

Discrimination of Quarry Blasts and Earthquakes in Manisa District

Nalan Ceydilek¹ and Gunduz Horasan²

¹ Disaster and Emergency Management Authority (AFAD), Presidential of Earthquake Department, Çankaya 06800 Ankara ² Sakarya University, Geophysical Engineering Department, Serdivan 54050 Sakarya ORCID: 0000-0003-3990-6021, 0000-0002-7140-1413

Keywords

Manisa, Earthquake, Quarry blast, Linear Discriminant Function (LDF), Earthquake duration

Highlights

* Discrimination of quarry blasts and earthquakes

* Natural and artificial seismic activities in Manisa district

* Application of LDF on amplitude ratio, logS, total signal duration, complexity and spectral ratio

Acknowledgements

Earthquake Department of the Disaster and Emergency Management (AFAD) Authority of Turkey

Aim

Discrimination of natural and artificial seismic activities in Manisa district

Location

Manisa city and surrounding areas, Turkey

Methods

The LDF technique was used to discriminate earthquakes and quarry blasts

Results

The seismic activities in Manisa district is investigated. Maximum *S* and *P*-wave amplitude ratios, log *S*, signal duration of wave, complexity and spectral ratio were used for discrimination analyses. 124 (42%) records are determined as quarry blasts and 172 (58%) events are detected as earthquakes from the total of 296 seismic activities.

Supporting Institutions

Sakarya University

Manuscript Research Article

Research Anticie

Received: 13.05.2019 Revised: 24.05.2019 Accepted: 25.05.2019 Printed: 30.06.2019

DOI doi.

Corresponding Author

Gunduz Horasan Email: ghorasan@sakarya.edu.tr

Figure Discrimination of earthquakes (left bottom) and quarry blasts (upper right) by using LDF technique as separated with linear line

How to cite

Ceydilek N., Horasan G., 2019. Discrimination of Quarry Blasts and Earthquakes in Manisa District, Turk. J. Earthq. Res. 1 (1), 26-47

Manisa ve Çevresinde Deprem ve Patlatma Verilerinin Ayırt Edilmesi

Nalan Ceydilek¹ ve Gündüz Horasan²

¹ Afet ve Acil Durum Yönetimi (AFAD) Başkanlığı, Deprem Dairesi Başkanlığı, Çankaya 06800 Ankara ² Sakarya Üniversitesi, jeofizik Mühendisliği Bölümü, Serdivan 54050 Sakarya ORCID: 0000-0003-3990-6021, 0000-0002-7140-1413

ÖZET

Bu çalışmanın amacı Manisa ve civarındaki sismik aktiviteler incelenerek doğal ve yapay kaynaklı olayların birbirinden ayırt edilmesidir. Çalışma kapsamında, 2007-2014 yılları arası AFAD deprem kataloğunda yer alan Manisa-Akhisar (AKHS), Manisa-Saruhanlı (BLN), Manisa-Merkez (CAM) ve Manisa-Salihli (KTT) geniş bant istasyonlarında kaydedilen 296 sismik olaya (M_d≤3.2) ait 411 düşey hız sismogramı kullanılmıştır. Doğrusal ayrımcılık fonksiyonu (DAF) kullanılarak deprem ve patlatma verilerini ayırt etmek için; düşey bileşen hız sismogramlarının maksimum S ve *P*-dalgası genliklerinin oranı (S/P), sismik olayların kayıt süresi, yukarıdaki dört istasyona ait ortak kayıtların güçlerinin oranı (Karmaşıklık-C) ve spektral oranlar (SR) hesaplanmıştır. Çalışma sonucunda, incelenen 296 sismik etkinliğin 124 tanesinin (%42) patlatma, 172 tanesinin (%58) deprem olduğu belirlenmiştir.

Anahtar kelimeler

Manisa, Deprem, Taş ocağı patlatması, Doğrusal ayırt etme fonksiyonu, Deprem süresi

Öne Çıkanlar

- * Deprem ve taşocağı patlatmalarının ayrıt edilmesi
- * Manisa bölgesinde doğal ve yapay sismik aktiviteler
- * DAF; genlik oranı, log S, deprem kayıt süresi, karmaşıklık ve spektral orana uygulanması

Discrimination of Quarry Blasts and Earthquakes in Manisa District

Nalan Ceydilek¹ and Gunduz Horasan²

¹ Disaster and Emergency Management (AFAD) Authority, Presidential of Earthquake Department, Çankaya 06800 Ankara ² Sakarya University, Geophysical Engineering Department, Serdivan 54050 Sakarya ORCID: 0000-0003-3990-6021, 0000-0002-7140-1413

ABSTRACT

The objective of this study is to discriminate the natural and artificial seismic activities in Manisa district. In the frame of the study, 411 vertical velocity seismograms from 296 seismic events ($M_d \leq 3.2$) in AFAD earthquake catalog have been used at Akhisar (AKHS), Saruhanli (BLN), Salihli (KTT) and Merkez (CAM) broadband stations between 2007 to 2014. Maximum S and P-wave amplitude ratios of vertical component velocity seismograms (S/P), duration of seismic events, power ratios of common recordings of above stations (Complexity-C) and spectral ratios (SR) were calculated in order to discriminate earthquakes and quarry blasts by using Linear Discriminant Function (LDF). At the end of the study, 124 (42%) records are determined as quarry blasts and 172 (58%) events are detected as earthquakes from the total of 296 seismic activities.

Keywords

Manisa, Earthquake, Quarry blast, Linear discriminant function, Earthquake duration

Highlights

- * Discrimination of quarry blasts and earthquakes
- * Natural and artificial seismic activities in Manisa district

* Application of LDF on amplitude ratio, log S, signal duration, complexity and spectral ratio

Makale Araştırma Makalesi

Geliş: 13.05.2019 Düzeltme: 24.05.2019 Kabul 25.05.2019 Basım: 30.06.2019

DOI doi.

Sorumlu yazar Gündüz Horasan Eposta: ghorasan@sakarya.edu.tr

Manuscript Research Article

Received: 13.05.2019 Revised: 24.05.2019 Accepted: 25.05.2019 Printed: 30.06.2019

DOI doi.

Corresponding Author Gunduz Horasan Email: ghorasan@sakarya.edu.tr

1. GİRİŞ

Bir bölgede bulunan sismik kayıt aletleri o bölgede meydana gelen deprem aktivitelerini kaydettiği gibi taş ocağı vb. gibi patlatma kayıtlarını da kaydetmektedir. Bu kayıtların kullanılması sismik veri kataloglarının oluşturulması, haritalanması ve bölgenin deprem etkinliğinin doğru olarak belirlenmesinde yanılgılara neden olabilmektedir. Bu nedenle deprem kataloglarından patlatma kayıtlarının ayırt edilmesi gerekmektedir. Patlatmaları depremlerden ayırt edebilmek için farklı yöntemler kullanılmaktadır. Deprem kayıtları ile patlatma kayıtlarını birbirinden ayırt edebilmek için kullanılan yöntemlerden en bilineni maksimum dalga genliklerinin oranlanarak hesaplanmasıdır. Örneğin Wuster (1993) deprem ve patlatma ayrımında Lg/Pg ve Lg/Rg oranını Vogland (Almanya/Çek Cumhuriyeti) bölgesi için kullanmıştır. Horasan ve diğ. (2009) İstanbul ve civarında, Yılmaz ve diğ. (2010) Türkiye de Doğu Karadeniz bölgesinde, Kartal ve Horasan (2011) Trabzon civarında, Ogutcu ve diğ. (2011) Konya ve civarında, Kekovalı ve diğ. (2012) Kütahya Tunçbilek bölgesinde, Budakoglu ve Horasan (2018) Sakarya bölgesinde, Yavuz ve diğ. (2018) Armutlu Yarımadası'ndaki sismik olayları zaman ve frekans ortamında inceleyerek deprem ve patlatma olaylarını birbirinden ayırt eden çalışmalar yapmışlardır. Bir diğer ayrım analizi çalışması, hesaplanan en büyük S/P dalgası genlik oranlarının, sinyalin başlangıç ve bitişi arasında ölçülen kayıt sürelerine (sn) karşılık çiziminden doğrusal ayırt etme fonksiyonu (DAF) geçirilerek yapılmıştır (Budakoglu ve Horasan 2018).

