Difference Sequence Spaces Derived by using Pascal Transform

Saadettin Aydın ${ }^{1}$ and Harun Polat ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Kilis 7 Aralk University, Kilis, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Muş Alparslan University, Muş, Turkey
*Corresponding author E-mail: h.polat@alparslan.edu.tr

Article Info

Keywords: Difference operator, matrix mappings, Pascal difference sequence spaces, α-, β - and γ-duals
2010 AMS: 46B45, 46B15, 46B50.
Received: 19 March 2019
Accepted: 28 May 2019
Available online: 17 June 2019

Abstract

The essential goal of this manuscript is to investigate some novel sequence spaces of $p_{\infty}(\Delta)$, $p_{c}(\Delta)$ and $p_{0}(\Delta)$ which are comprised by all sequence spaces whose differences are in Pascal sequence spaces p_{∞}, p_{c} and p_{0}, respectively. Furthermore, we determine both $\gamma-$, β-, α - duals of newly defined difference sequence spaces of $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$. We also obtain bases of the newly defined difference sequence spaces of $p_{c}(\Delta)$ and $p_{0}(\Delta)$. Finally, necessary and sufficient conditions on an infinite matrix belonging to the classes $\left(p_{c}(\Delta): l_{\infty}\right)$ and $\left(p_{c}(\Delta): c\right)$ are characterized.

1. Introduction

Real or complex valued sequences spaces are represented by w along with the manuscript. Each sub-classes of real or complex valued sequences spaces is known as a sequence space. A sequence space of null, convergent, and bounded sequences are respectively demonstrated by c_{0}, c, and l_{∞}. Moreover $c s, l_{1}, b s$ depict convergent, absolutely convergent, and bounded series respectively.
K space is defined by any sequence space λ with a linear topology satisfying following transformation for a continuous term of $p_{s}(m)=m_{s}$ $s \in N$ such that $p_{s}: \lambda a \rightarrow C$, where $N=\{0,1,2, \ldots\}$ and C represents the set of complex number. If λ is a complete linear metric space then K-space is named by $F K$-space. $B K$-space is defined as normable topological space of $F K$-space [1].
Infinite matrix of complex or real numbers $A=\left(a_{n k}\right)$ is defined for $n, k \in N$. Let X and Y be any two sequence spaces. Then, A is defined as a transformation between X to Y such that following equality holds.

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} \tag{1.1}
\end{equation*}
$$

for each $n \in N .(X: Y)$, shows the family of matrices where $A: X \rightarrow Y$. Hence series given by the (1.1) converges for every $x \in X$ and each $n \in N$ iff $A \in(X: Y)$. One also has $A x=\left\{(A x)_{n}\right\} \in Y$. Here collection of entire finite subsets on K and N is denoted by F, where $N \subset F$. Studies on the sequence space have been mainly focused on some elementary concepts which are inclusions of sequence spaces, matrix mapping, determination of topologies, [2]. Let X be a sequence space and A be an infinite matrix in X then the domain of matrix is determined by

$$
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\}
$$

In general limitation matrix A produces novel sequence space X_{A} and it is either contraction or the expansion of the original space. Indeed, it is obviously clear that inclusion relations of $X \subset X_{\Delta}$ and $X_{S} \subset X$ are decidedly satisfied for $X \in\left\{c, l_{\infty}, c_{0}\right\}$ [3]. In particular, the the difference operator and sequence spaces which are fundamental samples for the matrix A and they have been investigated comprehensively through the mentioned methods.
Let P represeents the means of Pascal which is described by the matrix of Pascal [4] then it is defined by

$$
P=\left[p_{n k}\right]=\left\{\begin{array}{cc}
\binom{n}{n-k}, & (0 \leq k \leq n) \\
0, & (k>n)
\end{array},(n, k \in N)\right.
$$

and the inverse of matrix of Pascal $P_{n}=\left(p_{n k}\right)$ is defined by

$$
P^{-1}=\left[p_{n k}\right]^{-1}=\left\{\begin{array}{cc}
(-1)^{n-k}\binom{n}{n-k}, & (0 \leq k \leq n) \\
0 \quad,(k>n)
\end{array},(n, k \in N)\right.
$$

