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Abstract

The concept of UP-bialgebras was introduced and analyzed by Mosrijai and Iampan at the
beginning of 2019. Theorem that we can look at as the First theorem on UP-biisomorphism
between the UP-bialgebras is given in our forthcoming text [9]. In this article we construct
a form of the third theorem on UP-biisomorphism between UP-bialgebras.

1. Introduction

The concept of UP-algebras developed by Iampan in [1]. Examining the substructures in this algebra are done for example in articles [2, 3].
This author took part in analyzing the properties of UP-algebras and their substructures, also [4]-[6]. Some forms of the isomorphism
theorem between UP-algebras can be found in [2, 3, 5, 6].

The concept of bi-algebraic structures was studied by Vasantha Kandasamy in 2003 [7]. The concept of UP-bialgebras with the associated
substructures and their mutual connections can be found in [8]. In the forthcoming article [9], this author offered one form the first theorem
of the isomorphism between the UP-bialgebras.

In this article we expose a form of the second isomorphism theorem between UP-bialgebras.

2. Preliminaries

In this section, we will present the necessary previous concepts of UP-algebras, their substructures and UP-homomorphisms taken from texts
[1, 2, 3, 8]. We will also expose their mutual relationships in the form of proclaims necessary for our intention.

2.1. UP-algebras

In this subsection we will describe some elements of UP-algebras and their substructures necessary for our intentions in this text.

Definition 2.1 ([1]). An algebra L = (L, ·,0) of type (2,0) is called a UP-algebra where L is a nonempty set, ′ · ′ is a binary operation on L,
and 0 is a fixed element of L (i.e. a nullary operation) if it satisfies the following axioms:
(UP-1) (∀x,y ∈ L)((y · z) · ((x · y) · (x · z)) = 0),
(UP-2) (∀x ∈ L)(0 · x = x),
(UP-3) (∀x ∈ L)(x ·0 = 0), and
(UP-4) (∀x,y ∈ L)((x · y = 0 ∧ y · x = 0) =⇒ x = y).

Definition 2.2 ([1]). A nonempty subset J of a UP-algebra (L, ·,0) is called
(1) a UP-subalgebra of L if (∀x,y ∈ J)(x · y ∈ J).
(2) a UP-ideal of L if
(i) 0 ∈ J; and
(ii) (∀x,y,z ∈ L)((x · (y · z) ∈ J ∧ y ∈ J) =⇒ x · z ∈ J).
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The set {0} is a trivial UP-subalgebra (trivial UP-ideal) of L.
In the article [6], Theorem 3.3, it has been shown that the conditions (i) and (ii) in the preceding definition are equivalent to the following
conditions
(iii) (∀x,y ∈ L)((x · y ∈ J ∧ x ∈ J) =⇒ y ∈ J),
(iv) (∀x,y ∈ L)(y ∈ J =⇒ x · y ∈ J).

Definition 2.3 ([1]). Let (L, ·,0L) and (M, ·′ ,0M) be two UP-algebras. A mapping f : L−→M is called a UP-homomorphism if

(∀x,y ∈ L)( f (x · y) = f (x) ·
′

f (y)).

A UP-homomorphism f : L−→M is called
(3) a UP-epimorphism if f is surjective,
(4) a UP-monomorphism if f is injective, and
(5) a UP-isomorphism if f is bijective.

Let f be a mapping form UP-algebra L to UP-algebra M, and let A and B be nonempty subsets of L and of M, respectively. The set
f (A) = { f (x)|x ∈ A} is called the image of A under f . In particular, f (L) which denoted by Im( f ) is called the image of f . The dually set
f−1(B) = {x ∈ L| f (x) ∈ B} is called the inverse image of B under f . Especially, the set Ker( f ) = f−1({0M}) = {x ∈ L : f (x) = 0M} is
called the kernel of f .

A relation of congruence on UP-algebras is introduced in [1] by Definition 3.1 and Proposition 3.5 on this way: If J is a UP-ideal of a
UP-algebra L, then the relation ∼J defined by

(∀x,y ∈ L)(x∼J y ⇐⇒ (x · y ∈ J ∧ y · x ∈ J))

is a UP-congruence on L. Further on, any relation of congruence on UP-algebras has this form according to the claim (1) of Theorem 3.6
and the claim (1) of Theorem 3.7 in [1]. In particular, if f : L−→M is a UP-homomorphism between UP-algebras, then the relation ∼ f
determined by Ker( f ) is a UP-congruence in L. The factor-set L/∼J= {[x]∼J : x ∈ L} is a UP-algebra according to the claim (4) of Theorem
3.7 in [1]. We also use the following notion L/J = {[x]J : x ∈ L} to denote this factor algebra.