Şekil 1: Çalışma alanı tektonik haritası (Tektonik hatlar Emre ve diğ. 2013)

Manisa il topraklarının büyük bir bölümü Gediz Havzası içinde, küçük bir bölümü de kuzey batıda Bakırçay Havzası içinde yer almaktadır (Şekil 1). Aletsel dönem olarak kabul edilen 1900 yılından günümüze ise bölgede meydana gelmiş en büyük deprem M=6.5 büyüklüğündeki 28 Mart 1969 Alaşehir Depremi'dir. Yüzey kırığı oluşturan deprem Alaşehir

ve Sarıgöl ilçe merkezleri ile Gediz çöküntüsü içindeki köylerde ağır tahribata neden olmuştur (Ambraseys 1988, Eyidoğan ve diğ. 1991).

Bu çalışmanın amacı, Afet ve Acil Durum Yönetim Başkanlığı (AFAD), Deprem Dairesi Başkanlığı'nın AKHS, BLN, CAM ve KTT istasyonlarında, Ocak 2007-Aralık 2014 tarihleri arasında kaydedilen olayların sayısal düşey bileşen hız sismogramları kullanılarak Manisa ve civarında yapılan patlatmaları bölgedeki depremlerden ayırt etmektir. Böylece Manisa ve çevresinde sadece deprem verilerinin olduğu sismik veri kataloglarının oluşturulması, haritalanması ve bölgenin deprem etkinliğinin doğru olarak belirlenebilmesi mümkün olacaktır.

2. YÖNTEM

2.1) En Büyük S-Dalgası Genliğinin, En Büyük P-Dalgası Genliğine Oranlarının Hesabı

Bu çalışmada kullanılan yöntemde zaman ortamındaki sinyallerden en büyük P dalgası ve en büyük S dalgası genlik değerleri okunarak birbirlerine oranlanır. En büyük S/P dalgası genlik oran değerlerinin, en büyük S dalgaları genliklerinin logaritmalarına (LogS) karşılık çiziminden DAF geçirilerek deprem ve patlatma olayları birbirinden ayırt edilir (Wuster 1993, Horasan ve diğ. 2006).

2.2) En Büyük S-Dalgası Genliğinin, En Büyük P-Dalgası Genliğine Oranlarının Hesabı ile Sinyal Süresinin Hesabı

Düşey bileşen hız sismogramlarından her bir sismik etkinlik için en büyük P dalgası ve en büyük S dalgası genlik değerleri okunarak birbirlerine oranlanır. Hesaplanan en büyük S/P dalgası genlik oranlarının, sinyalin başlangıç ve bitişi arasında ölçülen kayıt sürelerine (sn) karşılık çiziminden DAF geçirilerek deprem ve patlatma olayları birbirinden ayırt edilir.

2.3) Sismogramda Tanımlanan İki Zaman Penceresinin Güçlerinin Oranı (Karmaşıklık-C) ile Spektrumların Alçak ve Yüksek Frekanslı Pencerelerinin Spektral Oranının(SR) Hesabı.

Karmaşıklık (C) parametresi (1) numaralı formülden hesaplanmaktadır (Arai ve Yosida 2004).

 $C = \int_{t_1}^{t_2} S^2(t) dt / \int_{t_0}^{t_1} S^2(t) dt$ (1)

Bu formülde t_0 sinyalin başlangıç zamanını belirtir (P dalgası varış zamanı). t_1 ve t_2 ise pencere uzunluğunu göstermektedir. Bu çalışmada kayıt edilen olayların istasyona uzaklığına göre sinyalin t_s ve t_p aralığına bakılarak t_1 ve t_2 sırasıyla 1 ve 9 sn alınmıştır.

Çalışmada kullanılan istasyonlarının kaydettiği ortak kayıtlar için düşey bileşen hız sismogramlarının spektrumlarının alçak ve yüksek frekanslı kısımları oranlanarak spektral oran (SR) parametresi (2) numaralı formülden hesaplanmaktadır. (Gitterman ve Shapira 1993).

$$SR = \int_{h_1}^{h_2} a(f) df / \int_{I_1}^{I_2} a(f) df$$
(2)

Burada h_1 ve h_2 yüksek frekans, I_1 ve I_2 alçak frekans aralık değerlerini belirtir. Bu çalışmada sinyallerin spektrum kayıtlarından belirlenen aralıklar için alçak frekans aralığı 1-7 Hz, yüksek frekans aralığı 7-18 Hz olarak kullanılmıştır.

3. VERİ

Bu çalışmada 38.0-39.5[°]K enlemleri ile 27.0.-29.0[°]D boylamları arasında kalan bölgede, Ocak 2007- Aralık 2014 tarihleri arasında AKHS, BLN, CAM ve KTT istasyonlarının kaydettiği büyüklüğü M_d≤3.2 olan 296 tane sismik olay kullanılmıştır. Çalışmada kullanılan sismik olayların listesi Tablo 1'de verilmektedir.

No	Tarih	Zaman	Enlem	Boylam	Magnitüd
1	20.04.2007	00:16:31	38.79	27.72	3.0
2	28.06.2007	08:17:00	39.07	28.03	2.7
3	09.06.2007	05:25:39	39.15	27.98	3.2
4	03.07.2007	08:25:46	39.11	27.55	2.6
5	25.08.2007	15:08:05	39.05	27.86	2.7
6	31.12.2007	05:55:22	38.77	27.87	3.1
7	24.01.2008	07:07:39	38.93	27.84	3.0
8	16.01.2008	11:10:20	39.00	27.85	2.9
9	15.03.2008	11:30:10	39.02	27.87	3.2
10	03.04.2008	08:36:24	38.91	27.81	2.9
11	23.06.2008	10:21:43	39.16	27.86	2.7
12	01.04.2009	09:06:26	39.27	27.90	2.6
13	03.03.2009	12:48:50	39.05	27.54	2.8
14	07.05.2009	08:57:03	39.10	27.58	2.5
15	05.06.2009	08:33:07	39.10	27.51	2.5
16	05.06.2009	08:48:44	39.11	27.54	2.8
17	05.06.2009	09:40:40	39.11	27.57	2.7
18	17.07.2009	08:33:45	39.07	27.56	2.5
19	28.07.2009	09:17:20	39.09	27.57	2.7
20	12.12.2009	14:03:44	38.81	27.76	2.8
21	08.05.2009	10:39:26	39.10	27.56	2.7
22	14.05.2009	10:42:24	39.07	27.55	2.7
23	15.05.2009	13:52:48	39.09	27.55	2.5
24	26.05.2009	13:45:20	39.10	27.55	2.1
25	30.05.2009	12:30:38	39.13	27.56	2.8
26	04.06.2009	12:24:31	39.13	27.55	2.5
27	08.06.2009	11:04:59	39.11	27.52	2.8
28	13.06.2009	07:51:39	39.09	27.59	2.5
29	17.06.2009	07:56:25	39.11	27.50	2.8
30	24.06.2009	09:16:09	39.09	27.55	2.5
31	27.06.2009	09:47:39	39.13	27.62	2.4
32	01.07.2009	09:19:12	39.11	27.55	2.4
33	07.07.2009	09:28:46	39.10	27.55	2.2
34	02.08.2009	13:27:27	39.11	27.52	2.6
35	01.09.2009	10:00:23	39.10	27.58	2.4
36	04.09.2009	08:11:57	39.15	27.53	2.6
37	24.09.2009	09:16:18	39.08	27.53	2.3
38	24.09.2009	09:23:15	39.07	27.53	2.6
39	27.09.2009	09:31:08	39.10	27.58	2.4
40	27.09.2009	10:48:56	38.79	27.21	2.7
41	04.10.2009	07:47:42	39.13	27.57	2.8
42	04.10.2009	09:08:42	39.13	27.55	2.6