Pascal matrix contains some fascinating features. For instance; we can form three types of matrices: symmetric, lower triangular, and upper triangular, for any integer $n>0$. The n-th order symmetric Pascal matrix n is given by

$$
\begin{equation*}
S_{n}=\left(s_{i j}\right)=\binom{i+j-2}{j-1}, \text { for } i, j=1,2, \ldots, n \tag{1.2}
\end{equation*}
$$

n-th order lower triangular Pascal matrix is presented by

$$
L_{n}=\left(l_{i j}\right)=\left\{\begin{array}{cc}
\binom{i-1}{j-1}, & (0 \leq j \leq i) \tag{1.3}\\
0, & (j>i)
\end{array}\right.
$$

and the n -th order upper triangular Pascal matrix of order is presented by

$$
U_{n}=\left(u_{i j}\right)=\left\{\begin{array}{cc}
\binom{j-1}{i-1}, & (0 \leq i \leq j) \tag{1.4}\\
0, & (j>i)
\end{array}\right.
$$

We notice that $U_{n}=\left(L_{n}\right)^{T}$, n is any natural number.
i. Let S_{n} be the n-th order symmetric Pascal matrix given by (1.2), L_{n} be the n-th order lower triangular Pascal matrix given by (1.3), and U_{n} be the n-th order upper triangular Pascal matrix given by (1.4), then $S_{n}=L_{n} U_{n}$ and $\operatorname{det}\left(S_{n}\right)=1$ [5].
ii. Let S_{n} be the n-th order symmetric Pascal matrix given by (1.2), then S_{n} is similar to its inverse S_{n}^{-1} [5].
iii. Let A and B be $n \times n$ matrices. It is already known obviously that A is similar to B if one can define $n \times n$ invertible matrix P i which satisfies following
$P^{-1} A P=B$ [6].
iv. Let L_{n} be the n-th order Pascal matrix. It is also assumed that it is a lower triangular matrix which is given by (1.3), then $L_{n}^{-1}=\left((-1)^{i-j} l_{i j}\right)$ [7]. Recently, Pascal sequence spaces was investigated by Polat [8] p_{∞}, p_{c} and p_{0} like as follows:

$$
\begin{aligned}
& p_{\infty}=\left\{x=\left(x_{k}\right) \in w: \sup _{n}\left|\sum_{k=0}^{n}\binom{n}{n-k} x_{k}\right|<\infty\right\}, \\
& p_{c}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} x_{k} \text { exists }\right\},
\end{aligned}
$$

and

$$
p_{0}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} x_{k}=0\right\}
$$

$l_{\infty}(\Delta)=\left\{x \in w:\left(x_{k}-x_{k+1}\right) \in l_{\infty}\right\}, c(\Delta)=\left\{x \in w:\left(x_{k}-x_{k+1}\right) \in c\right\}$ and $c_{0}(\Delta)=\left\{x \in w:\left(x_{k}-x_{k+1}\right) \in c_{0}\right\}$ are known as difference sequence space and they are firstly defined by Kızmaz [9]. Further, various authors have defined and studied the difference sequence spaces, which can be seen in the following papers [10]-[15].
In this manuscript, Pascal difference sequence spaces of $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ are defined. They contain entire sequences whose differences are in Pascal sequence spaces p_{∞}, p_{c} and p_{0}, respectively. What is more, we determine the bases of the novel difference sequence spaces $p_{c}(\Delta)$ and $p_{0}(\Delta)$, and the $\alpha-, \beta$ - of the difference sequence spaces $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$. Finally, we give the characterization of the necessary and sufficient conditions on an infinite matrix belonging to families of $\left(p_{c}(\Delta): l_{\infty}\right)$ and $\left(p_{c}(\Delta): c\right)$.

2. Inverse formula of the Pascal matrix and Pascal sequence spaces

We define the operators $\Delta: w \rightarrow w$ here and after it may be written for the sequence $\left(x_{k}-x_{k-1}\right)$ that $(\Delta x)_{k}=\Delta x$. The well known difference matrix and the inverse of the difference matrix are defined as follows:

$$
\left(\Delta^{(1)}\right)_{n k}=\left\{\begin{array}{c}
(-1)^{n-k},(n-1 \leq k \leq n) \\
0,(0 \leq k<n-1 \text { or } k>n)
\end{array} \quad,(n, k \in N)\right.
$$

and

$$
\left(\left(\Delta^{(1)}\right)^{-1}\right)_{n k}=\left\{\begin{array}{l}
1,(0 \leq k \leq n) \\
0, \\
(k>n)
\end{array},(n, k \in N)\right.
$$

