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Abstract

In this paper, we introduce and study a new iterative algorithm which is a combination of a modified
Mann iterative scheme and a generalized explicit methods (GEM) for finding a common fixed points of an
infinite family of quasi-nonexpansive mappings in Banach spaces. Under suitable conditions, some strong
convergence theorems for finding a common fixed points of an infinite family of quasi-nonexpansive mappings
are obtained without imposing any compactness assumption. Presented results improve and generalize many
known results in the current literature.
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1. Introduction

Let X be a real normed space, K be a nonempty subset of X. A map T : K → X is said to be Lipschitz if
there exists an L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ K; (1)

if L < 1, T is called contraction and if L = 1, T is called nonexpansive.
We denote by F (T ) the set of fixed points of the mapping T, that is F (T ) := {x ∈ D(T ) : x = Tx}. We
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assume that F (T ) is nonempty. If T is nonexpansive mappings, it is well know F (T ) is closed and convex.
A map T is called quasi- nonexpansive if ‖Tx− p‖ ≤ ‖x− p‖ holds for all x in K and p ∈ F (T ).
We note that the following inclusions hold for the classes of the mappings:

Firmly nonexpansive ⊂ nonexpansive ⊂ quasi-nonexpansive.

We illustrate these by the following example.

Example 1.1. Let X = l∞ and C := {x ∈ l∞ : ‖x‖∞ ≤ 1} . Define T : C → C by Tx = (0, x21, x
2
2, x

3
3, ...)

for x = (x1, x2, x3, ...) in C. Then, it is clear that T is continuous and maps C into C. Moreover, Tp = p if
and only if p = 0. Futhermore,

‖Tx− p‖∞ = ‖Tx‖∞ = ‖(0, x21, x22, x23, ...)‖∞
≤ ‖(x1, x2, x3, ...)‖∞
= ‖x− p‖∞.

Therefore, T is quasi-nonexpansive. However, T is not nonexpansive.

Many problems arising in different areas of mathematics, such as optimization, variational analysis and
differential equations, engineering and science problems can be modeled by the equation

x = Tx, (2)

where T is a nonexpansive mapping. The solution set of this equation coincide to a fixed points set of T.
Such operators have been studied extensively (see, e.g., Yao et al. [24], Chidume [4], Marino et al. [15] and
the references therein).

Historically, one of the most investigated methods approximating fixed points of nonexpansive mappings
dates back to 1953 and is known as Mann’s method, in light of Mann [10]. Let C be a nonempty, closed and
convex subset of a Banach space X, Mann’s scheme is defined by{

x0 ∈ C,
xn+1 = αnxn + (1− αn)Txn,

(3)

{αn} is a sequence in (0, 1). But Mann’s iteration process has only weak convergence, even in Hilbert space
setting. Therefore, many authors try to modify Mann’s iteration to have strong convergence for nonlinear
operators.

Over the last several years, the implicit midpoint rule (IMR) has become a powerful numerical method
for numerically solving time-dependent differential equations (in particular, stiff equations) and differential
algebraic equations (see, [18]). Consider the following initial value problem:

x
′
(t) = f(x(t)), x0 = x(t0) (4)

where f : RM → RM is a continuous function. The IMR is an implicit method given by the following finite
difference scheme [6]:{

y0 = x0

yn+1 = yn + hf
(yn+1 + yn

2

)
,

(5)

where h > 0 is a time step. It is known that if f : RM → RM is Lipschitz continuous and sufficiently smooth,
then the sequence {yn} converges to the exact solution of (4) as h → 0 uniformly over t ∈ [t0, t

∗] for any
fixed t∗ > 0.
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Based on IMR (5), Xu et al. [23] applied the viscosity approximation method introduced by Moudafi
[13] to the IMR for a nonexpansive mapping T and proposed the following viscosity implicit midpoint rule
(VIMR) in Hilbert spaces H as follows:

xn+1 = αnf(xn) + (1− αn)T
(xn+1 + xn

2

)
, n ≥ 1 (6)

where {αn} is a real control condition in (0, 1). They also proved that the sequence {xn} generated by (6)
converges strongly to a point x∗ ∈ F (T ), which solves the variational inequality