Tablo 1: Çalışmada kullanılan sismik olayların listesi

Ceydilek and Horasan / Tu	kish Journal of Earthquake	Research 1 (1), 26-47, Jun	ne 2019

43	04.10.2009	11:07:26	39.11	27.55	2.5
44	10.10.2009	08:25:14	39.10	27.52	2.8
45	11.01.2009	21:50:01	39.08	28.10	3.0
46	22.01.2009	20:47:05	39.02	28.09	2.5
47	25.01.2009	00:19:50	38.65	27.45	3.1
48	02.08.2009	00:13:30	39.19	27.77	3.1
49	02 08 2009	00:51:57	39.18	27 78	2.9
50	02.08.2009	01:06:03	39.18	27 78	27
51	02 08 2009	01.42.29	39 19	27 77	2.8
52	05 08 2009	10:00:25	39 11	27.53	27
53	07.08.2009	07:38:54	39.09	27.59	2.7
54	08.08.2009	09:22:35	39.10	27.55	2.5
55	08.08.2009	09:18:07	39.11	27.59	2.3
56	08.08.2009	09:30:42	39.11	27.57	2.5
57	14.08.2009	07:50:44	39.12	27.57	2.6
58	14 08 2009	13:35:16	39.09	27.51	24
59	18.08.2009	07:47:05	39.09	27.57	2.8
60	22.08.2009	09:01:39	39.12	27.57	2.8
61	22.08.2009	13:02:15	39.09	27.54	2.5
62	23.08.2009	10:02:46	39.11	27.59	2.4
63	27.08.2009	21:49:45	39.07	27.78	2.2
64	31 08 2009	01:48:28	38.88	28 14	2.6
65	01.09.2009	10:00:23	39.10	27.58	2.4
66	01 09 2009	09:57:15	39.09	27.56	27
67	08 09 2009	05:02:53	39.06	27.83	2.6
68	06 10 2009	07:56:00	39 11	27 55	2.5
69	03.10.2009	03:42:44	39.05	27.68	2.7
70	04 10 2009	04:36:23	38.94	28.04	3.0
71	05.11.2009	04:22:35	38.99	28.08	2.5
72	08.12.2009	10:53:30	39.00	27.73	2.7
73	21 12 2009	03:39:16	39.13	27.95	3.0
74	29.12.2009	00:05:31	38.85	27.83	2.6
75	10.01.2010	01:07:33	38.84	27.84	3.0
76	08.01.2010	01:09:48	38.85	27.87	2.9
77	28.07.2010	09:01:30	39.29	27.72	2.9
78	30.01.2010	01:04:51	38.88	27.89	3.1
79	13.03.2010	13:19:35	39.27	27.87	3.1
80	01.05.2010	01:43:15	39.08	28.03	2.7
81	07.05.2010	00:38:17	38.65	27.72	2.7
82	25.10.2010	08:45:09	39.10	27.54	2.8
83	04.04.2010	09:09:34	39.31	27.78	2.8
84	22.04.2010	09:54:09	39.31	27.72	2.7
85	18.05.2010	02:04:06	38.64	27.70	2.6
86	20.05.2010	03:31:14	38.74	28.07	3.0
87	27.05.2010	22:52:57	38.88	27.93	3.0
88	03.06.2010	11:27:19	38.75	27.92	2.7
89	22.06.2010	14:02:36	39.23	27.90	3.2
90	16.07.2010	05:57:57	39.22	27.80	2.8
91	14.08.2010	23:30:58	38.86	27.87	2.8
92	18.08.2010	21:50:24	38.98	28.07	2.7
93	19.08.2010	04:35:21	39.00	28.07	2.7
94	20.08.2010	04:47:32	38.85	27.94	2.9
95	21.08.2010	09:31:55	38.97	27.73	2.8
96	22.08.2010	07:17:14	38.80	27.85	2.8
97	28.08.2010	01:52:43	38.89	27.82	2.9
98	03.09.2010	09:08:36	39.28	27.74	2.3
99	03.09.2010	09:17:56	39.10	27.54	2.5
100	09.09.2010	19:52:03	38.87	27.90	3.1

Ceydilek and Horasan /	Turkish Journal of	Earthquake Research	1 (1	I), 26-47,	June 2019
			· ·	,, , ,	