Pascal difference sequence spaces are defined by $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ by

$$
p_{\infty}(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(x_{k}-x_{k-1}\right) \in p_{\infty}\right\}
$$

$$
p_{c}(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(x_{k}-x_{k-1}\right) \in p_{c}\right\}
$$

and

$$
p_{0}(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(x_{k}-x_{k-1}\right) \in p_{0}\right\} .
$$

Let be a sequence $y=\left\{y_{n}\right\}$, which is generally utilized as H - mapping or H - transformation of a sequence $x=\left(x_{k}\right)$ and $H=P \Delta^{(1)}$ i.e.,

$$
\begin{gather*}
y_{n}=(H x)_{n}=\sum_{k=0}^{n}\binom{n}{n-k}\left(x_{k}-x_{k-1}\right) \tag{2.1}\\
=\sum_{k=0}^{n}\left[\binom{n}{k}-\binom{n}{k+1}\right] x_{k}
\end{gather*}
$$

for each $n \in N$. It can be easily shown that $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ are linear and normed spaces by the following norm:

$$
\begin{equation*}
\|x\|_{\Delta}=\|y\|_{\infty}=\sup _{n}\left|y_{n}\right| \tag{2.2}
\end{equation*}
$$

Theorem 2.1. $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ sequence spaces are Banach spaces provided with the norm function given by (2.2).

Proof. In the space of $p_{\infty}(\Delta)$, let we define following sequence and suppose that it is a Cauchy sequence $\left\{x^{i}\right\}$ such that $\left\{x^{i}\right\}=\left\{x_{k}^{i}\right\}=$ $\left\{x_{0}^{(i)}, x_{1}^{(i)}, x_{2}^{(i)}, \ldots\right\} \in p_{\infty}(\Delta)$ for every $i \in N$. For a given $\varepsilon>0$ it may be found a positive integer $N_{0}(\varepsilon)$ such that $\left\|x_{i}^{k}-x_{i}^{n}\right\|_{\Delta}<\varepsilon$ for all k, $n>N_{0}(\varepsilon)$. Hence

$$
\left|H\left(x_{i}^{k}-x_{i}^{n}\right)\right|<\varepsilon
$$

for all $k, n>N_{0}(\varepsilon)$ and for each $i \in N$. Therefore, following sequence is a reeal Cauchy sequence $\left\{\left(H x^{k}\right)_{i}\right\}=\left\{\left(H x^{0}\right)_{i},\left(H x^{1}\right)_{i},\left(H x^{2}\right)_{i}, \ldots\right\}$ for every fixed $i \in N$. Since real number of set R is complete, it converges, say

$$
\lim _{i \rightarrow \infty}\left(H x^{i}\right)_{k} \rightarrow(H x)_{k}
$$

for each $k \in N$. So, we have

$$
\lim _{n \rightarrow \infty}\left|H\left(x_{i}^{k}-x_{i}^{n}\right)\right|=\left|H\left(x_{i}^{k}-x_{i}\right)\right| \leq \varepsilon
$$

for each $k \geq N_{0}(\varepsilon)$. This implies that $\left\|x^{k}-x\right\|_{\Delta}<\varepsilon$ for $k \geq N_{0}(\varepsilon)$, that is, $x^{i} \rightarrow x$ as $i \rightarrow \infty$. Now, we must show that $x \in p_{\infty}(\Delta)$. We have

$$
\begin{aligned}
& \|x\|_{\Delta}=\|H x\|_{\infty}=\sup _{n}\left|\sum_{k=0}^{n}\binom{n}{n-k} \Delta x_{k}\right| \\
& =\sup _{n}\left|\sum_{k=0}^{n}\binom{n}{n-k}\left(x_{k}-x_{k-1}\right)\right| \\
& =\sup _{n}\left|\sum_{k=0}^{n}\left[\binom{n}{k}-\binom{n}{k+1}\right] x_{k}\right| \\
& \leq \sup _{n}\left|H\left(x_{k}^{i}-x_{k}\right)\right|+\sup _{n}\left|H x_{k}^{i}\right| \\
& \quad \leq\left\|x^{i}-x\right\|_{\Delta}+\left|H x_{k}^{i}\right|<\infty
\end{aligned}
$$

for all $i \in N$. This implies that $x=\left(x_{i}\right) \in p_{\infty}(\Delta)$. Therefore $p_{\infty}(\Delta)$ is a Banach space.
It can be shown that $p_{c}(\Delta)$ and $p_{0}(\Delta)$ are closed subspaces of $p_{\infty}(\Delta)$ which implies that $p_{c}(\Delta)$ and $p_{0}(\Delta)$ are also Banach spaces. Moreover, $p_{\infty}(\Delta)$ is a $B K$ - space due to the fact that it is a Banach space with continuous coordinates

