
Fundamental Journal of Mathematics and Applications, 2 (1) (2019) 56-62
Research Article

Fundamental Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/fujma

ISSN: 2645-8845
DOI: https://dx.doi.org/10.33401/fujma.541721

Difference Sequence Spaces Derived by using Pascal Transform
Saadettin Aydın1 and Harun Polat2*

1Department of Mathematics, Faculty of Science and Arts, Kilis 7 Aralık University, Kilis, Turkey
2Department of Mathematics, Faculty of Science and Arts, Muş Alparslan University, Muş, Turkey
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Abstract

The essential goal of this manuscript is to investigate some novel sequence spaces of p∞ (∆),
pc (∆) and p0 (∆) which are comprised by all sequence spaces whose differences are in
Pascal sequence spaces p∞, pc and p0, respectively. Furthermore, we determine both γ-,
β -, α- duals of newly defined difference sequence spaces of p∞ (∆), pc (∆) and p0 (∆). We
also obtain bases of the newly defined difference sequence spaces of pc (∆) and p0 (∆).
Finally, necessary and sufficient conditions on an infinite matrix belonging to the classes
(pc (∆) : l∞) and (pc (∆) : c) are characterized.

1. Introduction

Real or complex valued sequences spaces are represented by w along with the manuscript. Each sub-classes of real or complex valued
sequences spaces is known as a sequence space. A sequence space of null, convergent, and bounded sequences are respectively demonstrated
by c0 , c, and l∞. Moreover cs, l1, bs depict convergent, absolutely convergent, and bounded series respectively.
K space is defined by any sequence space λ with a linear topology satisfying following transformation for a continuous term of ps (m) = ms
s ∈ N such that ps : λa→C , where N = {0,1,2, ...} and C represents the set of complex number. If λ is a complete linear metric space then
K-space is named by FK- space. BK-space is defined as normable topological space of FK-space [1].
Infinite matrix of complex or real numbers A = (ank) is defined for n, k ∈ N. Let X and Y be any two sequence spaces. Then, A is defined as
a transformation between X to Y such that following equality holds.

(Ax)n = ∑
k

ankxk (1.1)

for each n ∈ N. (X : Y ), shows the family of matrices where A : X → Y . Hence series given by the (1.1) converges for every x ∈ X and each
n ∈ N iff A ∈ (X : Y ). One also has Ax = {(Ax)n} ∈ Y . Here collection of entire finite subsets on K and N is denoted by F , where N ⊂ F .
Studies on the sequence space have been mainly focused on some elementary concepts which are inclusions of sequence spaces, matrix
mapping, determination of topologies, [2]. Let X be a sequence space and A be an infinite matrix in X then the domain of matrix is determined
by

XA = {x = (xk) ∈ w : Ax ∈ X}

In general limitation matrix A produces novel sequence space XA and it is either contraction or the expansion of the original space. Indeed, it
is obviously clear that inclusion relations of X ⊂ X∆ and XS ⊂ X are decidedly satisfied for X ∈ {c, l∞,c0} [3]. In particular, the the difference
operator and sequence spaces which are fundamental samples for the matrix A and they have been investigated comprehensively through the
mentioned methods.
Let P represeents the means of Pascal which is described by the matrix of Pascal [4] then it is defined by

P = [pnk] =

{ ( n
n−k
)
,(0≤ k ≤ n)

0, (k > n)
,(n,k ∈ N)
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and the inverse of matrix of Pascal Pn = (pnk) is defined by

P−1 = [pnk]
−1 =

{
(−1)n−k( n

n−k
)
, (0≤ k ≤ n)

0 , (k > n)
,(n,k ∈ N).