101	22.09.2010	05:13:53	38.84	27.83	2.9
102	27 09 2010	22.53.33	38 93	27 58	29
103	01 10 2010	01.20.23	39.09	27.85	3.0
100	07 10 2010	15:40:08	30.20	27.00	3.1
104	11 10 2010	00.01.46	38.80	27.43	3.0
105	11.10.2010	19.22.00	20.00	27.03	3.0
100	15.10.2010	10.33.00	30.01	27.04	3.1
107	15.10.2010	19:02:51	38.81	27.84	2.9
108	16.10.2010	06:52:52	38.79	27.83	3.0
109	21.10.2010	11:20:40	39.07	27.53	2.7
110	30.10.2010	20:16:48	38.80	27.86	2.7
111	17.11.2010	01:27:37	38.59	27.40	3.0
112	29.11.2010	01:19:11	38.81	27.85	3.0
113	23.12.2010	11:26:42	39.10	27.56	2.6
114	07.05.2011	08:33:55	39.02	28.05	2.5
115	08.01.2011	08:06:37	39.19	27.51	2.7
116	11.02.2011	11:51:43	39.15	27.52	2.5
117	26.05.2011	12:28:17	39.12	27.52	2.6
118	06.01.2011	22:09:57	38.97	27.77	2.6
119	07.01.2011	02:04:07	39.10	27.94	2.6
120	08.01.2011	02:35:21	38.87	27.20	2.6
121	15.01.2011	20:13:00	38.84	27.93	3.0
122	24.01.2011	00:13:54	38.47	28.07	2.8
123	27.01.2011	01:40:22	38.91	27.85	2.3
124	10.02.2011	01:24:38	38.70	27.81	2.4
125	20.02.2011	22:35:48	38.68	27.46	2.6
126	28.02.2011	23:04:38	38.82	27.37	2.7
127	25.03.2011	19:09:58	38.86	27.9	3.1
128	12.04.2011	11:19:04	39.11	27.62	2.6
129	25.04.2011	22:03:15	38.86	27.93	3.0
130	27 04 2011	10:51:04	39 10	27.54	2.5
131	29.04.2011	11:02:51	39.07	27.53	2.0
132	30.04.2011	12:04:56	39.07	27.55	2.7
132	22 05 2011	06:45:11	38.98	27.53	2.7
134	26.05.2011	20:47:15	39 30	27.04	2.0
135	01 06 2011	20.47.10	30.18	27.72	2.0
136	01.00.2011	13.04.34	38.38	27.00	2.7
127	11 00 2011	21.20.24	29.07	20.11	2.1
107	17.09.2011	21.30.24	20.97	27.02	2.1
130	17.09.2011	23.41.11	39.20	27.00	2.3
139	10.09.2011	10.27.30	39.11	27.00	2.7
140	15 10 2011	05.04.05	30.90 20.75	27.91	2.0
141	15.10.2011	22:56:39	38.75	27.09	2.8
142	24.10.2011	10:35:01	38.90	27.90	2.9
143	06.11.2011	16:21:09	38.96	27.84	3.0
144	21.11.2011	21:20:28	38.83	27.85	2.9
145	28.11.2011	08:07:29	39.10	27.52	2.3
146	01.12.2011	09:12:50	39.09	27.56	2.3
147	19.12.2011	03:43:25	38.82	27.85	2.7
148	23.12.2011	01:30:35	39.12	27.82	2.7
149	23.01.2012	02:21:57	39.12	27.93	3.0
150	23.03.2012	09:21:12	39.09	27.56	1.9
151	09.05.2012	08:02:06	39.09	27.57	2.4
152	03.08.2012	11:43:12	39.09	27.57	1.9
153	08.12.2012	09:00:38	39.13	27.50	2.3
154	08.12.2012	09:19:01	38.81	27.86	2.2
155	25.12.2012	09:39:19	39.08	27.54	2.1
156	02.03.2012	23:12:00	38.35	27.79	2.7
157	08.03.2012	05:33:53	38.47	28.20	2.8
158	20.03.2012	08:25:03	39.32	27.88	3.0

159	21.03.2012	22:12:20	39.27	27.77	2.9
160	05.04.2012	07:27:36	38.69	27.23	2.8
161	11.04.2012	06:08:10	38.73	27.80	2.1
162	21.05.2012	09:10:51	38.87	27.81	2.9
163	25.05.2012	03:37:20	38.91	27.99	2.2
164	29.05.2012	08:09:11	39.29	27.81	2.8
165	29.05.2012	08:20:43	39.14	27.62	2.3
166	01.06.2012	02:36:07	39.22	27.88	2.6
167	01.06.2012	19:02:07	38.84	27.72	2.8
168	02.06.2012	05:32:18	39.18	27.95	2.8
169	03.06.2012	00:59:06	38.87	27.65	3.2
170	05.06.2012	02:03:40	39.04	27.59	2.7
1/1	11.06.2012	05:02:32	38.75	27.84	2.7
172	10.00.2012	04.42.02	30.1Z	27.02	2.0
173	01.07.2012	23.23.10	30.73	27.02	2.0
174	02.07.2012	22.13.29	30.00 38.87	27.00	2.9
176	08.07.2012	20:37:55	38.87	27.79	2.0
177	14 07 2012	23:17:56	38.99	27.83	2.0
178	16 07 2012	08:36:37	39.33	27.05	3.0
179	16.07.2012	19:42:52	38.89	27.49	2.8
180	23.07.2012	20:56:59	38.85	27.89	2.4
181	25.07.2012	10:17:07	39.02	27.91	2.2
182	17.08.2012	04:24:32	38.76	27.43	2.6
183	31.08.2012	21:23:20	39.10	28.13	2.7
184	14.09.2012	06:47:49	38.88	27.82	2.4
185	17.09.2012	11:10:52	39.11	27.60	2.1
186	30.09.2012	03:22:57	38.73	27.83	3.1
187	01.10.2012	05:18:25	39.17	27.91	3.1
188	06.10.2012	23:26:52	39.01	27.79	2.2
189	08.10.2012	09:00:13	38.94	27.92	2.3
190	15.11.2012	08:40:51	38.97	27.71	2.4
191	17.11.2012	19:56:43	38.99	27.91	3.0
192	19.11.2012	11:36:04	38.95	27.78	2.4
193	25.11.2012	12:30:59	38.99	28.16	2.6
194	31.12.2012	16:35:18	38.96	27.97	2.8
195	12.02.2013	01.10.41	30.97	27.00	3.1
190	10.03.2013	12.04.00	38.01	27.00	2.0
197	18 05 2013	11.16.27	38.83	27.07	2.0
199	19.05.2013	17:02:33	38.84	27.03	3.2
200	24.05.2013	05:27:58	38.88	27.71	3.1
201	10.06.2013	17:54:15	39.01	27.94	2.9
202	19.06.2013	19:27:08	38.83	27.75	2.6
203	21.06.2013	01:31:17	39.08	27.79	3.0
204	27.06.2013	19:52:23	38.99	27.92	2.7
205	14.08.2013	02:48:26	38.93	27.90	2.4
206	19.08.2013	05:07:10	38.90	27.69	2.7
207	10.09.2013	21:37:30	38.71	28.04	2.3
208	13.09.2013	01:15:13	38.89	27.74	2.9
209	19.09.2013	19:12:25	39.02	27.71	2.8
210	08.10.2013	05:25:04	39.10	28.05	2.4
211	22.10.2013	07:02:35	38.86	27.71	2.4
212	27.10.2013	05:12:11	38.80	27.85	2.8
213	29.10.2013	03:55:34	38.73	27.86	2.5
214 215	17.11.2013	03:41:10	38.83 20.20	21.04	2.3
∠10 216	23.03.2013	01.01.00	33.29 38.01	∠1.0U 27.67	2.4 2.7
<u>~ 10</u>	LI .00.2010	00.01.00	00.01	LI.UI	<u>∠.</u> /

Ceydilek and Horasan /	Turkish Journal of	Earthquake Research	1 (1	I), 26-47,	June 2019
			· ·	,, , ,	

