POSITIVITY OF c₃ FOR SPANNED REFLEXIVE SHEAVES

E. BALLICO

(Communicated by H. Hilmi HACISALIHOGLU)

ABSTRACT. Let X be an n-dimensional projective manifold, $n \geq 3$, and F a sheaf on X spanned outside a codimension ≥ 3 subset and with depth at least n-1. Here we prove that $c_3(F|Y) \geq 0$ for a sufficiently general 3-fold $Y \subseteq X$ and that if $c_3(F|Y) = 0$, then F is locally free.

Let X be a smooth and connected projective variety. Set $n := \dim(X)$. Let $A^{i}(X), i \geq 0$, denote the *i*-th homology or cohomology group of X either for rational equivalence or for algebraic equivalence or for numerical equivalence [2]. Hence $A^0(X) \cong A^n(X) \cong \mathbb{Z}$ and $A^i(X) = 0$ for all i > n. Let F be any coherent sheaf on X. The smoothness of X implies that F has a finite resolution by locally free coherent sheaves on X. As in [5], §2, this is sufficient to define the Chern classes $c_i(F), 0 \le i \le n$, which behave for short exact sequences of coherent sheaves as do the classical Chern classes for exact sequences of vector bundles. Fix integers i, c such that $1 \leq i \leq n-1, \alpha \in A^i(X)$ and a connected *i*-dimensional smooth subvariety $S \subset X$. Since $A^i(S) \cong \mathbb{Z}$ we may identify $\alpha | S$ with an integer. Notice that in the identification of $A^i(S)$ with \mathbb{Z} , there is a unique positive generator of $A^{i}(S)$. Hence we may do the identification in such a way that $\alpha | S$ is a well-defined integer, not just an integer up to its sign. Hence it make sense to say that $\alpha | S$ is non-negative or that it is positive or that it is at least c. Now assume $F \neq 0$. We recall that depth(F) $\leq n$, that depth(F) = n if and only if F is locally free, that depth(F) > 0 if F is torsion free and that $depth(F) \ge 2$ if and only if F is reflexive, i.e. if and only if the natural map $F \to F^{**}$ is an isomorphism ([5], Prop. 1.3).

Here we prove the following result.

Theorem 0.1. Assume $n \geq 3$. Let F be a rank r torsion free sheaf on X such that depth $(F) \geq n-1$ outside a codimension 4 subscheme of Y. Assume that the evaluation map $H^0(X, F) \otimes \mathcal{O}_X \to F$ is surjective outside a closed subset B of X with codimension at least 3. Fix a very ample linear system V on X. Let Y be a general intersection of n-3 members of V. Then $c_3(F|Y) \geq 0$. If $c_3(F|Y) = 0$, then F|Y is locally free and F is locally free outside an algebraic subset of X with codimension at least 4.

²⁰⁰⁰ Mathematics Subject Classification. 14H60.

Key words and phrases. Chern classes; reflexive sheaves; depth; spanned sheaf.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

Proof. We will first do the case n = 3.

(a) Assume n = 3 and write Y := X. If r = 1, then F is a line bundle, because Y is assumed to be locally factorial ([5], Prop. 1.9). Hence we may assume $r \ge 2$. The proof of [5], Prop. 2.6, works taking Y instead of \mathbf{P}^3 and shows that $c_3(G) \ge 0$ for every rank 2 reflexive sheaf G with equality if and only if G is locally free. Hence we may assume $r \ge 3$. We will adapt the proof of [1], Th. 5.3. Let B the set of non-locally free points of F. Hence B is finite. Since F is reflexive and Y is smooth, $\det(F)$ is a line bundle ([5]). Since F is spanned outside finitely many points, there is an exact sequence

$$(0.1) 0 \to \mathcal{O}_V^{r-1} \to F \to \mathcal{I}_C \otimes \det(L) \to 0$$

in which C is a reduced pure one-dimensional closed subscheme of Y which is locally complete intersection outside finitely many points ([6], §2). Appling the functor $Hom(-, \mathcal{O}_Y)$ to (0.1) we get the following exact sequence:

$$(0.2) \quad 0 \to \det(F)^* \to F^* \to \mathcal{O}_Y^{r-1} \to Ext^1(\mathcal{I}_Y \otimes \det(F), \mathcal{O}_Y) \to Ext^1(F, \mathcal{O}_Y) \to 0$$

