THE NATURAL AFFINORS ON HIGHER ORDER PRINCIPAL PROLONGATIONS

JAN KUREK AND WEODZIMIERZ M. MIKULSKI
(Communicated by Kazım İLARSLAN)

Abstract

Let $P \rightarrow M$ be a principal G-bundle with m-dimensional basis, where G is a Lie group. We describe all $\mathcal{P} \mathcal{B}_{m}(G)$-natural affinors on the r-th order principal prolongation $W_{m}^{r} P$ of $P \rightarrow M$.

1. Introduction

We fix a Lie group G. Let $\mathcal{L}(G)$ be the Lie algebra of G and $e \in G$ be the unit element. The category of all principal G-bundles with m-dimensional bases and their (local) principal bundle isomorphisms with the identity group homomorphism will be denoted by $\mathcal{P B}_{m}(G)$.

Given $\mathcal{P B}_{m}(G)$-maps $\Phi, \Psi: P \rightarrow Q$ and a point $x \in M$ the following conditions are equivalent: (i) $j_{p_{o}}^{r} \Phi=j_{p_{o}}^{r} \Psi$ for some $p_{o} \in P_{x}$; (ii) $j_{p}^{r} \Phi=j_{p}^{r} \Psi$ for any $p \in P_{x}$. We write $j_{x}^{r} \Phi=j_{x}^{r} \Psi$ iff it is satisfied at least one of the equivalent conditions (i) or (ii), [2].

The r-th order principal prolongation $W_{m}^{r} P$ of a $\mathcal{P} \mathcal{B}_{m}(G)$-object $P \rightarrow M$ is defined to be the space of all r-jets $j_{0}^{r} \varphi$ of local $\mathcal{P} \mathcal{B}_{m}(G)$-maps $\varphi: \mathbf{R}^{m} \times G \rightarrow P$. By [2], $W_{m}^{r} P \rightarrow M$ is a principal bundle with the structure group $W_{m}^{r} G:=J_{0}^{r}\left(\mathbf{R}^{m} \times\right.$ $\left.G, \mathbf{R}^{m} \times G\right)_{0}$ and the fibred manifold $W_{m}^{r} P \rightarrow M$ coincides with the fibred product $P^{r} M \times{ }_{M} J^{r} P$, where $P^{r} M=\operatorname{inv} J_{0}^{r}\left(\mathbf{R}^{m}, M\right)$ is the r-th order frame bundle of M. Every $\mathcal{P} \mathcal{B}_{m}(G)$-map $\Phi: P \rightarrow Q$ is extended (via composition of jets) into principal bundle (local) isomorphism $W_{m}^{r} \Phi: W_{m}^{r} P \rightarrow W_{m}^{r} Q$.

A $\mathcal{P} \mathcal{B}_{m}(G)$-natural affinor on W_{m}^{r} is a family of $\mathcal{P} \mathcal{B}_{m}(G)$-invariant tensor fields of type $(1,1)$ (affinors)

$$
A=A_{P}: T W_{m}^{r} P \rightarrow T W_{m}^{r} P
$$

on $W_{m}^{r} P$ for any $\mathcal{P} \mathcal{B}_{m}(G)$-object $P \rightarrow M$. The invariance means that for any $\mathcal{P} \mathcal{B}_{m}(G)$-objects P and Q affinors A_{P} and A_{Q} are $W_{m}^{r} \Phi$ related (i.e. $T W_{m}^{r} \Phi \circ A_{P}=$ $\left.A_{Q} \circ T W_{m}^{r} \Phi\right)$ for any $\mathcal{P} \mathcal{B}_{m}(G)$-map $\Phi: P \rightarrow Q$.

A $\mathcal{P B}_{m}(G)$-natural affinor A is said to be of vertical type if $A_{P}: T W_{m}^{r} P \rightarrow$ $V W_{m}^{r} P$ for any $\mathcal{P} \mathcal{B}_{m}(G)$-object $P \rightarrow M$, where $V W_{m}^{r} P$ is the $\left(W_{m}^{r} P \rightarrow M\right)$ vertical subbundle in the tangent bundle $T W_{m}^{r} P$ of $W_{m}^{r} P$.

Key words and phrases. principal bundle, higher order principal prolongation, natural affinor.

In this paper we describe all $\mathcal{P} \mathcal{B}_{m}(G)$-natural affinors on W_{m}^{r}.
Example 1.1. For any $\mathcal{P B}_{m}(G)$-object $P \rightarrow M$ we have the identity affinor Id : $T W_{m}^{r} P \rightarrow T W_{m}^{r} P$. Thus we have the identity $\mathcal{P} \mathcal{B}_{m}(G)$-natural affinor $I d$ on W_{m}^{r}.