217	27 05 2013	21.01.02	38 86	27 76	24
218	03.06.2013	19.07.48	38.69	28.06	2.8
219	15.06.2013	09:37:44	38 57	28.30	2.0
220	03 07 2013	18:51:55	38.65	27.75	23
220	16 08 2013	23:51:22	38.93	27.86	2.0
221	10.00.2010	10:55:02	38.01	27.00	2.0
222	20.08.2013	03:52:00	38.90	27.75	2.4
223	25.08.2013	10.30.20	38.90	27.73	2.7
224	27.08.2013	00.54.25	38.87	27.72	2.0
226	03 00 2013	04.26.47	38.03	27.75	2.0
220	07.09.2013	05.28.13	39.24	27.73	2.0
228	30 10 2013	00.20.10	39.24	27.86	2.0
220	10 01 2014	22.44.13	38 79	27.83	2.2
230	02 02 2014	22:06:01	38.80	27.83	1.5
231	06.03.2014	07:17:55	39.23	27.00	2.6
232	20.05.2014	09.01.18	39.02	27.87	2.0
232	11 06 2014	23.21.56	38.87	27.88	2.0
234	08 06 2014	22:40:29	38.85	27.00	2.4
235	26.06.2014	03:47:04	39.14	27.10	2.0
236	05 07 2014	06:13:51	38.95	27.30	2.0
237	14 07 2014	03:40:20	39.02	27.70	2.2
238	16 09 2014	23.02.54	38.98	28.75	2.5
230	13 09 2014	15.54.30	39.00	20.73	2.5
200	14 01 2014	08:48:30	39.00	28.07	13
240	23 01 2014	12.21.02	30.10	20.07	2.0
241	14 03 2014	10.03.22	39.15	27.73	2.0 1 4
242	14.03.2014	10:37:32	38.03	27.02	1.4
240	14.03.2014	11.03.20	38.03	27.62	1.0
244	04 04 2014	08:54:07	38.97	27.02	2.0
240	10 04 2014	14.03.40	38 76	27.58	1.6
240	13 08 2014	09.09.48	38.84	27.88	1.0
248	18 08 2014	11.25.40	38 40	28.57	1.7
249	21 10 2014	09:58:21	38 99	28.03	1.0
250	31 12 2007	10.00.21	38 70	27.96	2.5
251	31 12 2007	18:17:45	38.76	27.00	2.0
252	27 02 2008	02:15:55	38.81	27.87	2.0
253	18 07 2008	06:00:21	38.90	27.89	29
254	18.07.2008	06:08:32	38 91	27.80	2.0
255	16.07.2008	06:10:46	38 91	27.89	2.0
256	30 12 2009	13 18 53	38.84	27.80	2.0
257	15 01 2009	00.23.10	38 72	27.85	2.0
258	28 02 2009	07:02:11	38.35	27.00	2.1
259	29.03.2009	23.08.09	38.67	27 70	2.8
260	17 04 2009	03.19.43	38.96	27.75	3.0
261	27 04 2009	07.11.27	38 56	27.75	27
262	01.06.2009	01:38:22	38 46	27.53	29
263	04.06.2009	03:46:53	38.61	27.93	29
264	23 07 2009	02:59:09	38.95	27.60	3.0
265	21 10 2009	13:46:00	38.84	27.85	2.8
266	22 12 2010	12.11.44	38.85	27.82	2.3
267	20.04.2011	12:41:59	38.86	27.79	2.6
268	07.05.2011	13:09:06	38.85	27.85	2.5
269	11.02.2011	13:02:37	38.84	27,86	2.5
270	15.12.2011	05:47:28	38.86	27.71	2.8
271	02.03.2012	23:11:56	38.35	27.79	2.7
272	22.08.2007	08:55:43	39.11	27.55	2.9
273	09.09.2007	12:39:49	38.82	27.19	2.8
274	08.10.2007	09:06:20	39.07	27.58	2.6

27509.11.200708:33:0739.1127.572.427631.12.200713:41:5738.7027.822.927721.01.200810:08:0039.0627.592.727828.03.200822:54:1938.8827.612.927918.06.200812:52:1138.8827.552.328014.07.200814:54:2838.8827.552.328107.09.200920:30:5438.8627.883.028224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.829016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3<						
27631.12.200713:41:5738.7027.822.927721.01.200810:08:0039.0627.592.727828.03.200822:54:1938.8827.612.927918.06.200812:52:1138.8827.552.328014.07.200814:54:2838.8627.883.028107.09.200920:30:5438.8627.883.028224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	275	09.11.2007	08:33:07	39.11	27.57	2.4
27721.01.200810:08:0039.0627.592.727828.03.200822:54:1938.8827.612.927918.06.200812:52:1138.8827.552.328014.07.200814:54:2838.8827.503.028107.09.200920:30:5438.8627.883.028224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	276	31.12.2007	13:41:57	38.70	27.82	2.9
27828.03.200822:54:1938.8827.612.927918.06.200812:52:1138.8827.552.328014.07.200814:54:2838.8827.503.028107.09.200920:30:5438.8627.883.028224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	277	21.01.2008	10:08:00	39.06	27.59	2.7
27918.06.200812:52:1138.8827.552.328014.07.200814:54:2838.8827.503.028107.09.200920:30:5438.8627.883.028224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	278	28.03.2008	22:54:19	38.88	27.61	2.9
28014.07.200814:54:2838.8827.503.028107.09.200920:30:5438.8627.883.028224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	279	18.06.2008	12:52:11	38.88	27.55	2.3
28107.09.200920:30:5438.8627.883.028224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	280	14.07.2008	14:54:28	38.88	27.50	3.0
28224.06.200907:12:0639.0927.552.528328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	281	07.09.2009	20:30:54	38.86	27.88	3.0
28328.07.201017:10:3539.2927.722.928401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	282	24.06.2009	07:12:06	39.09	27.55	2.5
28401.06.201012:24:4338.8627.822.528507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	283	28.07.2010	17:10:35	39.29	27.72	2.9
28507.09.200716:19:1738.7428.092.828607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	284	01.06.2010	12:24:43	38.86	27.82	2.5
28607.12.200704:18:1938.9127.902.228708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	285	07.09.2007	16:19:17	38.74	28.09	2.8
28708.12.200710:33:0938.7228.042.728813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	286	07.12.2007	04:18:19	38.91	27.90	2.2
28813.07.200813:20:0238.8827.912.828916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	287	08.12.2007	10:33:09	38.72	28.04	2.7
28916.07.200809:31:5438.9027.892.329016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	288	13.07.2008	13:20:02	38.88	27.91	2.8
29016.10.200807:52:4338.8727.882.729107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	289	16.07.2008	09:31:54	38.90	27.89	2.3
29107.09.200920:30:5038.8627.883.029230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	290	16.10.2008	07:52:43	38.87	27.88	2.7
29230.05.201404:42:1238.8827.362.829309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	291	07.09.2009	20:30:50	38.86	27.88	3.0
29309.06.201400:20:2238.8427.173.029405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	292	30.05.2014	04:42:12	38.88	27.36	2.8
29405.07.201406:13:5538.9527.782.229521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	293	09.06.2014	00:20:22	38.84	27.17	3.0
29521.10.201409:58:2238.9928.031.429614.01.201408:48:4139.0628.071.3	294	05.07.2014	06:13:55	38.95	27.78	2.2
<u>296 14.01.2014 08:48:41 39.06 28.07 1.3</u>	295	21.10.2014	09:58:22	38.99	28.03	1.4
	296	14.01.2014	08:48:41	39.06	28.07	1.3

Çalışmada kullanılan sismik olayların ve istasyonların konumları ise Şekil 2'de verilmektedir. Bu haritanın çiziminde ArcGIS programı kullanılmıştır. Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Deprem Dairesi Başkanlığı'na ait olan AKHS, BLN, CAM ve KTT istasyonlarının kuruluş tarihleri sırası ile 15.07.2006, 07.04.2007, 06.04.2007 ve 07.04.2007'dir.

Şekil 2: Çalışma da kullanılan 296 tane sismik olayın dağılımı. İçi dolu daireler sismik olayları, üçgenler ise istasyonları göstermektedir

4. BULGULAR

Dalga formlarına bakarak deprem ve patlatma kayıtlarını ayırt etmek mümkündür. Dalganın ilk hareketi olan P-dalgası düşük genlikte, S-dalgası büyük genlikte ise bu olay deprem olarak değerlendirilir. Eğer ilk hareket yönü yukarıya doğru ve büyük genlikli ise ve S-dalgası görülmüyorsa bu tür olaylar da patlatma olarak yorumlanır. Hesaplama yöntemlerinin yanında bu gözlemsel belirleme şekli de pratik olarak patlatmaları depremlerden ayırt etmede kullanılmaktadır (Şekil 3a,b).

