+∞) −→ [0,+∞) continuous and
nondecreasing such that

b2‖F ′(z)−F ′(x)‖ ≤ g2(‖z− x‖)
for each x ∈U(x0,R− t0). Equation b2g2(t− γ)−1 = 0 has a minimal solutions ρ2 ≥ γ. Notice that if g1 or g2 are strictly increasing,
then ρ1 = g−1

1 ( 1
b1
)+ t0 and ρ2 = g2(

1
b2
)+ γ.

(A3) There exists f : [γ,+∞)−→ [0,+∞) twice continuously differentiable such that

‖F ′′(z)‖ ≤ f ′′(γ)

and

‖Γ0F(x0)‖ ≤ −
f (t0)
f ′(t0)

.

(A4) b1
1−b1g1(t)

≤− 1
f ′(t) for all t ∈ [t0,ρ1].

or

(A ′4 ) b2
1−b2g2(t)

≤− 1
f ′(t) for all t ∈ [γ,ρ2].

(A5) ‖F ′′(x)−F ′′(z)‖ ≤ f ′′(t)− f ′′(γ) for all x ∈U0, t ∈ [γ,R), where U0 = Ω∩U(x0,ρ1− t0).
(A ′5 ) ‖F ′′(x)−F ′′(z)‖ ≤ f ′′(t)− f ′′(γ) for all x ∈U1, t ∈ [γ,R), where U1 = Ω∩U(x0,ρ2− γ).

(A6) b1 ≤− 1
f ′(t0)

or

(A ′6 ) b2 ≤− 1
f ′(t0)

.

We shall use the majorizing Newton iteration function f defined by,

tn = N f (tn−1) = tn−1−
f (tn−1)

f ′(tn−1)
for all n = 1,2, . . . , (2.1)

where t0 is given. Conditions (A0), (A1)–(A6) or conditions (A0), (A1), (A ′2 ), (A3), (A ′4 ), (A ′5 ) and (A ′6 ) shall be called the conditions
(A ).

Remark 2.1. The following conditions were used in [5]-[10] for the special case X = Y = Rm:

(C1) There exists z ∈Ω and δ ≥ 0 such that ‖x0− z‖= δ and ‖F ′′(z)‖ ≤ f ′′1 (γ).

(C2) There exists the operator Γ0 = F ′(x0)
−1 ∈ L(Rm,Rm) with ‖Γ0‖ ≤ − 1

f ′(t0)
and ‖Γ0F(x0)‖ ≤ − f1(t0)

f ′1(t0)
.

(C3) ‖F ′′(x)−F ′′(z)‖ ≤ f ′′1 (t)− f ′′1 (γ) for ‖x− z‖ ≤ t− γ, x ∈ Ω and t ∈ [γ,+∞) and the majorizing Newton sequence is defined by t̄0
given,

t̄n = N f1(t̄n−1) = t̄n−1−
f1(t̄n−1)

f ′1(t̄n−1)

for each n = 1,2,3, . . . and t̄0 = t0.

Notice that U0 ⊆Ω and U1 ⊆Ω. Therefore f is at least as tight as f1, i.e.,

f (t)≤ f1(t)

− 1
f ′(t)

≤− 1
f ′1(t)

and
f ′′(t)− f ′′(γ)≤ f ′′1 (t)− f ′′1 (γ).
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Next, we state a well known result [9, 10].

Lemma 2.2. Suppose that there exists a nonnegative scalar sequence {tn} majorizing a sequence {xn} ⊆ Ω. Moreover, suppose that
limn−→+∞ tn = t∗ for some t∗ ≥ 0. Then, there exists x∗ ∈Ω such that limn−→∞ xn = x∗ and ‖x∗− xn‖ ≤ t∗− tn for each n = 0,1,2,3, . . . .

The proof of the next two results are skipped, since these are immediately obtained from the ones in [5, 6] by using function f , iteration {tn},
condition (A ) instead of function f1, iterate {t̄n} and conditions (C1)–(C3), respectively. Moreover, these results involve solutions of scalar
equations related to Newton’s sequence {tn}.

Proposition 2.3. Assume that there exists a twice continuously differentiable function f : [γ,+∞) −→ R with γ ∈ R such that the (A )
conditions are satisfied.

