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Abstract. Let P → M be a principal G-bundle with m-dimensional basis,
where G is a Lie group. We describe all PBm(G)-natural affinors on the r-th
order principal prolongation W r

mP of P → M .

1. Introduction

We fix a Lie group G. Let L(G) be the Lie algebra of G and e ∈ G be the unit
element. The category of all principal G-bundles with m-dimensional bases and
their (local) principal bundle isomorphisms with the identity group homomorphism
will be denoted by PBm(G).

Given PBm(G)-maps Φ,Ψ : P → Q and a point x ∈ M the following conditions
are equivalent: (i) jr

po
Φ = jr

po
Ψ for some po ∈ Px; (ii) jr

pΦ = jr
pΨ for any p ∈ Px.

We write jr
xΦ = jr

xΨ iff it is satisfied at least one of the equivalent conditions (i) or
(ii), [2].

The r-th order principal prolongation W r
mP of a PBm(G)-object P → M is

defined to be the space of all r-jets jr
0ϕ of local PBm(G)-maps ϕ : Rm × G → P .

By [2], W r
mP → M is a principal bundle with the structure group W r

mG := Jr
0 (Rm×

G,Rm×G)0 and the fibred manifold W r
mP → M coincides with the fibred product

P rM ×M JrP , where P rM = invJr
0 (Rm, M) is the r-th order frame bundle of M .

Every PBm(G)-map Φ : P → Q is extended (via composition of jets) into principal
bundle (local) isomorphism W r

mΦ : W r
mP → W r

mQ.
A PBm(G)-natural affinor on W r

m is a family of PBm(G)-invariant tensor fields
of type (1, 1) (affinors)

A = AP : TW r
mP → TW r

mP

on W r
mP for any PBm(G)-object P → M . The invariance means that for any

PBm(G)-objects P and Q affinors AP and AQ are W r
mΦ related (i.e. TW r

mΦ◦AP =
AQ ◦ TW r

mΦ) for any PBm(G)-map Φ : P → Q.
A PBm(G)-natural affinor A is said to be of vertical type if AP : TW r

mP →
V W r

mP for any PBm(G)-object P → M , where V W r
mP is the (W r

mP → M)-
vertical subbundle in the tangent bundle TW r

mP of W r
mP .
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In this paper we describe all PBm(G)-natural affinors on W r
m.

Example 1.1. For any PBm(G)-object P → M we have the identity affinor Id :
TW r

mP → TW r
mP . Thus we have the identity PBm(G)-natural affinor Id on W r

m.

To present a next example we need the following lemma.

Lemma 1.1 ([5]). Any vector v ∈ TwW r
mP , w ∈ (W r

mP )x, x ∈ M is of the form
Wr

mXw for some right invariant vector field X ∈ XG−inv(P ) on P , where Wr
mX is

the flow lifting of X ∈ XG−inv(P ) to W r
mP . Moreover jr

xX is uniquely determined.

Proof. (We cite the proof from [5].) We can assume that P = Rm×G and w is over
(0, e). Since W r

m(Rm ×G) is in usual way a sub-principal bundle of P r(Rn ×G),
then by well-known manifold version of the lemma, we find X ∈ X (Rm ×G) such
that v = PrXw and jr

(0,e)X is determined uniquely. Any right-invariant vector
field Y gives PrYw which is tangent to W r

mP . On the other hand the dimension of
W r

mP and the dimension of the space of r-jets jr
0Y of right invariant Y are equal.

Then the lemma follows from the dimension argument because the flow operator is
linear. ¤

Example 1.2. Let B : Jr−1
0 (TG−inv(Rm × G)) → (Jr

0 (TG−inv(Rm × G)))0 be a
linear map, where Jr−1

0 (TG−inv(Rm × G)) = {jr−1
0 X| X ∈ XG−inv (Rm × G)}

and (Jr
0 (TG−inv(Rm ×G)))0 = {jr

0X | X ∈ XG−inv (Rm ×G) , prRm ◦X(0,.) = 0},
where prRm : Rm × G → Rm is the projection. We define a vertical PBm(G)-
natural affinor AB : TW r

mP → V W r
mP on W r

m by

AB(v) = V W r
mΦ((Wr

mṽ)θ) , v ∈ Tjr
0ΦW r

mP , jr
0Φ ∈ W r

mP ,

where θ = jr
0(idRm×G) ∈ W r

m(Rm×G) is the element and ṽ ∈ XG−inv (Rm×G) is
an arbitrary right invariant vector field on Rm×G such that jr

0 ṽ = B(jr−1
0 ((Φ−1)∗v))

and v = (Wr
mv)jr

0Φ. One can standardly show that AB(v) is well-defined. (More
precisely (by Lemma 1.1), jr

Φ(0)
v is uniquely determined by v. Then jr−1

0 ((Φ−1)∗v) ∈
Jr−1

0 (TG−inv(Rm ×G)) is determined by v. Then jr
0(ṽ) ∈ (Jr

0 (TG−inv(Rm ×G)))0
is determined by v. Then (Wr

mṽ)θ is determined by v and vertical. Then AB(v) is
determined by v and vertical.) Using the linearity of the flow operator, we deduce
that AB : TW r

mP → V W r
mP is a vertical affinor on W r

mP . Clearly the family AB

is a PBm(G)-natural affinor on W r
m.

2. The main result

The main result of this paper is the following classification theorem.

Theorem 2.1. Any PBm(G)-natural affinor on W r
m is of the form

A = λId + AB

for a (uniquely determined by A) real number λ and a (uniquely determined by A)
linear map B : Jr−1

0 (TG−inv(Rm ×G)) → (Jr
0 (TG−inv(Rm ×G)))0.

