THE NATURAL AFFINORS ON HIGHER ORDER PRINCIPAL PROLONGATIONS

JAN KUREK AND WŁODZIMIERZ M. MIKULSKI

(Communicated by Kazım İLARSLAN)

ABSTRACT. Let $P \to M$ be a principal *G*-bundle with *m*-dimensional basis, where *G* is a Lie group. We describe all $\mathcal{PB}_m(G)$ -natural affinors on the *r*-th order principal prolongation $W_m^r P$ of $P \to M$.

1. Introduction

We fix a Lie group G. Let $\mathcal{L}(G)$ be the Lie algebra of G and $e \in G$ be the unit element. The category of all principal G-bundles with m-dimensional bases and their (local) principal bundle isomorphisms with the identity group homomorphism will be denoted by $\mathcal{PB}_m(G)$.

Given $\mathcal{PB}_m(G)$ -maps $\Phi, \Psi: P \to Q$ and a point $x \in M$ the following conditions are equivalent: (i) $j_{p_o}^r \Phi = j_{p_o}^r \Psi$ for some $p_o \in P_x$; (ii) $j_p^r \Phi = j_p^r \Psi$ for any $p \in P_x$. We write $j_x^r \Phi = j_x^r \Psi$ iff it is satisfied at least one of the equivalent conditions (i) or (ii), [2].

The r-th order principal prolongation $W_m^r P$ of a $\mathcal{PB}_m(G)$ -object $P \to M$ is defined to be the space of all r-jets $j_0^r \varphi$ of local $\mathcal{PB}_m(G)$ -maps $\varphi : \mathbf{R}^m \times G \to P$. By [2], $W_m^r P \to M$ is a principal bundle with the structure group $W_m^r G := J_0^r (\mathbf{R}^m \times G, \mathbf{R}^m \times G)_0$ and the fibred manifold $W_m^r P \to M$ coincides with the fibred product $P^r M \times_M J^r P$, where $P^r M = inv J_0^r (\mathbf{R}^m, M)$ is the r-th order frame bundle of M. Every $\mathcal{PB}_m(G)$ -map $\Phi : P \to Q$ is extended (via composition of jets) into principal bundle (local) isomorphism $W_m^r \Phi : W_m^r P \to W_m^r Q$.

A $\mathcal{PB}_m(G)$ -natural affinor on W_m^r is a family of $\mathcal{PB}_m(G)$ -invariant tensor fields of type (1, 1) (affinors)

$$A = A_P : TW_m^r P \to TW_m^r P$$

on $W_m^r P$ for any $\mathcal{PB}_m(G)$ -object $P \to M$. The invariance means that for any $\mathcal{PB}_m(G)$ -objects P and Q affinors A_P and A_Q are $W_m^r \Phi$ related (i.e. $TW_m^r \Phi \circ A_P = A_Q \circ TW_m^r \Phi$) for any $\mathcal{PB}_m(G)$ -map $\Phi : P \to Q$.

A $\mathcal{PB}_m(G)$ -natural affinor A is said to be of vertical type if $A_P : TW_m^r P \to VW_m^r P$ for any $\mathcal{PB}_m(G)$ -object $P \to M$, where $VW_m^r P$ is the $(W_m^r P \to M)$ -vertical subbundle in the tangent bundle $TW_m^r P$ of $W_m^r P$.

²⁰⁰⁰ Mathematics Subject Classification. 58A20, 58A32.

Key words and phrases. principal bundle, higher order principal prolongation, natural affinor.

In this paper we describe all $\mathcal{PB}_m(G)$ -natural affinors on W_m^r .

Example 1.1. For any $\mathcal{PB}_m(G)$ -object $P \to M$ we have the identity affinor Id: $TW_m^r P \to TW_m^r P$. Thus we have the identity $\mathcal{PB}_m(G)$ -natural affinor Id on W_m^r .

To present a next example we need the following lemma.

Lemma 1.1 ([5]). Any vector $v \in T_w W_m^r P$, $w \in (W_m^r P)_x$, $x \in M$ is of the form $W_m^r X_w$ for some right invariant vector field $X \in \mathcal{X}_{G-inv}(P)$ on P, where $W_m^r X$ is the flow lifting of $X \in \mathcal{X}_{G-inv}(P)$ to $W_m^r P$. Moreover $j_x^r X$ is uniquely determined.