(1) If there exists a solution δ ∈ (γ,+∞) of equation f ′(t) = 0, then δ is the minimum value of f in [γ,+∞) and f is non-increasing in
[t0,δ ).

(2) If f (δ )≤ 0, then the equation f (t) = 0 has a unique solution t∗ in (γ,δ ) satisfying t0 < t∗ < δ .

Proposition 2.4. Assume that there exists a twice continuously differentiable function f : [γ,+∞)−→ R with γ ∈ R such that condition (A )
are satisfied. If there exist a solution δ ∈ [γ,+∞) of equation f ′(t) = 0 satisfying f (δ )≤ 0, then the scalar sequence {tn} given by (2.1) is
nondecreasing and converges to the minimal solution t∗ of f (t) = 0.

Next, the semi-local convergence of Newton’s method follows.

Theorem 2.5. Let F : Ω⊆ X −→ Y be a twice continuously differentiable operator in the Fréchet sense. Assume that there exist a function
f : [γ,+∞)−→ R twice continuously differentiable with γ ∈ R such that conditions (A ) are satisfied and a solution δ ∈ (γ,+∞) of equation
f ′(t) = 0 satisfying f (δ ) ≤ 0 and U(x0, t∗− t0) ⊂ Ω. Then, the sequence {xn} generated by Newton’s method is well defined stays in
Ū(x0, t∗− t0), and converges to a solution x∗ ∈ Ū(x0, t∗− t0) of equation F(x) = 0, so that

‖x∗− xn‖ ≤ t∗− tn for each n = 0,1,2, . . .

where sequence {tn} is given in (2.1).

Proof. We use (A2) instead of (C3) used in [5, 6] to obtain

‖F ′(xi)
−1‖ ≤ b1

1−b1g1(ti)

or under (A ′2 )

‖F ′(xi)
−1‖ ≤ b2

1−b2g2(ti)

instead of
‖F ′(xi)

−1‖ ≤ − 1
f ′(ti)

.

Then, by (A4) or (A ′4 ) we get that the preceding estimate also holds in our setting. Using this modification, the rest of proof follows as in
[5, 6] with sequence {tn} replacing {t̄n}.

�

The next result provides information about the location of the solution.

Proposition 2.6. Assume that the condition (A ) are satisfied. If the equation f (t) = 0 has two solutions such that t0 < t∗ ≤ t∗∗, then x∗ is
unique in U(x0, t∗∗− t0)∩Ω provided that t∗ < t∗∗ or in Ū(x0, t∗− t0), provided that t∗ = t∗∗.

Proof. Simply replace f1, t̄∗, t̄∗∗,Rm,Rm by f , t∗, t∗∗,X ,Y, respectively in [5, 6, Theorem 7].
�

The following error bounds are also available:

Proposition 2.7. Assume that the hypotheses of Proposition 2.6 are satisfied.

(1) For t∗ < t∗∗, suppose there exist a1 > 0 and b1 > 0 such that a1 ≤min{ϕ(t) : t ∈ [t0, t∗]} and b1 ≥max{ϕ(t) : t ∈ [t0, t∗]}, then

(t∗∗− t∗)τ2n

a1− τ2n ≤ t∗− tn ≤ (t∗∗− t∗)c2n

for all n = 0,1,2, . . . where ϕ(t) = (t∗∗−t)h′(t)−h(t)
(t∗−t)h′(t)−h(t) , f (t) = (t− t∗)(t− t∗∗)h(t),h(t∗) 6= 0, h(t∗∗) = 0 and τ = t∗

t∗∗ a1, provided that
τ < 1 and c < 1.

(2) For t∗ = t∗∗, suppose there exists b3 > 0 such that b3 ≤min{ψ(t) : t ∈ [t0, t∗]}, then

an
2t∗ ≤ t∗− tn ≤ bn

3t∗

for all n = 0,1,2, . . . provided that a2 < 1 and b3 < 1, where ψ(t) = (t∗−t)h′(t)−h(t)
(t∗−t)h′(t)−2h(t) .

Proof. Simply replace f1, t̄n, t̄∗, t̄∗∗ by f , tn, t∗, t∗∗ in [5, 6, Theorem 8].