The proof of Theorem 2.1 will occupy the rest of this paper. We will use the
following lemma.
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Lemma 2.1. Let X, Y ∈ XG−inv(P ) be right invariant vector fields on p : P → M
and x ∈ M be a point. Suppose that jr

xX = jr
xY and X is not-vertical over x.

Then there exists a (localy defined) PBm(G)-map Φ : P → P such that jr+1
x (Φ) =

jr+1
x (idP ) and Φ∗X = Y near x.

Proof. A direct modification of the proof of Lemma 42.4 in [2]. ¤

Lemma 2.2. Let A be a PBm(G)-natural affinor on W r
m. There is a unique real

number λ such that A− λId is of vertical type.

Proof. Let X be a right-invariant vector field on Rm×G. Let A(X) := A ◦Wr
mX.

We can write A(X)θ = Wr
mX̃θ for some right-invariant vector field X̃ (see

Lemma 1.1), θ = jr
0(idRm×G). Suppose prRm ◦ X(0, e) 6= µprRm ◦ X̃(0, e) for all

µ ∈ R and prRm◦X̃(0, e) 6= 0 Then there is an PBm(G)-map Φ : Rm×G → Rm×G
preserving θ such that

JrTΦ(jr
0X) = jr

0X and JrTΦ(jr
0X̃) 6= jr

0X̃ .

Then
A(X)θ = Wr

m(Φ∗X̃)θ 6= Wr
m(X̃)θ = A(X)θ .

This is a contradiction. Consequently, we have

(2.1) Tπr ◦ A(X)θ = λ(jr
0X)prRm ◦X(0,e)

for some (not necessarily unique and not necessarily smooth) map λ : Jr
0 (TG−inv(Rm×

G)) → R and all right-invariant vector fields on Rm×G, where πr : W r
m(Rm×G) →

Rm is the projection.
We are going to show that λ can be chosen smooth.
Of course (since the left hand side of (2.1) depends smoothly on jr

0X), the map
Φ : Jr

0 (TG−inv(Rm ×G)) → R given by

Φ(jr
0X) = λ(jr

0X)X1(0)

is smooth and Φ(jr
0X) = 0 if X1(0) = 0, where

X(0,e) =
∑

i

Xi(0)
∂

∂xi 0
+ ...

and where ... is the vertical part of X(0,e). Then there is a smooth map Ψ :
Jr

0 (TG−inv(Rm ×G)) → R such that Φ(jr
0X) = Ψ(jr

0X)X1(0). Then we can define
new λ = Ψ. This new λ is equal to the old one for X1(0) 6= 0. Then for the new λ
we have (2.1) if additionally X1(0) 6= 0. Then we have (2.1) for all X in question
because of the smooth and density arguments.

Since A(X) depends linearly on X, λ is constant.
Then A((Wr

mX)θ) − λ(Wr
mX)θ is vertical. Then by Lemma 1.1, A(v) − λv is

vertical for any v ∈ TθW
r
m(Rm × G). Then A − λId is vertical because of the

PBm(G)-invariance of A− λId. ¤

Proof of Theorem 2.1. Because of Lemma 2.2 we can assume that A is vertical. We
define a B : Jr−1

0 (TG−inv(Rm ×G)) → (Jr
0 (TG−inv(Rm ×G)))0 by

B(jr−1
0 X) = jr

0X̃ ,

where X̃ is a right-invariant vector field on Rm×G such that (Wr
mX̃)θ = A((Wr

mX)θ)
and X is the unique right-invariant vector field on Rm×G such that jr−1

0 X = jr−1
0 X
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and X has coefficients with respect to a basis of right invariant vector fields (con-
sisting with the constant vector fields ∂

∂xi on Rm and the right invariant vector
fields on G corresponding to some basis Bj ∈ TeG) being polynomials of degree
≤ r − 1.

Then A((Wr
mX)θ) = AB((Wr

mX)θ) for all right invariant vector fields on Rm×G
such that X has coefficients (with respect to the basis as above) being polynomials
of degree r − 1. Since the union of all orbits with respect to the PBm(G)-maps
preserving θ of jets jr

0X of right-invariant vector fields X on Rm×G with coefficients
(with respect to the basis as above) being polynomials of degree ≤ r− 1 is dense in
Jr

0 (TG−inv(Rm ×G)) (see Lemma 2.1), A((Wr
mX)θ) = AB((Wr

mX)θ) for all right-
invariant vector fields X on Rm×G. Then A(v) = AB(v) for all v ∈ TθW

r
m(Rm×G)

because of Lemma 1.1. Then A = AB because of the PBm(G)-invariance and the
fact that W r

m is a transitive bundle functor (i.e. W r
mP is the PBm(G)-orbit of

θ). ¤
If G = {e}, then PBm({e}) is the category Mfm of all m-dimensional manifolds

and their embeddings, and W r
m = P r is the r-th order frame bundle functor. Thus

we reobtain the result of [4], where a classification of all Mfm-natural affinors on
the r-th order frame bundle P rM is given.

Natural affinors play a very important role in the differential geometry. They
can be used to define generalized torsion of connections, [3]. In our situation any
natural affinor A : TW r

mP → TW r
mP defines a torsion τ(Γ) := [Γ, A] of a prin-

cipal connection Γ : TW r
mP → V W r

mP on W r
mP → M , where the bracket is the

Frolicher-Nijenhuis one. That is why natural affinors on some natural bundles
have been classified in many papers. Principal G-bundles play crucial role in the
geometrization of physic, [1], [6], [7].
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