Proof. (We cite the proof from [5].) We can assume that $P = \mathbf{R}^m \times G$ and w is over (0, e). Since $W_m^r(\mathbf{R}^m \times G)$ is in usual way a sub-principal bundle of $P^r(\mathbf{R}^n \times G)$, then by well-known manifold version of the lemma, we find $X \in \mathcal{X}(\mathbf{R}^m \times G)$ such that $v = \mathcal{P}^r X_w$ and $j_{(0,e)}^r X$ is determined uniquely. Any right-invariant vector field Y gives $\mathcal{P}^r Y_w$ which is tangent to $W_m^r P$. On the other hand the dimension of $W_m^r P$ and the dimension of the space of r-jets $j_0^r Y$ of right invariant Y are equal. Then the lemma follows from the dimension argument because the flow operator is linear.

Example 1.2. Let $B: J_0^{r-1}(T_{G-inv}(\mathbf{R}^m \times G)) \to (J_0^r(T_{G-inv}(\mathbf{R}^m \times G)))_0$ be a linear map, where $J_0^{r-1}(T_{G-inv}(\mathbf{R}^m \times G)) = \{j_0^{r-1}X | X \in \mathcal{X}_{G-inv}(\mathbf{R}^m \times G)\}$ and $(J_0^r(T_{G-inv}(\mathbf{R}^m \times G)))_0 = \{j_0^rX | X \in \mathcal{X}_{G-inv}(\mathbf{R}^m \times G), pr_{\mathbf{R}^m} \circ X_{(0,.)} = 0\}$, where $pr_{\mathbf{R}^m}: \mathbf{R}^m \times G \to \mathbf{R}^m$ is the projection. We define a vertical $\mathcal{PB}_m(G)$ -natural affinor $A^B: TW_m^r P \to VW_m^r P$ on W_m^r by

$$A^B(v) = V W^r_m \Phi((\mathcal{W}^r_m \tilde{v})_\theta) , \ v \in T_{j_0^r \Phi} W^r_m P \ , \ j_0^r \Phi \in W^r_m P \ ,$$

where $\theta = j_0^r(id_{\mathbf{R}^m \times G}) \in W_m^r(\mathbf{R}^m \times G)$ is the element and $\tilde{v} \in \mathcal{X}_{G-inv}(\mathbf{R}^m \times G)$ is an arbitrary right invariant vector field on $\mathbf{R}^m \times G$ such that $j_0^r \tilde{v} = B(j_0^{r-1}((\Phi^{-1})_* \overline{v}))$ and $v = (\mathcal{W}_m^r \overline{v})_{j_0^r \Phi}$. One can standardly show that $A^B(v)$ is well-defined. (More precisely (by Lemma 1.1), $j_{\overline{\Phi}(0)}^r \overline{v}$ is uniquely determined by v. Then $j_0^{r-1}((\Phi^{-1})_*\overline{v}) \in$ $J_0^{r-1}(T_{G-inv}(\mathbf{R}^m \times G))$ is determined by v. Then $j_0^r(\tilde{v}) \in (J_0^r(T_{G-inv}(\mathbf{R}^m \times G)))_0$ is determined by v. Then $(\mathcal{W}_m^r \tilde{v})_{\theta}$ is determined by v and vertical. Then $A^B(v)$ is determined by v and vertical.) Using the linearity of the flow operator, we deduce that $A^B : TW_m^r P \to VW_m^r P$ is a vertical affinor on $W_m^r P$. Clearly the family A^B is a $\mathcal{PB}_m(G)$ -natural affinor on W_m^r .

2. The main result

The main result of this paper is the following classification theorem.

Theorem 2.1. Any $\mathcal{PB}_m(G)$ -natural affinor on W_m^r is of the form

 $A = \lambda Id + A^B$

for a (uniquely determined by A) real number λ and a (uniquely determined by A) linear map $B: J_0^{r-1}(T_{G-inv}(\mathbf{R}^m \times G)) \to (J_0^r(T_{G-inv}(\mathbf{R}^m \times G)))_0.$

The proof of Theorem 2.1 will occupy the rest of this paper. We will use the following lemma.

12

Lemma 2.1. Let $X, Y \in \mathcal{X}_{G-inv}(P)$ be right invariant vector fields on $p: P \to M$ and $x \in M$ be a point. Suppose that $j_x^r X = j_x^r Y$ and X is not-vertical over x. Then there exists a (localy defined) $\mathcal{PB}_m(G)$ -map $\Phi: P \to P$ such that $j_x^{r+1}(\Phi) = j_x^{r+1}(id_P)$ and $\Phi_*X = Y$ near x.