〈x∗ − f(x∗), x∗ − p〉 ≤ 0, ∀p ∈ F (T ). (7)

Recently, Ke and Ma [25] improved the VIMR by replacing the midpoint by any point of the interval
[xn, xn+1]. They constructed the so-called method generalized viscosity implicit rules (GVIR) for a nonex-
pansive mapping as follows:

xn+1 = αnf(xn) + (1− αn)T
(
snxn + (1− sn)xn+1

)
, n ≥ 1. (8)

They showed that {xn} defined by (8) converges strongly to x∗ ∈ F (T ), which solves the variational inequal-
ity problem (1).

In numerical analysis, it is clear that the computation by the IMR is not an easy work in practice.
Because the IMR need to compute at every time steps, it can be much harder to implement. To overcome
this difficulty, for solving (4), we consider the helpful method, the so-called explicit midpoint method (EMR),
given by the following finite difference scheme

y0 = x0
ȳn+1 = yn + hf(yn),

yn+1 = yn + hf
( ȳn+1 + yn

2

)
.

(9)

It is easy to see that the explicit midpoint method calculates the state of a system at the next time from the
state of the system at the current time [7].

In 2017, Marino et al. [15] applied the sequence (8) and the explicit midpoint method (9) to established
the following so-called general viscosity explicit rule for quasi-nonexpansive mappings T in Hilbert spaces:{

x̄n+1 = βnxn + (1− βn)Txn,
xn+1 = αnf(xn) + (1− αn)T

(
snxn + (1− sn)x̄n+1

) (10)

where f is a contraction and {αn}, {βn}, and {sn} are the sequences in (0, 1). They proved, under suitable
conditions on the sequence parameters, that the generalized viscosity explicit rule (10) strongly converges to
the set of F (T ), which is also the solution of the variational inequality problem (1).

Recently, Sow et al.[19] motivated by the fact that Mann algorithm method is remarkably useful for
finding fixed points of nonexpansive mapping, proved the following theorem.

Theorem 1.2 (Sow et al. [19]). Let E be a uniformly smooth real Banach space having a weakly continuous
duality map and K a nonempty, closed and convex cone of E. Let T : K → K be a nonexpansive mapping
with F (T ) 6= ∅. Let {λn} and {αn} be two sequences in (0, 1). Let {xn} be a sequence defined iteratively from
arbitrary x0 ∈ K by:

xn+1 = αn(λnxn) + (1− αn)Txn. (11)

Suppose the following conditions hold:

(i) lim
n→∞

αn = 0; (ii)

∞∑
n=0

αn =∞ and
∞∑
n=0

|αn − αn+1| <∞



T.M.M. Sow, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 90–101. 93

(iii) lim
n→∞

λn = 1,

∞∑
n=0

(1− λn)αn =∞, and
∞∑
n=0

|λn − λn+1| <∞

Then, the sequence {xn} generated by (11) converges strongly to x∗ ∈ F (T ).

Motivated and inspired by the above works, the purpose of the paper is to construct an iterative algorithm
based on a modified Mann iterative scheme and prove strong convergence theorems for finding a common
fixed points of an infinite family of quasi-nonexpansive mappings in real Banach spaces having a weakly
continuous duality maps. No compactness assumption is made. The algorithm and results presented in this
paper improve and extend some recents results. Finally, our method of proof is of independent interest.

2. Preliminaries

Let E be a Banach space with norm ‖ · ‖ and dual E∗. For any x ∈ E and x∗ ∈ E∗, 〈x∗, x〉 is used to refer
to x∗(x). Let ϕ : [0,+∞) → [0,∞) be a strictly increasing continuous function such that ϕ(0) = 0 and
ϕ(t)→ +∞ as t→∞. Such a function ϕ is called gauge. Associed to a gauge a duality map Jϕ : E → 2E

∗

defined by:
Jϕ(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||ϕ(||x||), ||x∗|| = ϕ(||x||)}, x ∈ E. (12)

If the gauge is defined by ϕ(t) = t, then the corresponding duality map is called the normalized duality map
and is denoted by J . Hence the normalized duality map is given by

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2 =}, ∀x ∈ E.