Pascal matrix contains some fascinating features. For instance; we can form three types of matrices: symmetric, lower triangular, and upper
triangular, for any integer n > 0. The n-th order symmetric Pascal matrix n is given by

Sn = (si j) =

(
i+ j−2

j−1

)
, for i, j = 1,2, ....,n, (1.2)

n−th order lower triangular Pascal matrix is presented by

Ln = (li j) =

{ ( i−1
j−1
)
,(0≤ j ≤ i)

0, ( j > i)
, (1.3)

and the n-th order upper triangular Pascal matrix of order is presented by

Un = (ui j) =

{ ( j−1
i−1
)
,(0≤ i≤ j)

0, ( j > i)
. (1.4)

We notice that Un = (Ln)
T , n is any natural number.

i. Let Sn be the n-th order symmetric Pascal matrix given by (1.2), Ln be the n-th order lower triangular Pascal matrix given by (1.3), and Un
be the n-th order upper triangular Pascal matrix given by (1.4), then Sn = LnUn and det(Sn) = 1 [5].
ii. Let Sn be the n-th order symmetric Pascal matrix given by (1.2), then Sn is similar to its inverse S−1

n [5].
iii. Let A and B be n×n matrices. It is already known obviously that A is similar to B if one can define n×n invertible matrix Pi which
satisfies following
P−1AP = B [6].
iv. Let Ln be the n-th order Pascal matrix. It is also assumed that it is a lower triangular matrix which is given by (1.3), then L−1

n = ((−1)i− jli j)
[7].
Recently, Pascal sequence spaces was investigated by Polat [8] p∞, pc and p0 like as follows:

p∞ =

{
x = (xk) ∈ w : sup

n

∣∣∣∣∣ n

∑
k=0

(
n

n− k

)
xk

∣∣∣∣∣< ∞

}
,

pc =

{
x = (xk) ∈ w : lim

n→∞

n

∑
k=0

(
n

n− k

)
xk exists

}
,

and

p0 =

{
x = (xk) ∈ w : lim

n→∞

n

∑
k=0

(
n

n− k

)
xk = 0

}
.

l∞ (∆) = {x ∈ w : (xk− xk+1) ∈ l∞}, c(∆) = {x ∈ w : (xk− xk+1) ∈ c} and c0 (∆) = {x ∈ w : (xk− xk+1) ∈ c0} are known as difference
sequence space and they are firstly defined by Kızmaz [9]. Further, various authors have defined and studied the difference sequence spaces,
which can be seen in the following papers [10]-[15].
In this manuscript, Pascal difference sequence spaces of p∞ (∆), pc (∆) and p0 (∆) are defined. They contain entire sequences whose
differences are in Pascal sequence spaces p∞, pc and p0, respectively. What is more, we determine the bases of the novel difference sequence
spaces pc (∆) and p0 (∆), and the α-, β - of the difference sequence spaces p∞ (∆), pc (∆) and p0 (∆). Finally, we give the characterization
of the necessary and sufficient conditions on an infinite matrix belonging to families of (pc (∆) : l∞) and (pc (∆) : c).

2. Inverse formula of the Pascal matrix and Pascal sequence spaces

We define the operators ∆ : w→ w here and after it may be written for the sequence (xk− xk−1) that (∆x)k = ∆x. The well known difference
matrix and the inverse of the difference matrix are defined as follows:(

∆
(1)
)

nk
=

{
(−1)n−k, (n−1≤ k ≤ n)

0, (0≤ k < n−1 or k > n)
,(n,k ∈ N)

and ((
∆
(1)
)−1

)
nk

=

{
1, (0≤ k ≤ n)
0, ( k > n)

,(n,k ∈ N).

Pascal difference sequence spaces are defined by p∞ (∆), pc (∆) and p0 (∆) by

p∞ (∆) = {x = (xk) ∈ w : (xk− xk−1) ∈ p∞} ,
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pc (∆) = {x = (xk) ∈ w : (xk− xk−1) ∈ pc} ,

and

p0 (∆) = {x = (xk) ∈ w : (xk− xk−1) ∈ p0} .