Remark 2.8. (i) It follows from Proposition 2.7 that the convergence order is quadratic for t∗ < t∗∗, and linear, for t∗ = t∗∗.
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(ii) The uniqueness of the solution x∗ is more precise under the new conditions. Notice that f (t̄∗)≤ f1(t̄∗) = 0 so t∗ ≤ t̄∗. Let us suppose
that for t0 = 0 [3, 5]-[10]

f (t) =
p
2

t2− t
b
+

η

b
,

f1(t) =
q
2

t2− t
b
+

η

b
,

then 0 < p≤ q (provided that 2bqη ≤ 1), we have that t∗ ≤ t̄∗ and t∗∗ ≤ t̄∗∗. Hence, the uniqueness of the solution x∗ is improved.
Similar favorable comparisons are given for the lower and upper bounds given in Proposition 2.7.

(iii) The construction of function f defined on U0 as identical to the construction of function f1 on Ω in [5, 6] is omitted. See also preceding
case (ii) and the example in the next Section.

3. Numerical example

We present an example where our results apply to solve an equation but not earlier ones [5, 6].

Example 3.1. Let X = Y = R,Ω = Ū(x0,1− p), x0 = 1, p ∈ I0 = [2−
√

3, 1
2 ] and z = x0. Define function F on Ω by

F(x) =
x3

3
− px+

2p
3
.

Under the approach in [5, 6],

‖F ′′(x)‖= 2‖x‖ ≤ 2(‖x− x0‖+‖x0‖)≤ 2(1− p+1) = 2(2− p), (3.1)

‖F ′′(x0)−F ′′(x)‖= 2‖x0− x‖ ≤ 2, (3.2)

b = ‖F ′(x0)
−1‖= 1 (3.3)

and

‖F ′(x0)
−1F(x0)‖=

1
3
(1− p) = η . (3.4)

If polynomial f (or fold) satisfies f (µ2) ≤ 0 (or fold(µ4) ≤ 0), then it has a negative solution and two positive solutions. In view of
(3.1)–(3.4), the old function fold satisfying the conditions of Theorem 13 in [5, 6] is given by

fold(t) =
1
3

t3 +(2− p)t2− t +
1
3
(1− p) (3.5)

Polynomial in (3.5) has a maximum at t = µ3 = 1
2−p−

√
(2−p)2+1

< 0 and a minimum at t = µ4 = 1
2−p+

√
(2−p)2+1

> 0 and fold(µ4) >

0, for all p ∈ I0.
Hence, the old results cannot guarantee that limn−→+∞ xn = x∗. Under the new approach, since g1(t) = (3− p)t,U0 = Ω∩U(x0,

1
3−p ) =

U(x0,
1

3−p ),ρ1 =
1

3−p , so U0 is a strict subset of Ω and,

‖F ′′(x)‖= 2‖x‖ ≤ 2[‖x− x0‖+‖x0‖]≤ 2(
1

3− p
+1).

Then, the new function f is defined by

f (t) =
1
3

t3 +
4− p
3− p

t2− t +
1
3
(1− p). (3.6)

Polynomial given in (3.6) has a maximum at t = µ1 =
1

4−p
3−p−

√
( 4−p

3−p )
2+1

< 0 and a minimum at t = µ2 =
1

4−p
3−p +

√
( 4−p

3−p )
2+1

> 0.

Notice that (A4) holds, if p ∈ I0, t ≥ 0 since it reduces to

1
1− (3− p)t

≤− 1

t2 +2( 4−p
3−p )t−1

or
p2−4p+1

3− p
≤ t

or
p2−4p+1≤ 0,

which is true for p ∈ I0. Moreover, we have that
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f (µ2)≤ 0, for all p ∈ I0.

Therefore, under our approach limn−→∞ xn = x∗. Furthermore, although the old results do not apply, we also have that for each t, t̄ ∈ [0,ρ1]
with t < t̄, f (t)≤ fold(t̄) and f ′(t)≤ f ′old(t̄)< 0 so

− f (t)
f ′(t)

≤− fold(t̄)
f ′old(t̄)

leading to
tn ≤ t̄n,

tn+1− tn ≤ t̄n+1− t̄n

and
t∗ ≤ t̄∗.

Hence, the error bounds on ‖xn+1− xn‖,‖xn− x∗‖ are improved as well as the location of the solution.
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