Notice that
Jϕ(x) =

ϕ(||x||)
||x||

J(x), x 6= 0.

Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if the limit

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S. It is known that E is smooth if and only if each duality map Jϕ is single-valued,
that E is Frechet differentiable if and only if each duality map Jϕ is norm-to-norm continuous in E, and that
E is uniformly smooth if and only if each duality map Jϕ is norm-to-norm uniformly continuous on bounded
subsets of E.
Following Browder [2], we say that a Banach space has a weakly continuous duality map if there exists a
gauge ϕ such that Jϕ is single-valued and is weak-to-weak∗ sequentially continuous, i.e., if (xn) ⊂ E, xn

w−→ x,

then Jϕ(xn)
w∗−−→ Jϕ(x). It is know that lp (1 < p < ∞) has a weakly continuous duality map with gauge

ϕ(t) = tp−1. (see [3] fore more details on duality maps). Finally recall that a Banach space E satisfies Opial
property (see, e.g., [15]) if lim sup

n→+∞
‖xn − x‖ < lim sup

n→+∞
‖xn − y‖ whenever xn

w−→ x, x 6= y. A Banach space E

that has a weakly continuous duality map satisfies Opial’s property.

The following lemma can be found in [5].

Lemma 2.1 (Demiclosedness principle [5]). Let E be a reflexive Banach space satisfying Opial’s property,
K be a closed convex subset of E, and T : K → K be a nonexpansive mapping. Then I − T is demiclosed;
that is,

{xn} ⊂ K, xn ⇀ x ∈ K and (I − T )xn → y implies that (I − T )x = y.
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Lemma 2.2 ([9]). Assume that a Banach space E has a weakly continous duality mapping Jϕ with jauge ϕ.

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x+ y)〉

for all x,y ∈ E.
In particular, for all x,y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉.

Lemma 2.3. (Xu,[21], Zalinescu [25]) Let E be a uniformly convex real Banach space. For arbitrary r > 0,
let Br := {x ∈ E : ||x|| ≤ r} and βn ∈ [0, 1]. Then there exists a continuous, strictly increasing and convex
function

g : [0, 2r]→ R+, g(0) = 0

such that for all x, y ∈ Br

‖βnx+ (1− βn)y‖2 ≤ βn‖x‖2 + (1− βn)‖y‖2 − (1− βn)βng(‖x− y‖).

Lemma 2.4 (Xu, [22]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1− αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)

∞∑
n=0

αn =∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| <∞. Then lim
n→∞

an = 0.

Lemma 2.5. [11] Let tn be a sequence of real numbers that does not decrease at infinity in a sense that there
exists a subsequence tni of tn such that tni such that tni ≤ tni+1 for all i ≥ 0. For sufficiently large numbers
n ∈ N, an integer sequence {τ(n)} is defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n)→∞ as n→∞ and
max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 2.6 (Aoyama et. al [1], Nilsrakoo et al. [14]). Let K be a nonempty closed subset of a Banach space

and let {Tn}n≥0 be a sequence of mappings of K into itself. Suppose that
∞∑
n=0

sup
{
‖Tn+1x − Tnx‖ : x ∈

B
}
< ∞ for any bounded subset B of K. Then, for any x ∈ K {Tnx} converges strongly to some point of

K. Moreover, let T be a mapping of K into itself defined by Tx = lim
n→∞

Tnx for all x ∈ K. Then,

lim
n→∞

sup
x∈K
‖Tnx− Tx‖ = 0.

Let C be a nonempty subsets of real Banach space E. A mapping QC : E → C is said to be sunny if

QC(QCx+ t(x−QCx)) = QCx

for each x ∈ E and t ≥ 0. A mapping QC : E → C is said to be a retraction if QCx = x for each x ∈ C.

Lemma 2.7. [17] Let C and D be nonempty subsets of a real Banach space E with D ⊂ C and QD : C → D
a retraction from C into D. Then QD is sunny and nonexpansive if and only if

〈z −QDz, j(y −QDz)〉 ≤ 0

for all z ∈ C and y ∈ D.