We have $Ext^1(\mathcal{I}_Y \otimes \det(F), \mathcal{O}_Y) \cong \omega_C \otimes (\omega_Y \otimes \det(F)|C)$ ([3], III.7.5). The sheaf $Ext^1(F, \mathcal{O}_Y)$ is supported by the finite set B. Hence $Ext^1(\mathcal{I}_Y \otimes \det(F), \mathcal{O}_Y)$ is generically spanned. Since C is reduced, the \mathcal{O}_C -sheaf $\omega_C \otimes (\omega_Y \otimes \det(F)|C)$ as rank 1 on each ireducible component of C. Hence $\omega_C \otimes (\omega_Y \otimes \det(F)|C)$ is generically spanned by one section. Such a section and the isomorphism $Ext^1(\mathcal{I}_Y \otimes \det(F), \mathcal{O}_Y) \cong \det(F), \mathcal{O}_Y) \cong \omega_C \otimes (\omega_Y \otimes \det(F)|C)$ gives a non-trivial extension

$$(0.3) 0 \to \mathcal{O}_Y \to A \to \mathcal{I}_C \otimes \det(F) \to 0$$

with A reflexive. Since A has rank 2 we saw at the beginning of the proof that $c_3(A) \ge 0$ and that $c_3(A) = 0$ if and only if A is locally free. The extension (0.3) gives $c_3(A) = c_3(\mathcal{I}_C \otimes \det(F))$. The extension (0.1) gives $c_3(F) = c_3(\mathcal{I}_C \otimes \det(F))$. Hence $c_3(F) \ge 0$ and $c_3(F) = 0$ if and only if A is locally free. In this case C is a locally complete intersection and $\omega_C \equiv \det(F) \otimes \omega_Y$ ([5], Th. 4.1). As in [4] these two properties of C imply that F is locally free.

(b) Now assume n > 3. Bertini's theorem gives that Y is smooth, connected and 3-dimensional ([3], II.8.18 and III.7.9.1). Bertini's theorem shows that F has depth at least n - 1 at each point of Y. By [7], Cor. 1.18, for each $P \in Y$ the n-3 local equations generating $\mathcal{I}_{Y,P}$ forms a regular sequence for the $\mathcal{O}_{X,P}$ -module F_P . Hence for any $P \in Y$ the restriction to Y of a finite free resolution of F_P as an $\mathcal{O}_{X,P}$ -module, is a finite $\mathcal{O}_{Y,P}$ -resolution. Hence the reduction modulo $\mathcal{I}_{Y,P}$ of F|Y has no torsion and depth $(F|Y) \geq 2$. Hence F|Y is reflexive. Bertini's theorem gives dim $(B \cap Y) \leq 0$. Apply part (a) to F|Y.

Remark 0.1. Fix a coherent sheaf F on X and $L \in \text{Pic}(X)$. Set r := rank(F). As in [5], Lemma 2.1, we have $c_i(F \otimes L) = \sum_{j=0}^{i} c_j(F) \cdot L^{\times (i-j)}$ where $L^{\times (i-j)}$ denote the cup product. This formula was the key to find spanned reflexives sheaves on \mathbf{P}^n , $n \ge 4$, with $c_4(F) < 0$ and similarly for c_i with $5 \le i \le n$ ([1], Example 1.1).

We work over an algebraically closed field \mathbb{K} .

References

- [1] Bertone, C. and Roggero, M., Positivity of Chern classes for reflexive sheaves in \mathbf{P}^N , preprint.
- [2] Fulton, W., Intersection theory, Springer, Berlin, 1984.
- [3] Hartshorne, R., Algebraic geometry, Springer, Berlin, 1977.

E. BALLICO

- [4] Harshorne, R., Stable vector bundles of rank 2 on P³, Math. Ann., 238(1978), no. 3, 229-280.
 [5] Hartshorne, R., Stable reflexive sheaves, Math. Ann., 254(1980), no. 2, 121-176.
- [6] Okonek, C., Reflexive Garben auf **P**⁴, Math. Ann., 260(1982), no. 2, 211-237.
- [7] Siu, Y.-T. and Trautmann, G., Gap-sheaves and extensions of coherent analytic subsheaves, Springer, Berlin, 1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TRENTO, 38050 POVO (TN), ITALY E-mail address: ballico@science.unitn.it

14