Let be a sequence y = {yn}, which is generally utilized as H- mapping or H- transformation of a sequence x = (xk) and H = P∆(1) i.e.,

yn = (Hx)n =
n

∑
k=0

(
n

n− k

)
(xk− xk−1) (2.1)

n
= ∑

k=0

[(
n
k

)
−
(

n
k+1

)]
xk

for each n∈N. It can be easily shown that p∞ (∆), pc (∆) and p0 (∆) are linear and normed spaces by the following norm:

‖x‖
∆
= ‖y‖

∞
= sup

n
|yn| . (2.2)

Theorem 2.1. p∞ (∆), pc (∆) and p0 (∆) sequence spaces are Banach spaces provided with the norm function given by (2.2).

Proof. In the space of p∞ (∆), let we define following sequence and suppose that it is a Cauchy sequence
{

xi} such that
{

xi}= {xi
k
}
={

x(i)0 ,x(i)1 ,x(i)2 , ...
}
∈ p∞ (∆) for every i ∈ N. For a given ε > 0 it may be found a positive integer N0(ε) such that

∥∥xk
i − xn

i
∥∥

∆
< ε for all k,

n > N0(ε). Hence ∣∣∣H(xk
i − xn

i )
∣∣∣< ε

for all k, n > N0(ε) and for each i ∈ N. Therefore, following sequence is a reeal Cauchy sequence
{
(Hxk)i

}
=
{
(Hx0)i,(Hx1)i,(Hx2)i, ...

}
for every fixed i ∈ N. Since real number of set R is complete, it converges, say

lim
i→∞

(Hxi)k→ (Hx)k

for each k ∈ N. So, we have

lim
n→∞

∣∣∣H(xk
i − xn

i )
∣∣∣= ∣∣∣H(xk

i − xi)
∣∣∣≤ ε

for each k ≥ N0(ε). This implies that
∥∥xk− x

∥∥
∆
< ε for k ≥ N0(ε), that is, xi→ x as i→ ∞.

Now, we must show that x ∈ p∞ (∆). We have

‖x‖
∆
= ‖Hx‖

∞
= sup

n

∣∣∣∣∣ n

∑
k=0

(
n

n− k

)
∆xk

∣∣∣∣∣

= sup
n

∣∣∣∣∣ n

∑
k=0

(
n

n− k

)
(xk− xk−1)

∣∣∣∣∣

= sup
n

∣∣∣∣∣ n

∑
k=0

[(
n
k

)
−
(

n
k+1

)]
xk

∣∣∣∣∣
≤ sup

n

∣∣∣H(xi
k− xk)

∣∣∣+ sup
n

∣∣∣Hxi
k

∣∣∣
≤
∥∥∥xi− x

∥∥∥
∆
+
∣∣∣Hxi

k

∣∣∣< ∞

for all i ∈ N. This implies that x = (xi) ∈ p∞ (∆). Therefore p∞ (∆) is a Banach space.
It can be shown that pc (∆) and p0 (∆) are closed subspaces of p∞ (∆) which implies that pc (∆) and p0 (∆) are also Banach spaces. Moreover,
p∞ (∆) is a BK- space due to the fact that it is a Banach space with continuous coordinates
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3. The Bases of the sequence spaces pc(∆) and p0(∆)

In this part, it is firstly gien the Schauder basis for the spaces p0(∆) andpc(∆). In normed sequence space X , Schauder basis (or briefly bases)

is a sequnce of
{

b(k)
}

k∈N
such that x ∈ λ and (λk) of scalars such that

lim
n→∞
‖x− (λ0x0 +λ1x1 + ...+λnxn)‖= 0.