3. The Bases of the sequence spaces $p_{c}(\Delta)$ and $p_{0}(\Delta)$

In this part, it is firstly gien the Schauder basis for the spaces $p_{0}(\Delta)$ and $p_{c}(\Delta)$. In normed sequence space X, Schauder basis (or briefly bases) is a sequnce of $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ such that $x \in \lambda$ and $\left(\lambda_{k}\right)$ of scalars such that

$$
\lim _{n \rightarrow \infty}\left\|x-\left(\lambda_{0} x_{0}+\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right)\right\|=0
$$

Theorem 3.1. Let $b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ be the sequence of elements of the space $p_{0}(\Delta)$ for each $k \in \mathbb{N}$ by

$$
b_{n}^{(k)}=\left\{\begin{array}{c}
0, \quad(0 \leq n<k) \\
\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k},(n \geq k
\end{array}\right.
$$

Then the following assertions are true:
i. The sequence $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ is a basis for the space $p_{0}(\Delta)$, and for any $x \in p_{0}(\Delta)$ there exists a unique representation of the given form

$$
x=\sum_{k} \lambda_{k}(\Delta) b^{(k)}
$$

ii. The set $\left\{t, b^{(1)}, b^{(2)}, b^{(3)}, \ldots\right\}$ is a basis for the space $p_{c}(\Delta)$, and for any $x \in p_{0}(\Delta)$ there exists a unique representation of the given form

$$
x=l t+\sum_{k}\left(\lambda_{k}(\Delta)-l\right) b^{(k)}
$$

where $t=\left\{t_{n}\right\}$ with $t_{n}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k}\right], \lambda_{k}(\Delta)=(H x)_{k}, k \in \mathbb{N}$ and $l=\lim _{k \rightarrow \infty}(H x)_{k}$.
Theorem 3.2. The sequence spaces $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ are linearly isomorphic to given spaces l_{∞}, c and c_{0} respectively, i.e., $p_{\infty}(\Delta) \cong$ $l_{\infty}, p_{c}(\Delta) \cong c$ and $p_{0}(\Delta) \cong c_{0}$.

Proof. To begin the proof of $p_{0}(\Delta) \cong c_{0}$, it is firstly needed to indicate the presence of a linear bijection among spaces $p_{0}(\Delta)$ and c_{0}. Let we also take the map T described by the (2.1), from $p_{0}(\Delta)$ to c_{0} by $x \rightarrow y=T x . T$ is trivially linear. It is also evident that $x=0$ since $T x=0$ and thus T is an injective.
Let $y \in c_{0}$ and define the sequence $x=\left\{x_{n}\right\}$ by

$$
x_{n}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k}\right] y_{k}
$$

Then,

$$
\begin{gathered}
\lim _{n \rightarrow \infty}(H x)_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} \Delta x_{k}=\sum_{k=0}^{n}\binom{n}{n-k}\left(x_{k}-x_{k-1}\right) \\
=\sum_{k=0}^{n}\left[\binom{n}{k}-\binom{n}{k+1}\right] x_{k}=\lim _{n \rightarrow \infty} y_{n}=0
\end{gathered}
$$

Thus, we have $x \in p_{0}(\Delta)$. Finally, T is is norm preserving and surjective. Thus, T is a linearly bijective. Therfore $p_{0}(\Delta)$ and c_{0} spaces are linearly isomorphic. Similarly, it might be demonstated that $p_{\infty}(\Delta)$ and $p_{c}(\Delta)$ are respectively linearly isomorphic to l_{∞} and c.