Şekil 3: AKHS istasyonunda kayıt edilen verilerin sismogramları; a) Deprem (2008 04 03 08:36:23 M_d = 2.9), b) Patlatma (2009 10 06 07:55:59 M_d = 2.5)

Deprem ve patlatmaları ayırt etmede dalga formlarını kullanmak her zaman yeterli olmayabilir. Bu yüzden çalışmada aşağıdaki yöntemler kullanılarak, deprem ve patlatmalar birbirinden ayırt edilecektir.

4.1) En Büyük S-Dalgası Genliğinin, En Büyük P-Dalgası Genliğine Oranlarının Hesabı

Her istasyon için düşey bileşen hız sismogramlarındaki en büyük S dalgası genliğinin, en büyük P dalgası genliğine oranının, en büyük S dalgası genliğinin logaritmasına karşılık çizimleri elde edilmiştir. Şekil 4'te AKHS istasyonunda kaydedilen olayların düşey bileşen hız sismogramlarındaki en büyük S dalgası genliğinin en büyük P dalgası genliğine oranının en büyük S dalgası genliğinin logaritmasına karşılık çizimi verilmektedir. Burada depremler daireler ile patlatmalar ise yıldızlarla gösterilmiştir. Şekil 4'teki düz çizgi deprem ve patlatma olaylarını birbirinden ayıran doğrusal ayırt etme fonksiyonunu temsil etmektedir. Bu yönteme göre deprem ve patlatma olaylarının ayrımı %94.4 doğrulukla elde edilmiştir (Tablo 2). Doğrusal ayırt etme fonksiyonunun çiziminde SPSS-22 istatistik analiz paketi kullanılmıştır.

Şekil 5'te ise tüm istasyonların (AKHS, BLN, CAM ve KTT) kaydettiği sismik olayların düşey bileşenleri kullanılarak maksimum genlik oranı (S/P)-LogS grafiği çizdirilmiştir. Bu durumda deprem ve patlatma olaylarının ayrımı %94.6 doğrulukla elde edilmiştir (Tablo 3).

Bu değiştirgenler ile deprem ve patlatmaların ayırt edilmesinde tek ya da çok istasyon verisinin kullanılması doğruluk yüzdesini değiştirmemektedir.

Şekil 4: AKHS istasyonuna ait sismik veriler kullanılarak en büyük S dalgası genliğinin en büyük P dalgası genliğine olan oranının, en büyük S dalgası genliğinin logaritmasına karşılık çizimi. Düz çizgi DAF kullanılarak elde edilmiştir

	Tin		Kestirile	əbilir tür	
	пр		Patlatma	Deprem	Toplam
	C ev <i>i</i>	Patlatma	95	1	96
Orilinal	Sayı	Deprem	13	140	153
Onjinai —	0/	Patlatma	99,0	1,0	100,0
	%	Deprem	8,5	91,5	100,0

Tablo 2: Şekil 4'te yer alan sismik olayların sayısal dağılımı ve yüzdelik olarak gruplandırılması

%94,4'lük doğrulukla orijinal gruplar sınıflandırılmıştır

Şekil 5: AKHS, BLN, CAM ve KTT istasyonlarına ait sismik verilerin toplamı kullanılarak en büyük S dalgası genliğinin en büyük P dalgası genliğine olan oranının, en büyük S dalgası genliğinin logaritmasına karşılık çizimi. Düz çizgi DAF kullanılarak elde edilmiştir

	Tia		Kestirilebilir tür		
	пр		Patlatma	Deprem	Toplam
	Se. #	Patlatma	168	1	169
Oriiinal	Sayı	Deprem	21	221	242
Onjinai —	%	Patlatma	99,4	0,6	100,0
		Deprem	8,7	91,3	100,0

Tablo 3: Şekil 5 'te yer alan sismik olayların sayısal dağılımı ve yüzdelik olarak gruplandırılması

%94,6'lık doğrulukla orijinal gruplar sınıflandırılmıştır

4.2) En Büyük S-Dalgası Genliğinin, En Büyük P-Dalgası Genliğine Oranlarının Hesabı ile Sinyal Süresinin Hesabı

Bu yöntemde her istasyon için düşey bileşen hız sismogramlarının en büyük S dalgası genliğinin, en büyük P dalgası genliğine oranının, sinyalin başlangıç ve bitişi arasında ölçülen kayıt sürelerine (sn) karşılık çizimleri kullanılır. Şekil 6'da AKHS istasyonunda kaydedilen olayların düşey bileşen hız sismogramlarındaki en büyük S dalgası genliğinin en büyük P dalgası genliğine oranının, sinyalin başlangıç ve bitişi arasında ölçülen kayıt sürelerine (sn) karşılık çizimi verilmektedir. Burada depremler daireler ile patlatmalar ise yıldızlarla gösterilmiştir. Şekil 6'daki düz çizgi deprem ve patlatma olaylarını birbirinden ayıran DAF'ı temsil etmektedir. Bu yönteme göre deprem ve patlatma olaylarının ayrımı %91.2 doğrulukla elde edilmiştir (Tablo 4). Şekil 7'de ise tüm istasyonların (AKHS, BLN, CAM ve KTT) kaydettiği sismik olayların düşey bileşenleri kullanılarak maksimum genlik oranları (S/P), sinyal süresine karşılık çizdirilmiştir. Bu durumda deprem ve patlatma olaylarını olaylarını olaylarını ayrımı %88.8 doğrulukla elde edilmiştir (Tablo 5).

Sinyal süresi ile deprem ve patlatma olaylarının ayırt edilmesinde doğruluk yüzdesi kullanılan istasyonun tek ya da çok sayıda olmasına göre değişebilmektedir. Farklı istasyonlarda farklı tipte aletler bulunacağından ve bu aletlerin dinamik aralıkları da farklı olacağından dolayı farklı istasyon kayıtlarından farklı sinyal süreleri okunabilir.

Şekil 6: AKHS istasyonuna ait sismik veriler kullanılarak en büyük S dalgası genliğinin en büyük P dalgası genliğine oranının, sismik izlerin başlangıcı ve bitişi arasındaki süreye (sn) karşılık çizimi. Düz çizgi DAF kullanılarak elde edilmiştir

Tablo 4: Şekil 6'da yer alan sismik olayların sayısal dağılımı ve yüzdelik olarak gruplandırılması							
Тір		Kestirilebilir tür		Tanlam			
		Patlatma	Deprem	ropiam			
Orijinal -	Sovi	Patlatma	96	0	96		
	Sayı	Deprem	22	131	153		
	0/	Patlatma	99,0	1,0	100,0		
	70	Deprem	14,4	85,6	100,0		

%91,2'lik	doğrulukla	orijinal	gruplar	sınıflandırılmıştır
-----------	------------	----------	---------	---------------------

Şekil 7: AKHS, BLN, CAM ve KTT istasyonlarına ait sismik verilerin toplamı kullanılarak en büyük S dalgası genliğinin en büyük P dalgası genliğine olan oranının, sismik izlerin başlangıcı ve bitişi arasındaki süre (sn)'ye karşılık çizimi. Düz çizgi DAF kullanılarak elde edilmiştir

Tablo 5: Şekli 7	de yer alan	sismik olaylari	n sayisai dag	jilimi ve yuzael	ik olarak gruplandirilma	sı

.