It is noted that Lemma 2.7 still holds if the normalized duality map is replaced by the general duality
map Jϕ, where ϕ is gauge function.

Remark 2.8. If K is a nonempty closed convex subset of a Hilbert space H, then the nearest point projection
PK from H to K is the sunny nonexpansive retraction.
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3. Mains results

Throughout this section, we assume that E be a uniformly convex real Banach space having a weakly
continuous duality map Jϕ and K be a nonempty, closed and convex cone of E. For each n = 0, 1, ..., let

Tn : K → K be a quasi-nonexpansive mapping such that F :=

∞⋂
n=0

F (Tn) 6= ∅.

Now, we present the following iterative algorithm.

Algorithm 3.1. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:
x̄n+1 = βnxn + (1− βn)Tnxn,

xn+1 = αn(λnxn) + (1− αn)Tn
(
snxn + (1− sn)x̄n+1

)
,

(13)

{βn}, {λn}, {sn} and {αn} be sequences in (0, 1) satisfying:
(i) lim

n→∞
αn = 0; (ii) lim

n→∞
inf(1− sn)βn(1− βn) > 0.

(iii) lim
n→∞

λn = 1 and
∞∑
n=0

(1− λn)αn =∞.

For strong convergence of our Algorithm, we assume the following assumptions.

Assumption 3.2. (a)
∞∑
n=0

sup
{
‖Tn+1x− Tnx‖ : x ∈ B

}
<∞ for any bounded subset B of K and F (T ) =

∞⋂
n=0

F (Tn) where T be a mapping of K into itself defined by Tx = lim
n→∞

Tnx for all x ∈ K.

(b) I − T is demiclosed at the origin.

We now prove the following results.

Theorem 3.3. Let Assumptions 3.2 hold. Then, the sequence {xn} generated by (13) converges strongly to
x∗ ∈ F where x∗ = QF (0) with QF the sunny nonexpansive retraction of K onto F.

Proof. For each n ≥ 0, we put zn := snxn+(1−sn)x̄n+1. Let p ∈ F, from (13) and Tn is quasi-nonexpansive,
we have

‖zn − p‖ = ‖snxn + (1− sn)x̄n+1 − p‖
≤ sn‖xn − p‖+ (1− sn)‖x̄n+1 − p‖
≤ sn‖xn − p‖+ (1− sn)‖βnxn + (1− βn)Tnxn − p‖

≤ sn‖xn − p‖+ (1− sn)
[
βn‖xn − p‖+ (1− βn)‖Tnxn − p‖

]
Hence,

‖zn − p‖ ≤ ‖xn − p‖. (14)

Now, we prove that the sequence {xn} is bounded. Let p ∈ F.
Using (13) and inequality (14), we have

‖xn+1 − p‖ = ‖αn(λnxn) + (1− αn)Tnzn − p‖
≤ αnλn‖xn − p‖+ (1− αn)‖Tnzn − p‖+ (1− λn)αn‖p‖
≤ αnλn‖xn − p‖+ (1− αn)‖xn − p‖+ (1− λn)αn‖p‖
≤ [1− (1− λn)αn]‖xn − p‖+ (1− λn)αn‖p‖
≤ max {‖xn − p‖, ‖p‖}.
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By induction, it is easy to see that

‖xn − p‖ ≤ max {‖x0 − p‖, ‖p‖}, n ≥ 1.

Hence {xn} is bounded also are {x̄n}, and {Tnxn}.
Using Lemma 2.3, convexity of ‖.‖2 and (13), we have

‖Tnzn − p‖2 ≤ ‖zn − p‖2

= ‖snxn + (1− sn)x̄n+1 − p‖2

≤ sn‖xn − p‖2 + (1− sn)‖x̄n+1 − p‖2

≤ sn‖xn − p‖2 + (1− sn)‖βnxn + (1− βn)Tnxn − p‖2

≤ sn‖xn − p‖2 + (1− sn)
[
βn‖xn − p‖2 + (1− βn)‖Tnxn − p‖2

−βn(1− βn)g(‖xn − Tnxn‖)
]