Theorem 3.1. Let b(k) =
{

b(k)n

}
n∈N

be the sequence of elements of the space p0 (∆) for each k ∈ N by

b(k)n =

 0, (0≤ n < k)
n
∑

i=k
(−1)i−k( i

i−k
)
, (n≥ k

Then the following assertions are true:
i. The sequence

{
b(k)
}

k∈N
is a basis for the space p0 (∆), and for any x ∈ p0 (∆) there exists a unique representation of the given form

x = ∑
k

λk (∆)b(k).

ii. The set
{

t,b(1),b(2),b(3), ...
}

is a basis for the space pc (∆), and for any x ∈ p0 (∆) there exists a unique representation of the given form

x = lt +∑
k
(λk (∆)− l)b(k),

where t = {tn} with tn =
n
∑

k=0

[
n
∑

i=k
(−1)i−k( i

i−k
)]

, λk (∆) = (Hx)k, k ∈ N and l = lim
k→∞

(Hx)k.

Theorem 3.2. The sequence spaces p∞ (∆), pc (∆) and p0 (∆) are linearly isomorphic to given spaces l∞, c and c0 respectively, i.e., p∞ (∆)∼=
l∞, pc (∆)∼= c and p0 (∆)∼= c0.

Proof. To begin the proof of p0 (∆)∼= c0, it is firstly needed to indicate the presence of a linear bijection among spaces p0 (∆) and c0. Let
we also take the map T described by the (2.1), from p0 (∆) to c0 by x→ y = T x . T is trivially linear. It is also evident that x = 0 since
T x = 0 and thus T is an injective.
Let y ∈ c0 and define the sequence x = {xn} by

xn =
n

∑
k=0

[
n

∑
i=k

(−1)i−k
(

i
i− k

)]
yk.

Then,

lim
n→∞

(Hx)k = lim
n→∞

n

∑
k=0

(
n

n− k

)
∆xk =

n

∑
k=0

(
n

n− k

)
(xk− xk−1)

n
= ∑

k=0

[(
n
k

)
−
(

n
k+1

)]
xk = lim

n→∞
yn = 0.

Thus, we have x ∈ p0 (∆). Finally, T is is norm preserving and surjective. Thus, T is a linearly bijective. Therfore p0 (∆) and c0 spaces are
linearly isomorphic. Similarly, it might be demonstated that p∞ (∆) and pc (∆) are respectively linearly isomorphic to l∞ and c.

4. The α-, β - and γ- duals of the sequence spaces p∞ (∆) , pc (∆) and p0 (∆)

Here we present some facts together with their proofs to determine α-, β - and γ- duals of Pascal difference sequence spaces p∞ (∆), pc (∆)
and p0 (∆). Let λ and µ be two sequence space and let we determine the set S (λ ,µ) where

S (λ ,µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ} . (4.1)

From the (4.1), duals of α-, β - and γ- of the sequence space λ that are denoted severally by λ α , λ β and λ γ formed by Garling [17] as the
following manner,

λ
α = S (λ , l1) , λ

β = S (λ ,cs) and λ
γ = S (λ ,bs) .

Following facts presented by Tietz and Stieglitz [18] are useful to prove following theorems.

Lemma 4.1. A ∈ (c0 : l1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑k∈K
ank

∣∣∣∣∣< ∞ .
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Lemma 4.2. A ∈ (c0 : c) if and only if

sup
n

∑
k
|ank|< ∞,

lim
n→∞

ank−αk = 0.

Lemma 4.3. A ∈ (c0 : l∞) if and only if

sup
n

∑
k
|ank|< ∞.

Theorem 4.4. Let a = (ak) ∈ w and the matrix B = (bnk) by

bnk =

[
n

∑
i=k

(−1)i−k
(

i
i− k

)
an

]
.

Then the α- dual of the spaces p∞ (∆), pc (∆) and p0 (∆) is the set

b =

{
a = (an) ∈ w : sup

K∈F
∑
n

∣∣∣∣∣∑k∈K

n

∑
i=k

(−1)i−k
(

i
i− k

)
an

∣∣∣∣∣< ∞

}
.