Proof. A direct modification of the proof of Lemma 42.4 in [2].

Lemma 2.2. Let A be a $\mathcal{PB}_m(G)$ -natural affinor on W_m^r . There is a unique real number λ such that $A - \lambda Id$ is of vertical type.

Proof. Let X be a right-invariant vector field on $\mathbf{R}^m \times G$. Let $\mathcal{A}(X) := A \circ \mathcal{W}_m^r X$.

We can write $\mathcal{A}(X)_{\theta} = \mathcal{W}_m^r \tilde{X}_{\theta}$ for some right-invariant vector field \tilde{X} (see Lemma 1.1), $\theta = j_0^r(id_{\mathbf{R}^m \times G})$. Suppose $pr_{\mathbf{R}^m} \circ X(0, e) \neq \mu pr_{\mathbf{R}^m} \circ \tilde{X}(0, e)$ for all $\mu \in \mathbf{R}$ and $pr_{\mathbf{R}^m} \circ \tilde{X}(0, e) \neq 0$ Then there is an $\mathcal{PB}_m(G)$ -map $\Phi : \mathbf{R}^m \times G \to \mathbf{R}^m \times G$ preserving θ such that

$$J^r T \Phi(j_0^r X) = j_0^r X$$
 and $J^r T \Phi(j_0^r \tilde{X}) \neq j_0^r \tilde{X}$.

Then

$$\mathcal{A}(X)_{\theta} = \mathcal{W}_m^r(\Phi_*\tilde{X})_{\theta} \neq \mathcal{W}_m^r(\tilde{X})_{\theta} = \mathcal{A}(X)_{\theta}$$

This is a contradiction. Consequently, we have

(2.1)
$$T\pi^r \circ \mathcal{A}(X)_{\theta} = \lambda(j_0^r X) pr_{\mathbf{R}^m} \circ X_{(0,e)}$$

for some (not necessarily unique and not necessarily smooth) map $\lambda : J_0^r(T_{G-inv}(\mathbf{R}^m \times G)) \to \mathbf{R}$ and all right-invariant vector fields on $\mathbf{R}^m \times G$, where $\pi^r : W_m^r(\mathbf{R}^m \times G) \to \mathbf{R}^m$ is the projection.

We are going to show that λ can be chosen smooth.

Of course (since the left hand side of (2.1) depends smoothly on $j_0^r X$), the map $\Phi: J_0^r(T_{G-inv}(\mathbf{R}^m \times G)) \to \mathbf{R}$ given by

$$\Phi(j_0^r X) = \lambda(j_0^r X) X^1(0)$$

is smooth and $\Phi(j_0^r X) = 0$ if $X^1(0) = 0$, where

$$X_{(0,e)} = \sum_{i} X^{i}(0) \frac{\partial}{\partial x^{i}}_{0} + \dots$$

and where ... is the vertical part of $X_{(0,e)}$. Then there is a smooth map Ψ : $J_0^r(T_{G-inv}(\mathbf{R}^m \times G)) \to \mathbf{R}$ such that $\Phi(j_0^r X) = \Psi(j_0^r X) X^1(0)$. Then we can define new $\lambda = \Psi$. This new λ is equal to the old one for $X^1(0) \neq 0$. Then for the new λ we have (2.1) if additionally $X^1(0) \neq 0$. Then we have (2.1) for all X in question because of the smooth and density arguments.

Since $\mathcal{A}(X)$ depends linearly on X, λ is constant.

Then $A((\mathcal{W}_m^r X)_{\theta}) - \lambda(\mathcal{W}_m^r X)_{\theta}$ is vertical. Then by Lemma 1.1, $A(v) - \lambda v$ is vertical for any $v \in T_{\theta} W_m^r(\mathbf{R}^m \times G)$. Then $A - \lambda Id$ is vertical because of the $\mathcal{PB}_m(G)$ -invariance of $A - \lambda Id$.