4. The α-, β - and γ - duals of the sequence spaces $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$

Here we present some facts together with their proofs to determine α-, β - and γ - duals of Pascal difference sequence spaces $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$. Let λ and μ be two sequence space and let we determine the set $S(\lambda, \mu)$ where

$$
\begin{equation*}
S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x \in \lambda\right\} \tag{4.1}
\end{equation*}
$$

From the (4.1), duals of $\alpha-, \beta$ - and γ - of the sequence space λ that are denoted severally by $\lambda^{\alpha}, \lambda^{\beta}$ and λ^{γ} formed by Garling [17] as the following manner,

$$
\lambda^{\alpha}=S\left(\lambda, l_{1}\right), \lambda^{\beta}=S(\lambda, c s) \text { and } \lambda^{\gamma}=S(\lambda, b s)
$$

Following facts presented by Tietz and Stieglitz [18] are useful to prove following theorems.
Lemma 4.1. $A \in\left(c_{0}: l_{1}\right)$ if and only if

$$
\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|<\infty
$$

Lemma 4.2. $A \in\left(c_{0}: c\right)$ if and only if

$$
\begin{aligned}
& \sup _{n} \sum_{k}\left|a_{n k}\right|<\infty \\
& \lim _{n \rightarrow \infty} a_{n k}-\alpha_{k}=0 .
\end{aligned}
$$

Lemma 4.3. $A \in\left(c_{0}: l_{\infty}\right)$ if and only if

$$
\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty .
$$

Theorem 4.4. Let $a=\left(a_{k}\right) \in w$ and the matrix $B=\left(b_{n k}\right)$ by

$$
b_{n k}=\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n}\right] .
$$

Then the α-dual of the spaces $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ is the set

$$
b=\left\{a=\left(a_{n}\right) \in w: \sup _{K \in F} \sum_{n}\left|\sum_{k \in K} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n}\right|<\infty\right\} .
$$

Proof. Let us assume to have $a=\left(a_{n}\right) \in w$ and specially defined matrix B such that rows of the given matrix are the products of the rows of the given matrix $\left(\Delta^{(1)}\right)^{-1} P^{-1}$. From the (2.1), it is derived immediately that

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n}\right] y_{k}=\sum_{k=0}^{n} b_{n k} y_{k}=(B y)_{n} \tag{4.2}
\end{equation*}
$$

$i, n \in \mathbb{N}$. We therefore see from the (4.2) that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ when $x \in p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ iff $B y \in l_{1}$ whenever $y \in l_{\infty}, c$ and c_{0}. Consequently, it is obtained from the first lemma that

$$
\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n}\right|<\infty
$$

which yields the consequence that $\left[p_{\infty}(\Delta)\right]^{\alpha}=\left[p_{c}(\Delta)\right]^{\alpha}=\left[p_{0}(\Delta)\right]^{\alpha}=b$.

Theorem 4.5. Let $a=\left(a_{k}\right) \in w$ and the matrix $C=\left(c_{n k}\right)$ by

$$
c_{n k}=\left\{\begin{array}{c}
\sum_{i=k}^{n} \sum_{j=k}^{i}(-1)^{j-k}\left(\frac{j}{j-k}\right) a_{i} \text { if } 0 \leq k \leq n, \\
0 \text { if } k>n,
\end{array}\right.
$$

and define sets c_{1}, c_{2}, c_{3} and c_{4} by

$$
\begin{gathered}
c_{1}=\left\{a=\left(a_{k}\right) \in w: \sup _{n} \sum_{k}\left|c_{n k}\right|<\infty\right\}, \\
c_{2}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} c_{n k} \text { exists for each } k \in N\right\}, \\
c_{3}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|c_{n k}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} c_{n k}\right|\right\},
\end{gathered}
$$

and

$$
c_{4}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k} c_{n k} \text { exists }\right\} .
$$

Then $\left[p_{0}(\Delta)\right]^{\beta},\left[p_{c}(\Delta)\right]^{\beta}$ and $\left[p_{\infty}(\Delta)\right]^{\beta}$ is $c_{1} \cap c_{2}, c_{1} \cap c_{2} \cap c_{4}$ and $c_{2} \cap c_{3}$, respectively.

Proof. We solely present the proof for $p_{0}(\Delta)$ space. Since the rest of proof is accomplished by using the similar argument for $p_{c}(\Delta)$ and $p_{\infty}(\Delta)$. Let we take the following equation

$$
\begin{gathered}
\sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n} \sum_{j=k}^{i}(-1)^{j-k}\binom{j}{j-k} y_{j}\right] a_{k} \\
=\sum_{k=0}^{n}\left[\sum_{i=k}^{n} \sum_{j=k}^{i}(-1)^{j-k}\binom{j}{j-k} a_{i}\right] y_{k} \\
=(C y)_{n} .
\end{gathered}
$$

Hence, it is deduced by the second lemma and aforementioned equality that $a x=\left(a_{n} x_{n}\right) \in c s$ when $x \in p_{0}(\Delta)$ iff $C y \in c$ whenever $y \in c_{0}$. Consequently, it may be shown due to the second lemma that $\left\{p_{0}(\Delta)\right\}^{\beta}=c_{1} \cap c_{2}$.