Proof. Let us assume to have a = (an) ∈ w and specially defined matrix B such that rows of the given matrix are the products of the rows of

the given matrix
(

∆(1)
)−1

P−1. From the (2.1), it is derived immediately that

anxn =
n

∑
k=0

[
n

∑
i=k

(−1)i−k
(

i
i− k

)
an

]
yk =

n

∑
k=0

bnkyk = (By)n (4.2)

i, n ∈ N. We therefore see from the (4.2) that ax = (anxn) ∈ l1 when x ∈ p∞ (∆), pc (∆) and p0 (∆) iff By ∈ l1 whenever y ∈ l∞, c and c0.
Consequently, it is obtained from the first lemma that

sup
K∈F

∑
n

∣∣∣∣∣∑k∈K

n

∑
i=k

(−1)i−k
(

i
i− k

)
an

∣∣∣∣∣< ∞

which yields the consequence that [p∞ (∆)]α = [pc (∆)]
α = [p0 (∆)]

α = b.

Theorem 4.5. Let a = (ak) ∈ w and the matrix C = (cnk) by

cnk =


n
∑

i=k

i
∑
j=k

(−1) j−k( j
j−k

)
ai if 0≤ k ≤ n,

0 i f k > n,

and define sets c1, c2, c3 and c4 by

c1 =

{
a = (ak) ∈ w : sup

n
∑
k
|cnk|< ∞

}
,

c2 =
{

a = (ak) ∈ w : lim
n→∞

cnk exists for each k ∈ N
}
,

c3 =

{
a = (ak) ∈ w : lim

n→∞
∑
k
|cnk|= ∑

k

∣∣∣ lim
n→∞

cnk

∣∣∣} ,

and

c4 =

{
a = (ak) ∈ w : lim

n→∞
∑
k

cnk exists

}
.

Then [p0 (∆)]
β , [pc (∆)]

β and [p∞ (∆)]β is c1∩ c2, c1∩ c2∩ c4 and c2∩ c3, respectively.
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Proof. We solely present the proof for p0 (∆) space. Since the rest of proof is accomplished by using the similar argument for pc (∆) and
p∞ (∆). Let we take the following equation

n

∑
k=0

akxk =
n

∑
k=0

[
n

∑
i=k

i

∑
j=k

(−1) j−k
(

j
j− k

)
y j

]
ak

=
n

∑
k=0

[
n

∑
i=k

i

∑
j=k

(−1) j−k
(

j
j− k

)
ai

]
yk

= (Cy)n .

Hence, it is deduced by the second lemma and aforementioned equality that ax = (anxn) ∈ cs when x ∈ p0 (∆) iff Cy ∈ c whenever y ∈ c0.
Consequently, it may be shown due to the second lemma that {p0 (∆)}β = c1∩ c2.

Theorem 4.6. The γ-dual of the spaces p∞ (∆), pc (∆) and p0 (∆) is the set c1

Proof. Proof is accomplished by utilizing the similar method as in the above case.

5. Some matrix transformations on the sequence spaces pc (∆)

We shall for brevity that

ãnk =
∞

∑
i=k

i

∑
j=k

(−1) j−k
(

j
j− k

)
ani

and

ĝnk =
n

∑
i=k

i

∑
j=k

(−1) j−k
(

j
j− k

)
ani

In this part, some classes (pc (∆) : l∞) and (pc (∆) : c) are characterized. Following proofs of theorems is finalized by considering familiar
approaches. Detais left to the reader.

Theorem 5.1. A ∈ (pc (∆) : l∞) if and only if

sup
n

∑
k
|ĝnk|< ∞, (5.1)

lim
n→∞

∑
k

ĝnk exists for all m ∈ N, (5.2)

sup
n∈N

∑
k
|ãnk|< ∞, (n ∈ N) (5.3)

and

lim
n→∞

ãnk exists for all n ∈ N. (5.4)

Theorem 5.2. A ∈ (pc (∆) : c) iff (5.1)-(5.4) hold, and

lim
n→∞

∑
k

ãnk = α,

lim
n→∞

(ãnk) = αk , (k ∈ N) .
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