≤ ‖xn − p‖2 − (1− sn)βn(1− βn)g(‖xn − Tnxn‖)

Hence,
‖Tnzn − p‖2 ≤ ‖xn − p‖2 − βn(1− βn)g(‖xn − Tnxn‖). (15)

Therefore, by Lemma 2.2 and inequality (15), we have

‖xn+1 − p‖2 = ‖αn(λnxn) + (1− αn)Tnzn − p‖2

= ‖αnλn
(
xn − p

)
+ (1− αn)

(
Tnzn − p

)
− (1− λn)αnp‖2

≤ ‖αn
(
λnxn − λnp

)
+ (1− αn)

(
Tnzn − p

)
‖2 + 2(1− λn)αn〈p, J(p− xn+1)〉

≤ αnλ
2
n‖xn − p‖2 + (1− αn)‖Tnzn − p‖2 + 2(1− λn)αn〈p, J(p− xn+1)〉

≤ αnλn‖xn − p‖2 + (1− αn)
[
‖xn − p‖2 − βn(1− βn)g(‖xn − Tnxn‖)]

+2(1− λn)αn〈p, J(p− xn+1)〉
≤ [1− (1− λn)αn]‖xn − p‖2 − (1− αn)βn(1− βn)g(‖xn − Tnxn‖)

+2(1− λn)αn〈p, J(p− xn+1)〉.

Therefore,

(1− αn)βn(1− βn)g(‖xn − Tnxn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2(1− λn)αn〈p, J(p− xn+1)〉. (16)

Since {xn} is bounded, then there exists a constant B > 0 sucht that

(1− λn)〈p, J(p− xn+1)〉 ≤ B, for all, n ≥ 0.

Hence,
(1− αn)βn(1− βn)g(‖xn − Tnxn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnB. (17)

Now we prove that {xn} converges strongly to x∗.
We divide the proof into two cases.
Case 1. Assume that the sequence {‖xn − p‖} is monotonically decreasing sequence. Then {‖xn − p‖} is
convergent. Clearly, we have

‖xn − p‖2 − ‖xn+1 − p‖2 → 0.

It then implies from (17) that

lim
n→∞

(1− αn)βn(1− βn)g(‖xn − Tnxn‖) = 0. (18)



T.M.M. Sow, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 90–101. 97

Using the fact that lim
n→∞

inf(1− sn)βn(1− βn) > 0 and property of g, we have

lim
n→∞

‖xn − Tnxn‖ = 0. (19)

We observe that,
‖xn − Txn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Txn‖. (20)

By inequalities (19), (20) and Lemma 2.6, we have

lim
n→∞

‖xn − Txn‖ = 0. (21)

Next, we prove that lim sup
n→+∞

〈x∗, Jϕ(x∗ − xn)〉. Since E is reflexive and {xn} is bounded, there exists a

subsequence {xnk
} of {xn} such that xnk

converges weakly to a in K and

lim sup
n→+∞

〈x∗, Jϕ(x∗ − xn)〉 = lim
k→+∞

〈x∗, Jϕ(x∗ − xnk
)〉.

From (21) and I−T is demiclosed, we obtain a ∈ F. On other hand, the assumption that the duality mapping
Jϕ is weakly continuous, the fact that x∗ = QF (0) and Lemma 2.7, we then have

lim sup
n→+∞

〈x∗, Jϕ(x∗ − xn)〉 = lim
k→+∞

〈x∗, Jϕ(x∗ − xnk
)〉

= 〈x∗, Jϕ(x∗ − a)〉 ≤ 0.

Finally, we show that xn → x∗. In fact, since Φ(t) =
∫ t
0 ϕ(σ)dσ, ∀t ≥ 0, and ϕ is a gauge function, then for

1 ≥ k ≥ 0, Φ(kt) ≤ kΦ(t). From (13) and Lemma 2.2, we get that

Φ(‖xn+1 − x∗‖) = Φ(‖αn(λnxn) + (1− αn)Tnzn − x∗‖)
≤ Φ(‖αnλn(xn − x∗) + (1− αn)(Tnzn − x∗)‖) + (1− λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ Φ(αnλn‖xn − x∗‖+ ‖(1− αn)(Tnzn − x∗)‖) + (1− λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ Φ(αnλn‖xn − x∗‖+ (1− αn)‖xn − x∗‖) + (1− λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ Φ((1− (1− λn)αn)‖xn − x∗‖) + (1− λn)αn〈x∗, Jϕ(x∗ − xn+1)〉
≤ [1− (1− λn)αn]Φ(‖xn − x∗‖) + (1− λn)αn〈x∗, Jϕ(x∗ − xn+1)〉.