Theorem 4.6. The γ-dual of the spaces $p_{\infty}(\Delta), p_{c}(\Delta)$ and $p_{0}(\Delta)$ is the set c_{1}

Proof. Proof is accomplished by utilizing the similar method as in the above case.

5. Some matrix transformations on the sequence spaces $p_{c}(\Delta)$

We shall for brevity that

$$
\tilde{a}_{n k}=\sum_{i=k}^{\infty} \sum_{j=k}^{i}(-1)^{j-k}\binom{j}{j-k} a_{n i}
$$

and

$$
\hat{g}_{n k}=\sum_{i=k}^{n} \sum_{j=k}^{i}(-1)^{j-k}\binom{j}{j-k} a_{n i}
$$

In this part, some classes $\left(p_{c}(\Delta): l_{\infty}\right)$ and $\left(p_{c}(\Delta): c\right)$ are characterized. Following proofs of theorems is finalized by considering familiar approaches. Detais left to the reader.

Theorem 5.1. $A \in\left(p_{c}(\Delta): l_{\infty}\right)$ if and only if

$$
\begin{gather*}
\sup _{n} \sum_{k}\left|\hat{g}_{n k}\right|<\infty \tag{5.1}\\
\lim _{n \rightarrow \infty} \sum_{k} \hat{g}_{n k} \text { exists for all } m \in N, \tag{5.2}\\
\sup _{n \in N} \sum_{k}\left|\tilde{a}_{n k}\right|<\infty, \quad(n \in N) \tag{5.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{a}_{n k} \text { exists for all } n \in N \tag{5.4}
\end{equation*}
$$

Theorem 5.2. $A \in\left(p_{c}(\Delta): c\right)$ iff (5.1)-(5.4) hold, and

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sum_{k} \tilde{a}_{n k}=\alpha \\
\lim _{n \rightarrow \infty}\left(\tilde{a}_{n k}\right)=\alpha_{k}, \quad(k \in N) .
\end{gathered}
$$

References

[1] B. Choudhary, S. Nanda, Functional Analysis with Applications, Wiley, New Delhi, 1989.
[2] W. H. Ruckle, Sequence Spaces, Pitman Publishing, Toronto, 1981
[3] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 30 (2006), 209-220.
[4] R. Brawer, Potenzen der Pascal matrix und eine Identitat der Kombinatorik, Elem. der Math., 45 (1990), 107-110.
[5] A. Edelman, G. Strang, Pascal matrices, The Mathematical Association of America Monthly, 111(3) (2004), 189-197.
[6] C. Lay David, Linear Algebra and Its Applications 4th Ed., Pearson, Addison-Wesley, Boston 2012.
[7] G. H. Lawden, Pascal matrices, Math. Gaz., 56 (1972), 325-327.
[8] H. Polat, Some new Pascal sequence spaces, Fundam. J. Math. Appl., 1(1) (2018), 61-68.
[9] H. Kızmaz, On certain sequence space, Canad. Math. Bull., 24 (1981), 169-176.
[10] R. Çolak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math J., 26 (1997), 483-492.
[11] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator on the sequence space $l_{p} ;(0<p<1)$, Commun. Math. Anal. 2(2) (2007), 1-11.
[12] V. Karakaya, H. Polat, Some new paranormed sequence spaces defined by Euler and difference operators, Acta Sci. Math.(Szeged), 76 (2010), 87-100.
[13] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed., Pearson, 27B (2007), 254-266.
[14] H. Polat, V. Karakaya, N. Şimşek, Difference sequence spaces derived by generalized weighted mean, Appl. Math. Lett., 24(5) (2011), 608-614.
[15] M. Et, M. Başarır, On some genaralized difference sequence spaces, Period. Math. Hung., 35(3) (1997), 169-175.
[16] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, 1988.
[17] D. J. H. Garling, The β and γ duality of Sequence Spaces, Proc. Camb. Phil. Soc., 63(4) (1967), 963-981.
[18] M. Stieglitz, H. Tietz, Matrixtransformationen von folgenraumen eine ergebnisubersict, Ergebnisubersict, Math. Z., 154 (1997), 1-16.