.

	Тір		Kestirilebilir tür		Toplom
			Patlatma	Deprem	торіані
Orijinal	South	Patlatma	169	0	169
	Sayı -	Deprem	46	196	242
	0/	Patlatma	100,0	0,0	100,0
	70	Deprem	19,0	81,0	100,0

%88,8'lik doğrulukla orijinal gruplar sınıflandırılmıştır

40

4.3) Sismogramda Tanımlanan İki Zaman Penceresinin Güçlerinin Oranı (Complexity) ile Spektrumların Alçak ve Yüksek Frekanslı Pencerelerinin Spektral Oranlarının (SR) Hesabı

AKHS, BLN, CAM ve KTT istasyonlarında kaydedilen ortak olaylar için düşey bileşen hız sismogramlarının iki zaman penceresindeki güçlerinin oranları, Karmaşıklık (C) hesaplanır. Yukarıda verilen (1) numaralı bağıntıda, t₀ sinyalin başlangıç zamanını belirtir (P dalgası varış zamanı) t₁ ve t₂ ise pencere uzunluğunu göstermektedir. Bu çalışmada t₁ ve t₂ sırasıyla 1 ve 9 sn alınmıştır.

Ayrıca, AKHS, BLN, CAM ve KTT istasyonlarında kaydedilen ortak olaylar için düşey bileşen hız sismogramlarının spektrumlarının alçak ve yüksek frekanslı kısımları oranlanarak spectral oran (SR) parametresi bulunur. Burada h₁ ve h₂ yüksek frekans, I₁ ve I₂ alçak frekans aralık değerlerini belirtir. Bu çalışmada alçak frekans aralığı için 1-7 Hz, yüksek frekans aralığı için 7-18 Hz kullanılmıştır. Sayısal değerlerin örnekleme aralığı 50 olduğu için spektrumların birbirine oranlanmasında kesme frekansı 25 Hz olarak alınmıştır.

Sismik olayların genlik spektrumlarının hesaplanmasında PITSA interaktif sismoloji analiz paketi kullanılmıştır (Scherbaum ve Johnson 1992). Şekil 8'de dört istasyonun ortak kaydettiği olaylar için karmaşıklık (C) ve spektral oranların (SR) karşılıklı çizimi verilmiştir. Bu dağılımdaki deprem ve patlatma olaylarını ayırt etmek için DAF çizdirilir. Böylece deprem ve patlatma olayları istatistiksel olarak birbirinden ayırt edilmiş olur. Olayların sınıflandırılması ise Tablo 6'da gösterilmektedir.

Bu değiştirgenlere göre deprem ve patlatmaların ayrımı minimum %71,9'luk doğrulukla yapılmıştır.

Şekil 8: AKHS, BLN, CAM ve KTT istasyonlarında t ortak olarak kaydedilen sismik olayların karmaşıklık (C) değerine karşılık, spektral oran (SR) değerlerinin çizimi. Düz çizgi DAF kullanılarak elde edilmiştir

Тір			Kestirilebilir tür		Tanlam
			Patlatma	Deprem	ropiam
	Sout	Patlatma	9	2	11
Orijinal	Sayı	Deprem	7	14	21
	0/	Patlatma	81,8	18,2	100,0
	%	Deprem	33,3	66,7	100,0

Tablo 6: Şekil 8'de yer alan sismik olayların sayısal dağılımı ve yüzdelik olarak gruplandırılması

%71,9'luk doğrulukla orijinal gruplar sınıflandırılmıştır

Taş ocağı patlatmalarının güvenlik ve çevre gürültüsü nedeni ile genellikle gündüz saatlerinde gerçekleştirildiği bilinmektedir. Bu düşünceden yola çıkılarak, çalışma bölgesinde meydana gelen olayların tümünün gün içinde saatlere (GMT) göre dağılımı çizdirilmiştir (Şekil 9). Şekil 10'da ise çalışma sonucunda patlatma olarak belirlenen olayların çıkartıldıktan sonraki dağılımı gösterilmektedir. Depremlere ait bu dağılıma bakıldığında deprem olayının günün her saatinde meydana geldiği görülmektedir.

Şekil 9: Çalışma bölgesinde Ocak 2007-Aralık 2014 tarihleri arasında meydana gelen sismik aktivitelerin gün içinde saatlere (GMT) göre dağılımı

Ceydilek and Horasan / Turkish Journal of Earthquake Research 1 (1), 26-47, June 2019

Şekil 10: Çalışma bölgesinde Ocak 2007-Aralık 2014 tarihleri arasında meydana gelen sismik aktivitelerden taş ocağı patlatma verileri çıkarıldığında kalan deprem verilerinin gün içinde saatlere (GMT) göre dağılımı

Şekil 11'de bu çalışma sonucunda elde edilen deprem ve patlatma verilerinin dağılımı gösterilmektedir. Şekil 12'de ise çalışma sonucunda elde edilen deprem ve patlatma verilerinin uydu görüntüsü verilmektedir. Bu çalışma sonucunda patlatma olarak belirlenen sismik olaylar, genelde nüfus yoğunluğunun olmadığı şehir dışında bulunan taş ocakları, maden ocakları gibi yerlerde gündüz saatlerinde kayıt edilmiştir. Deprem olarak belirlenen olaylar ise belli bir bölgede yoğunlaşmayıp, farklı saatlerde rastgele bir saçılım göstermektedir (Şekil 13).

Şekil 11: Çalışma bölgesinde yapılan analiz sonuçlarına göre sismik olayların dağılımı. Patlatmalar sarı, depremler yeşil dairelerle, istasyonlar ise mavi üçgenler ile gösterilmiştir (AFAD, Deprem Daire Başkanlığı).

Şekil 12: Çalışma bölgesinde yapılan analiz sonuçlarına göre sismik olayların, (patlatma ve deprem) ve istasyonların uydu görüntüsü (Google Earth)

Şekil 13: Çalışma bölgesinde yapılan analiz sonuçlarına göre, patlatma verilerinin taş ocakları bölgesinde yoğunlaşmış halinin uydu görüntüsü (Google Earth)

5. SONUÇLAR

Bu çalışmada Manisa ili çevresindeki patlatma ve deprem verilerini ayırt etmek için 38.0-39.5°K enlemleri ile 27.0.-29.0°D boylamları arasında kalan bölgede, Ocak 2007- Aralık 2014 tarihleri arasında AFAD Deprem Dairesi Başkanlığı'na ait AKHS, BLN, CAM ve KTT istasyonlarının kaydettiği büyüklüğü M_d≤3.2 olan 296 sismik olay için 4 istasyona ait toplam 411 sayısal düşey bileşen hız sismogramları kullanılmıştır (AFAD 2015).

Deprem ve patlatmalar farklı değişkenlere göre aşağıdaki yöntemlerle ayırt edilmiştir:

Birinci yöntemde, her bir sismik olay için genlik okuması yapılmıştır. Genlik okumaları sonucunda en büyük S dalgası genliğinin en büyük P dalgası genliğine oranının (S/P), en büyük S dalgası genliklerinin logaritmalarına (logS) karşılık çiziminden DAF geçirilerek deprem ve patlatma olayları birbirinden ayırt edilmiştir. Çalışmada kullanılan AKHS, BLN, CAM ve KTT istasyonlarının her birinin kaydettiği olaylardan elde edilen doğruluk yüzdeleri sırası ile %94.4, %95.8, %90.0, %93.2 dir. Tüm istasyon verilerinin ortak kullanılması halinde ise doğruluk yüzdesi, %94.6 dır. Bu değiştirgenler ile deprem ve patlatmaların ayırt edilmesinde tek ya da çok istasyon verisinin kullanılması doğruluk yüzdesini pek değiştirmemektedir.