2.2. UP-bialgebras

The concept of UP-bialgebras and some their substructures were introduced and analyzed by Mosrijai and Iampan in the recently published
work [8]. In this subsection, taking into account their determinations, we describe the concept of UP-bialgebras and some notions connected
with them. So, in this subsection, we will repeat the concept of UP-bialgebras and the notions of UP-bisubalgebras and UP-biideals of
UP-bialgebras, and will expose some results related to substructures of such algebras.

Definition 2.4 ([8], Definition 3.1). An algebra L = (L, ·,∗,0) of type (2,2,0) is called a UP-bialgebra where L is a nonempty set, · and ∗
two are binary internal operations on L, and 0 is a fixed element of L if there exist two distinct proper subsets L1 and L2 of L with respect to ·
and ∗, respectively, such that
(UPB-1) L = L1∪L2;
(UPB-2) (L1, ·,0) is a UP-algebra, and
(UPB-3) (L2,∗,0) is a UP-algebra.
We will denote the UP-bialgebra by L = L1]L2. In case of L1∩L2 = {0}, we call L zero disjoint.

Definition 2.5 ([8], Definition 3.7). A nonempty subset J of a UP-bialgebra L = L1]L2 is called a UP-biideal (UP-bisubalgebra) of L if
there exist subsets J1 of L1 and J2 of L2 with respect to · and ∗, respectively, such that
(6) J1 6= J2 and J = J1∪ J2;
(7) (J1, ·,0) is a UP-ideal (UP-subalebra) of (L1, ·,0), and
(8) (J2,∗,0) is a UP-ideal (UP-subalgebra) of (L2,∗,0).
In case of J1∩L2 = {0}= L1∩ J2, we call S zero disjoint.

The important relationship between these notions is the following:

Proposition 2.6 ([9]). If J ⊃ {0} is a UP-subalgebra (resp., UP-ideal) of UP-algebra L1 (of UP-algebra L2, respectively), such that {0} 6= J,
then on J can be seen as a zero disjoint UP-bisubgebra (resp., UP-biideal) of UP-bialgebra L = L1]L2.

2.3. UP-bihomomorphisms

Let f : L−→M be a function from a set L to a set M and C ⊆ L. Then the restriction of f to C is the function f[C] : C −→M.

Definition 2.7 ([8], Definition 4.1). Let L = L1 ]L2 be a UP-bialgebra with two binary operations · and ∗, and let M = M1 ]M2 be a
UP-bialgebra with two binary operations ·′ and ∗′ . A mapping f form L = L1]L2 to M = M1]M2 is called a UP-bihomomorphism if it
satisfies the following properties:
(9) f[L1] : L1 −→M1 is a UP-homomorphism, and
(10) f[L2] : L2 −→M2 is a UP-homomorphism.
We say that these restrictions are natural restrictions. A UP-bihomomorphism f : L−→M is called
- a UP-biepimorphism if the natural restriction are UP-epimorphisms,
- a UP-bimonomorphism if the natural restriction are UP-monomorphisms, and
- a UP-biisomorphism if the natural restriction are UP-isomorphisms.
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Proposition 2.8 ([8]). let f : L1]L2 −→M1]M2 be a UP-bihomomorphism. Then the following statements hold:
(11) f (0L) = 0M , and
(12) Ker( f ) = {0L} if and only if f is an injective mapping;
(13) if J is a UP-bisubalgebra of L, then the image f (J) is a UP-bisubalgebra of B;
(14) if J = J1∪ J2 is a UP-biideal of L, and J1 and J2 are subsets of L1 and of L2, respectively, with Ker( f )⊆ J1∩ J2, then the image f (J) is
a UP-biideal of M;
(15) if D is a UP-bisubalgebra of M, then the inverse image f−1(D) is a a UP-bisubalgebra of L; and
(16) if D is a UP-biideal of M, then the inverse image f−1(D) is a UP-biideal of L.

3. The main results

In our forthcoming article [9], we formulated and proved a form of the first isomorphism theorem between UP-bialgebras. To this direction,
we used the following lemma.

Lemma 3.1 ([9]). Let L = L1]L2 and M = M1]M2 be two UP-bialgebras and let f : L−→M be a UP-bihomomorphism. Then the set
Ker( f[A1])∪Ker( f[A2]) is a UP-biideal of L and Ker( f ) = Ker( f[L1])]Ker( f[L2]) holds.