To present a next example we need the following lemma.
Lemma 1.1 ([5]). Any vector $v \in T_{w} W_{m}^{r} P, w \in\left(W_{m}^{r} P\right)_{x}, x \in M$ is of the form $\mathcal{W}_{m}^{r} X_{w}$ for some right invariant vector field $X \in \mathcal{X}_{G-i n v}(P)$ on P, where $\mathcal{W}_{m}^{r} X$ is the flow lifting of $X \in \mathcal{X}_{G-i n v}(P)$ to $W_{m}^{r} P$. Moreover $j_{x}^{r} X$ is uniquely determined.

Proof. (We cite the proof from [5].) We can assume that $P=\mathbf{R}^{m} \times G$ and w is over $(0, e)$. Since $W_{m}^{r}\left(\mathbf{R}^{m} \times G\right)$ is in usual way a sub-principal bundle of $P^{r}\left(\mathbf{R}^{n} \times G\right)$, then by well-known manifold version of the lemma, we find $X \in \mathcal{X}\left(\mathbf{R}^{m} \times G\right)$ such that $v=\mathcal{P}^{r} X_{w}$ and $j_{(0, e)}^{r} X$ is determined uniquely. Any right-invariant vector field Y gives $\mathcal{P}^{r} Y_{w}$ which is tangent to $W_{m}^{r} P$. On the other hand the dimension of $W_{m}^{r} P$ and the dimension of the space of r-jets $j_{0}^{r} Y$ of right invariant Y are equal. Then the lemma follows from the dimension argument because the flow operator is linear.

Example 1.2. Let $B: J_{0}^{r-1}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right) \rightarrow\left(J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right)\right)_{0}$ be a linear map, where $J_{0}^{r-1}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right)=\left\{j_{0}^{r-1} X \mid X \in \mathcal{X}_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right\}$ and $\left(J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right)\right)_{0}=\left\{j_{0}^{r} X \mid X \in \mathcal{X}_{G-i n v}\left(\mathbf{R}^{m} \times G\right), p r_{\mathbf{R}^{m}} \circ X_{(0, .)}=0\right\}$, where $p r_{\mathbf{R}^{m}}: \mathbf{R}^{m} \times G \rightarrow \mathbf{R}^{m}$ is the projection. We define a vertical $\mathcal{P} \mathcal{B}_{m}(G)$ natural affinor $A^{B}: T W_{m}^{r} P \rightarrow V W_{m}^{r} P$ on W_{m}^{r} by

$$
A^{B}(v)=V W_{m}^{r} \Phi\left(\left(\mathcal{W}_{m}^{r} \tilde{v}\right)_{\theta}\right), v \in T_{j_{0}^{r} \Phi} W_{m}^{r} P, j_{0}^{r} \Phi \in W_{m}^{r} P
$$

where $\theta=j_{0}^{r}\left(i d_{\mathbf{R}^{m} \times G}\right) \in W_{m}^{r}\left(\mathbf{R}^{m} \times G\right)$ is the element and $\tilde{v} \in \mathcal{X}_{G-i n v}\left(\mathbf{R}^{m} \times G\right)$ is an arbitrary right invariant vector field on $\mathbf{R}^{m} \times G$ such that $j_{0}^{r} \tilde{v}=B\left(j_{0}^{r-1}\left(\left(\Phi^{-1}\right)_{*} \bar{v}\right)\right)$ and $v=\left(\mathcal{W}_{m}^{r} \bar{v}\right)_{j_{0}^{r} \Phi}$. One can standardly show that $A^{B}(v)$ is well-defined. (More precisely (by Lemma 1.1), $j_{\frac{r}{\Phi}(0)} \bar{v}$ is uniquely determined by v. Then $j_{0}^{r-1}\left(\left(\Phi^{-1}\right)_{*} \bar{v}\right) \in$ $J_{0}^{r-1}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right)$ is determined by v. Then $j_{0}^{r}(\tilde{v}) \in\left(J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right)\right)_{0}$ is determined by v. Then $\left(\mathcal{W}_{m}^{r} \tilde{v}\right)_{\theta}$ is determined by v and vertical. Then $A^{B}(v)$ is determined by v and vertical.) Using the linearity of the flow operator, we deduce that $A^{B}: T W_{m}^{r} P \rightarrow V W_{m}^{r} P$ is a vertical affinor on $W_{m}^{r} P$. Clearly the family A^{B} is a $\mathcal{P} \mathcal{B}_{m}(G)$-natural affinor on W_{m}^{r}.