İkinci yöntemde, Manisa bölgesindeki sismik olayların birbirinden ayırt edilmesinde en büyük S dalgası genliğinin en büyük P dalgası genliğine olan oranının (S/P), sismik izlerin başlangıç ve bitiş zamanı arasında ölçülen sürelerine (sn) karşılık çiziminden DAF geçirilerek elde edilmiştir. Bu ayrıma göre çalışmada kullanılan AKHS, BLN, CAM ve KTT istasyonlarının her birinin kaydettiği olaylardan elde edilen doğruluk yüzdeleri sırasıyla %91.2, %89.6, %91.4, %88.6 dır. Tüm istasyon verilerinin ortak kullanılması halinde ise doğruluk yüzdesi %88.8 olarak belirlenmiştir. Sinyal süresi ile deprem ve patlatma olaylarının ayırt edilmesinde doğruluk yüzdesi, kullanılan istasyonun tek ya da çok sayıda olmasına ve sismik izin sinyal gürültü oranına bağlı olarak değişmektedir. Birkaç istasyon verisinin bir arada kullanılması halinde farklı istasyonlarda farklı tipte aletler bulunacağından ve bu aletlerin dinamik aralıkları farklı olacağından dolayı farklı istasyon kayıtlarından farklı sinyal süreleri okunabilir. Bu durum patlama ve deprem olaylarının ayrımında doğruluk yüzdesini düşürebilir.

Üçüncü yöntemde, tüm istasyonların ortak kaydettiği sismik olaylarda sinyalin iki zaman penceresindeki güçlerinin oranı karmaşıklık (C) ile spektrumlarının düşük ve yüksek frekanslı pencerelerinin spektral oranları (SR) hesaplanmış ve DAF kullanılarak deprem ve patlatma olayları birbirinden ayırt edilmiştir. Burada iki zaman penceresi olarak; t₁: 1 sn; t₂: 9 sn, frekans penceresi olarak da düşük frekanslar için (1–7 Hz) ve yüksek frekanslar için (7–18 Hz) kullanılmıştır. Bu ayrıma göre AKHS, BLN, CAM ve KTT istasyonlarının kaydettiği ortak sismik olaylar için doğruluk %71,9 olarak belirlenmiştir.

Sonuç olarak bu çalışmada farklı yöntemler kullanılarak deprem ve patlatma olayları birbirinden ayırt edilmiştir. Yapılan hesaplamalar sonucunda Manisa ili ve ilçelerinde incelenen 296 sismik olayın 124 tanesinin (%42) patlatma, 172 tanesinin (%58) deprem olduğu belirlenmiştir. Bu çalışma ile Manisa ve çevresinde sadece deprem verilerinin olduğu sismik veri kataloglarının oluşturulması, haritalanması ve bölgenin deprem etkinliğinin doğru olarak belirlenmesi mümkün olmuştur.

TEŞEKKÜR

Bu çalışmada kullanılan veri arşivi AFAD (Afet ve Acil Durum Yönetimi Başkanlığı), Deprem Dairesi Başkanlığı tarafından sağlanmıştır. Deprem Dairesi Başkanı Sayın Dr. Murat NURLU' ya çok teşekkür ederiz.

KAYNAKLAR

AFAD, 2015. Türkiye Deprem Veri Merkezi Projesi (TDVM), Ankara <u>http://tdvm.afad.gov.tr</u>

Ambraseys N., 1988. Engineering Seismology, Jour. Earthq.Eng. Struck.Dyn. 17, 1-105.

Arai N., Yosida Y., 2004. Discrimination by short-period seismograms, International Institute of Seismology and Earthquake Engineering, Building Research Institute (IISEE), Lecture Note, Global Course, Tsukuba-Japan

Budakoglu E., Horasan G., 2018. Classification of seismic events using linear discriminant function (LDF) in the Sakarya region, Turkey, *Acta Geophysic*a 66, 895-906, DOI: 10.1007/s11600-018-0179-1

Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F., 2013. Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, VI+89s.+bir pafta, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara

Eyidoğan H., Güçlü U., Utku Z., Değirmenci E., 1991. Türkiye büyük depremleri makrosismik rehberi (1900-1988), İTÜ Maden Fak. Jeofizik Müh. Böl., İstanbul

Gitterman Y., Shapira A., 1993. Spectral discrimination of underwater explosions, Isr. J. Earth Sci. 42, 37-44, 1993.

Horasan G., Boztepe-Güney A., Küsmezer A., Bekler F., Öğütçü Z., 2006. İstanbul ve civarındaki deprem ve patlatma verilerinin birbirinden ayırt edilmesi ve kataloglanması, Proje Sonuç Raporu, Proje No: 05T202, Boğaziçi Üniversitesi Araştırma Fonu, 79 s, İstanbul.

Horasan G., Boztepe-Guney A., Kusmezer A., Musaoglu N., 2009. Constamination of seismicity catalogs by quarry blast: An example from İstanbul and its vicinty, Northwestern Turkey, *Journal of Asian Earth Sciences* 34, 90-99, doi:10.1016/j.jseaes.2008.03.012, 2009.

Kartal Ö.F., Horasan G., 2011. Trabzon ve civarındaki deprem ve patlatma verilerinin birbirinden ayırt edilmesi, *SAÜ Fen Bilimleri Enstitüsü Dergisi* 15, 68, Sakarya

Kekovalı K., Kalafat D., Deniz P., Kara M., Köseoğlu A., Yılmazer M., Poyraz S., Çomoğlu M., 2012. Patlatma Deprem Ayrımına Yönelik Zaman-Frekans Ortamı Analizleri; Tunçbilek-Kütahya Sahası Veri Madenciliği Uygulaması, ATAG-16 Çalıştayı, 18-19 Ekim 2012, Boğaziçi Üniversitesi KRDAE, İstanbul.

Ogutcu Z., Horasan G., Kalafat D., 2011. Investigation of micro seismic activity sources in Konya and its vicinity, Central Turkey, *Natural Hazard* 58 (1), 497-509.

Scherbaum F., Johnson J., 1992. Programmable Interactive Toolbox for Seismological Analysis (PITSA). In: Lee, W.H.K. (eds), IASPEI Software Library, v5, 269 pp., USA.

SPSS, 2013. Statistical Package for the Social Sciences for Windows, v22, IBM SPSS statistics

Wuster J., 1993. Discrimination of chemical explosions and earthquakes in central Europea case study, *Bull. Seismol. Soc. Am.* 83, 1184-1212

Yavuz E., Sertcelik F., Livaoglu H., Woith H., Luhr B-G., 2018. Discrimination of quarry blasts from tectonic events in the Armutlu Peninsula, Turkey, *Journal of Seismology* 23 (1), 59-76, doi: 10.1007/s10950-018-9793-2

Yılmaz Ş., Bayrak Y., Kalafat D., Çınar H., 2010. Doğu Karadeniz bölgesinde son yıllarda yapılan patlatmalarla oluşan depremlerin ayırt edilmesi, Türkiye 19. Uluslararası Jeofizik Kongresi ve Sergisi, 23-26 Kasım 2010, Ankara.