Let L = L1]L2 be a UP-bialgebra with two binary operations · and ∗, and let M = M1]M2 be a UP-bialgebra with two binary operations ·′

and ∗′ and let f : L−→M be a UP-bihomomorphism. Let ∼1 is the congruence on L1 generated by the UP-ideal Ker( f[L1])

∀x,y ∈ L1)(x∼1 y ⇐⇒ (x · y ∈ Ker( f[L1]) ∧ y · x ∈ Ker( f[L1])))

and let ∼2 be the congruence on L2 generated by the UP-ideal Ker( f[L2])

(∀x,y ∈ L2)(x∼2 y ⇐⇒ (x∗ y ∈ Ker( f[L2]) ∧ y∗ x ∈ Ker( f[L2]))).

Then we can construct the factor-UP-algebra L1/∼1 and the factor-UP-algebra L2/∼2. So, L1/∼1 ]L2/∼2 is a UP-bialgebra with two
binary operation ′� ′ and ′~ ′ defined by

(∀ [x]∼1 , [y]∼1 ∈ L1/∼1))([x]∼1 � [y]∼1 = [x · y]∼1)

and

(∀ [x]∼2 , [y]∼2 ∈ L2/∼2))([x]∼2 ~ [y]∼2 = [x∗ y]∼2).

Previous analysis enables us to introduce the following determination: Let L = L1]L2 be a UP-bialgebra. For a pair (∼1,∼2) the relation of
congruence ∼1 on L1 and ∼2 on L2 we write L1]L2/(∼1,∼2) instead of L1/∼1 ] L2/∼2. If π1 : L1 −→ L1/∼1 and π2 : L2 −→ L2/∼2
are canonical UP-epimorphisms, then there is a unique canonical UP-epimorphism π : L1]L2 −→ L1]L2/(∼1,∼2) such that π[L1] = π1
and π[L2] = π2 . Particulary, there is a unique UP-epimorphism π : L1 ]L2 −→ (L1 ]L2)/(Ker( f[L1]),Ker( f[L2])). The first theorem of
isomorphism between UP-bialgebras has the form in which for simplicity we write A/Ker( f ) instead of A/(Ker( f[A1]),Ker( f[A2])).

Theorem 3.2 ([9]). Let f : L−→M be a UP-bihomomorphism. Then there exists the unique UP-bihomomorphism g : L/Ker( f ) −→ M
such that f = g◦π . In addition, for the UPB-subalgebra f (L) of M holds L/Ker( f )∼= f (L).

Let us analyze now the following situation:

Let J and K be UP-biideals of a UP-bialgebra L such that J ⊆ K. Then there exist UP-ideals J1 and K1 of the UP-algebra L1 and there
exist UP-ideals J2 and K2 of the UP-algebra L2 such that J1 6= J2 and J = J1 ∪ J2, and K1 6= K2 and K = K1 ∪K2, by Definition 2.5. If
J1 ⊆ K1 and J2 ⊆ K2 hold, then K1/J1 is a UP-ideal of UP-algebra L1/J1 and K2/J2 is a UP-ideal of UP-algebra L2/J2. From here follows
L1/K1 ∼= (L1/J1)/(K1/J1) according to Theorem 3.10 in [6]. We also have it L2/K2 ∼= (L2/J2)/(K2/J2) according to same theorem. So,
the set K1/J1] K2/J2 is a UP-biideal of the UP-bialgebra L1/J1] L2/J2. Thus, the mapping g1 : L1/J1 −→ L1/K1 has Ker(g1) = K1/J1.
Analogously, the mapping g2 : L2/J2 −→ L2/K2 has Ker(g2) = K2/J2 as core. Therefore, the homomorphism g : L/(J1,J2) −→ L/(K1,K2),
determined by g[L1/J1] = g1 and g[L2/J2] = g2 has the core exactly K1/J1]K2/J2.

The previous analysis is a motivation for the following theorem can be seen as the Third isomorphism theorem between UP-bialgebras.

Theorem 3.3. Let L = L1 ]L2 be a UP-bialgebra and let J = J1 ] J2 and K = K1 ]K2 be UP-biideals such that J1 ⊆ K1 and J2 ⊆ K2.
Then

L/(K1,K2) ∼= (L/(J1,J2))/(K1/J1,K2/J2)

holds.

Final Observation

The concept of UP-algebras introduced and first results on them given by Iampan 2017 [1]. This author took part in analyzing the properties
of UP-algebras and their substructures, also [4, 5, 6]. Algebraic bi-strukture was analyzed by Vasantha Kandasamy in 2003 [7]. The concept
of UP-bialgebras introduced and the first results ware given by Mosrijai and Iampan at the beginning of 2019 [8]. Using by the concept of
UP-bihomorphisms, introduced in [8], in this article we formulated and proved the theorem (Theorem 3.3) , which can be viewed as the
Third isomorphism theorem between the UP-bialgebras.
Of course, there remains an open possibility of formulating and trying to prove other forms of these two isomorphism theorems between the
UP-bialgebra.
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