From Lemma 2.4, its follows that xn → x∗.
Case 2. Assume that the sequence {‖xn−x∗‖} is not monotonically decreasing sequence. Set Bn = ‖xn−x∗‖
and τ : N→ N be a mapping for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N : k ≤ n, Bk ≤
Bk+1}.
We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0.
From (17), we have

(1− ατ(n))βτ(n)(1− βτ(n))g(‖xτ(n) − Tτ(n)xτ(n)‖) ≤ 2ατ(n)B → 0 as n→∞.

Hence,
lim
n→∞

‖xτ(n) − Tτ(n)xτ(n)‖ = 0. (22)

At the same time, we observe that

‖xτ(n) − Txτ(n)‖ ≤ ‖xτ(n) − Tτ(n)xτ(n)‖+ ‖Tτ(n)xτ(n) − Txτ(n)‖. (23)

Thanks inequalities (22), (23) and Lemma 2.6, we have

lim
n→∞

‖xτ(n) − Txτ(n)‖ = 0.
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By same argument as in case 1, we can show that xτ(n) converges weakly in E and lim sup
n→+∞

〈x∗, Jϕ(x∗−xτ(n))〉 ≤

0. We have for all n ≥ n0,

0 ≤ Φ(‖xτ(n)+1 − x∗‖)− Φ(‖xτ(n) − x∗‖) ≤
(

1− λτ(n)
)
ατ(n)[−Φ(‖xτ(n) − x∗‖) + 〈x∗, Jϕ(x∗ − xτ(n)+1)〉],

which implies that
Φ(‖xτ(n) − x∗‖) ≤ 〈x∗, Jϕ(x∗ − xτ(n)+1)〉.

Then, we have
lim
n→∞

Φ(‖xτ(n) − x∗‖) = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Thus, by Lemma 2.5, we conclude that

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

Remark 3.4. let {Tn}n≥0 be a sequence of nonexpansive mappings of K into K, let {λn}n≥0 be a sequence
of real number such that and 0 ≤ λn ≤ 1. For each n ≥ 0, we define a mapping Wn of K into K as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1− λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1− λn−1)I,
...

Un,k = λkTkUn,k+1 + (1− λk)I,
...

Un,2 = λ2T2Un,3 + (1− λ2)I,
Wn = Un,1 = λ1T1Un,2 + (1− λ1)I. (24)

Such that is called Wn is the so called W -mapping generated by an countable infinite family of nonexpansive
mappings T1, T2, ..., Tn, ... and scalars λ1, λ2, ..., λn, ... such that the common fixed points set F :=

∞
∩
n=1

F (Tn) 6=

∅, see for example [20]. Clearly, Wn is nonexpansive and from [20], we know that
∞
∩
n=1

F (Tn) = F (Wn).

Furthermore, from [16], we have the sequence {Wn}n≥1 satisfies the condition
∞∑
n=0

sup
{
‖Wn+1x −Wnx‖ :

x ∈ B
}
<∞ for any bounded subset B of K imposed in Theorem 3.3.

By above remark, Lemma 2.1 and the fact that nonexpansive mapping is quasi-nonexpansive. We obtain
the following results.

Theorem 3.5. Let E be a uniformly convex real Banach space having a weakly continuous duality map Jϕ
and K be a nonempty, closed and convex cone of E. For each n = 0, 1, ..., let Tn : K → K be a nonexpansive

mapping such that F :=

∞⋂
n=0

F (Tn) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:


x̄n+1 = βnxn + (1− βn)Wnxn,

xn+1 = αn(λnxn) + (1− αn)Wn

(
snxn + (1− sn)x̄n+1

) (25)
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{βn}, {λn}, {sn} and {αn} be a sequences in (0, 1) satisfying:
(i) lim

n→∞
αn = 0; (ii) lim

n→∞
inf(1− sn)βn(1− βn) > 0.