Proof of Theorem 2.1. Because of Lemma 2.2 we can assume that A is vertical. We define a $B: J_0^{r-1}(T_{G-inv}(\mathbf{R}^m \times G)) \to (J_0^r(T_{G-inv}(\mathbf{R}^m \times G)))_0$ by

$$B(j_0^{r-1}X) = j_0^r \tilde{X}$$

where \tilde{X} is a right-invariant vector field on $\mathbf{R}^m \times G$ such that $(\mathcal{W}_m^r \tilde{X})_{\theta} = A((\mathcal{W}_m^r \overline{X})_{\theta})$ and \overline{X} is the unique right-invariant vector field on $\mathbf{R}^m \times G$ such that $j_0^{r-1}X = j_0^{r-1}\overline{X}$

and X has coefficients with respect to a basis of right invariant vector fields (consisting with the constant vector fields $\frac{\partial}{\partial x^i}$ on \mathbf{R}^m and the right invariant vector fields on G corresponding to some basis $B_j \in T_eG$) being polynomials of degree $\leq r-1$.

Then $A((\mathcal{W}_m^r X)_{\theta}) = A^B((\mathcal{W}_m^r X)_{\theta})$ for all right invariant vector fields on $\mathbf{R}^m \times G$ such that X has coefficients (with respect to the basis as above) being polynomials of degree r-1. Since the union of all orbits with respect to the $\mathcal{PB}_m(G)$ -maps preserving θ of jets $j_0^r X$ of right-invariant vector fields X on $\mathbf{R}^m \times G$ with coefficients (with respect to the basis as above) being polynomials of degree $\leq r-1$ is dense in $J_0^r(T_{G-inv}(\mathbf{R}^m \times G))$ (see Lemma 2.1), $A((\mathcal{W}_m^r X)_{\theta}) = A^B((\mathcal{W}_m^r X)_{\theta})$ for all rightinvariant vector fields X on $\mathbf{R}^m \times G$. Then $A(v) = A^B(v)$ for all $v \in T_{\theta} W_m^r(\mathbf{R}^m \times G)$ because of Lemma 1.1. Then $A = A^B$ because of the $\mathcal{PB}_m(G)$ -invariance and the fact that W_m^r is a transitive bundle functor (i.e. $W_m^r P$ is the $\mathcal{PB}_m(G)$ -orbit of θ).

If $G = \{e\}$, then $\mathcal{PB}_m(\{e\})$ is the category $\mathcal{M}f_m$ of all *m*-dimensional manifolds and their embeddings, and $W_m^r = P^r$ is the *r*-th order frame bundle functor. Thus we reobtain the result of [4], where a classification of all $\mathcal{M}f_m$ -natural affinors on the *r*-th order frame bundle $P^r M$ is given.

Natural affinors play a very important role in the differential geometry. They can be used to define generalized torsion of connections, [3]. In our situation any natural affinor $A: TW_m^r P \to TW_m^r P$ defines a torsion $\tau(\Gamma) := [\Gamma, A]$ of a principal connection $\Gamma: TW_m^r P \to VW_m^r P$ on $W_m^r P \to M$, where the bracket is the Frolicher-Nijenhuis one. That is why natural affinors on some natural bundles have been classified in many papers. Principal *G*-bundles play crucial role in the geometrization of physic, [1], [6], [7].

References

- Fatibene, L., Francaviglia, M., Natural and Gauge Natural Formalism for Classical Field Theories, Kluver, 2003.
- [2] Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
- [3] Kolář, I., Modugno, M., Torsions of connectionons on some natural bundles, Differential Geom. Appl., 2(1992), 1-16.
- [4] Kurek, J., Mikulski, W.M., The natural affinors on the r-th order frame bundle, Demonstratio Math. 41(3)(2008), to appear.
- [5] Kurek, J., Mikulski, W.M., Canonical vector valued 1-forms on higher order principal prolongations, Lobachevskii Math. J., (2008), to appear.
- [6] de Leon, M., Rodrigues, P.R., Generalized Classical Mechanics and Field Theory, North-Holland Math. Studies 112, 1985, Amsterdam.
- [7] Palais, R., The Geometrization of Physics, Lecture Notes in Mathematics, Taiwan, 1981.

INSTITUTE OF MATHEMATICS, MARIA CURIE-SKLODOWSKA UNIVERSITY, PL. M. CURIE-SKLODOWSKIEJ 1, LUBLIN, POLAND

E-mail address: kurek@hektor.umcs.lublin.pl

INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY, UL. REYMONTA 4, KRAKÓW, POLAND *E-mail address*: mikulski@im.uj.edu.pl