(iii) lim
n→∞

λn = 1 and
∞∑
n=0

(1− λn)αn =∞.

Then, the sequence {xn} generated by (25) converges strongly to x∗ ∈ F where x∗ = QF (0) with QF the
sunny nonexpansive retraction of K onto F.

We apply Theorem 3.3 to approximate fixed points of quasi-nonexpansive mappings.

Corollary 3.6. Let E be a uniformly convex real Banach space having a weakly continuous duality map Jϕ
and K be a nonempty, closed and convex cone of E. Let T : K → K be a quasi-nonexpansive mapping such
that F (T ) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:

x̄n+1 = βnxn + (1− βn)Txn,

xn+1 = αn(λnxn) + (1− αn)T
(
snxn + (1− sn)x̄n+1

) (26)

{βn}, {λn}, {sn} and {αn} be sequences in (0, 1) satisfying:
(i) lim

n→∞
αn = 0; (ii) lim

n→∞
inf(1− sn)βn(1− βn) > 0.

(iii) lim
n→∞

λn = 1 and
∞∑
n=0

(1− λn)αn =∞.

Assume that I−T is demiclosed at the origin. Then, the sequence {xn} generated by (26) converges strongly
to x∗ ∈ F (T ) where x∗ = QF (T )(0) with QF (T ) the sunny nonexpansive retraction of K onto F (T ).

Remark 3.7. In our theorems, we assume that K is a cone. But, in some cases, for example, if K is the
closed unit ball, we can weaken this assumption to the following: λx ∈ K for all λ ∈ (0, 1) and x ∈ K.
Therefore, in the case where E is a real Hilbert space or E = lp, 1 < p < ∞, our results can be used to
approximate fixed points of an infinite family of quasi-nonexpansive mappings from the closed unit ball to
itself.

Corollary 3.8. Assume that E = lp, 1 < p <∞ or E is a real Hilbert space. Let B be the closed unit ball

of E. For each n = 0, 1, ..., let Tn : B → B be a quasi-nonexpansive mapping such that F :=
∞⋂
n=0

F (Tn) 6= ∅.

Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ B by:
x̄n+1 = βnxn + (1− βn)Tnxn,

xn+1 = αn(λnxn) + (1− αn)Tn
(
snxn + (1− sn)x̄n+1

) (27)

{βn}, {λn}, {sn} and {αn} be sequences in (0, 1) satisfying:
(i) lim

n→∞
αn = 0; (ii) lim

n→∞
inf(1− sn)βn(1− βn) > 0.

(iii) lim
n→∞

λn = 1 and
∞∑
n=0

(1− λn)αn =∞.

Let Assumptions 3.2 hold. Then, the sequence {xn} generated by (27) converges strongly to x∗ ∈ F where
x∗ = QF (0) with QF the sunny nonexpansive retraction of K onto F.

Now, we give some remarks on our results as follows:

(1) The proof methods of our results are very different from the ones of sow et al.[19] (see, Corollary 3.6) and
we extend results of Sow et al. from nonexpensive mappings to quasi-nonexpansive mappings. Further, we
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remove the following conditions:
∞∑
n=0

|αn − αn+1| <∞ and
∞∑
n=0

|λn − λn+1| <∞,
∞∑
n=0

αn =∞, in Theorem

1.2 of [19] (see, Corollary 3.6).

(2) Our results improve many recent results using Mann’s method to approximate fixed points of nonexpan-
sive mappings.

(3) Our results are applicable for finding minimum-norm fixed points of an infinte family of quasi-nonexpansive
mappings in Hilbert spaces.

Remark 3.9. Let αn = 1
10n+1 , βn = 1

20n+1 + 0.4, sn = 1
30n+1 + 0.3 and λn = 1− 1√

n
. It is easy to see that

the sequences {αn}, {βn}, {sn} and {λn} satisfy the conditions (i), (ii) and (iii) of Theorem 3.3.
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