2. The main result

The main result of this paper is the following classification theorem.
Theorem 2.1. Any $\mathcal{P B}_{m}(G)$-natural affinor on W_{m}^{r} is of the form

$$
A=\lambda I d+A^{B}
$$

for a (uniquely determined by A) real number λ and a (uniquely determined by A) linear map $B: J_{0}^{r-1}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right) \rightarrow\left(J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right)\right)_{0}$.

The proof of Theorem 2.1 will occupy the rest of this paper. We will use the following lemma.

Lemma 2.1. Let $X, Y \in \mathcal{X}_{G-i n v}(P)$ be right invariant vector fields on $p: P \rightarrow M$ and $x \in M$ be a point. Suppose that $j_{x}^{r} X=j_{x}^{r} Y$ and X is not-vertical over x. Then there exists a (localy defined) $\mathcal{P} \mathcal{B}_{m}(G)$-map $\Phi: P \rightarrow P$ such that $j_{x}^{r+1}(\Phi)=$ $j_{x}^{r+1}\left(i d_{P}\right)$ and $\Phi_{*} X=Y$ near x.

Proof. A direct modification of the proof of Lemma 42.4 in [2].
Lemma 2.2. Let A be a $\mathcal{P B}_{m}(G)$-natural affinor on W_{m}^{r}. There is a unique real number λ such that $A-\lambda I d$ is of vertical type.

Proof. Let X be a right-invariant vector field on $\mathbf{R}^{m} \times G$. Let $\mathcal{A}(X):=A \circ \mathcal{W}_{m}^{r} X$.
We can write $\mathcal{A}(X)_{\theta}=\mathcal{W}_{m}^{r} \tilde{X}_{\theta}$ for some right-invariant vector field \tilde{X} (see Lemma 1.1), $\theta=j_{0}^{r}\left(i d_{\mathbf{R}^{m} \times G}\right)$. Suppose $p r_{\mathbf{R}^{m}} \circ X(0, e) \neq \mu p r_{\mathbf{R}^{m}} \circ \tilde{X}(0, e)$ for all $\mu \in \mathbf{R}$ and $p r_{\mathbf{R}^{m} \circ} \circ \tilde{X}(0, e) \neq 0$ Then there is an $\mathcal{P} \mathcal{B}_{m}(G)$-map $\Phi: \mathbf{R}^{m} \times G \rightarrow \mathbf{R}^{m} \times G$ preserving θ such that

$$
J^{r} T \Phi\left(j_{0}^{r} X\right)=j_{0}^{r} X \text { and } J^{r} T \Phi\left(j_{0}^{r} \tilde{X}\right) \neq j_{0}^{r} \tilde{X} .
$$

Then

$$
\mathcal{A}(X)_{\theta}=\mathcal{W}_{m}^{r}\left(\Phi_{*} \tilde{X}\right)_{\theta} \neq \mathcal{W}_{m}^{r}(\tilde{X})_{\theta}=\mathcal{A}(X)_{\theta}
$$

This is a contradiction. Consequently, we have

$$
\begin{equation*}
T \pi^{r} \circ \mathcal{A}(X)_{\theta}=\lambda\left(j_{0}^{r} X\right) p r_{\mathbf{R}^{m}} \circ X_{(0, e)} \tag{2.1}
\end{equation*}
$$

for some (not necessarily unique and not necessarily smooth) map $\lambda: J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times\right.\right.$ $G)) \rightarrow \mathbf{R}$ and all right-invariant vector fields on $\mathbf{R}^{m} \times G$, where $\pi^{r}: W_{m}^{r}\left(\mathbf{R}^{m} \times G\right) \rightarrow$ \mathbf{R}^{m} is the projection.

We are going to show that λ can be chosen smooth.
Of course (since the left hand side of (2.1) depends smoothly on $j_{0}^{r} X$), the map $\Phi: J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right) \rightarrow \mathbf{R}$ given by

$$
\Phi\left(j_{0}^{r} X\right)=\lambda\left(j_{0}^{r} X\right) X^{1}(0)
$$

is smooth and $\Phi\left(j_{0}^{r} X\right)=0$ if $X^{1}(0)=0$, where

$$
X_{(0, e)}=\sum_{i} X^{i}(0) \frac{\partial}{\partial x^{i}} 0
$$

and where \ldots is the vertical part of $X_{(0, e)}$. Then there is a smooth map Ψ : $J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right) \rightarrow \mathbf{R}$ such that $\Phi\left(j_{0}^{r} X\right)=\Psi\left(j_{0}^{r} X\right) X^{1}(0)$. Then we can define new $\lambda=\Psi$. This new λ is equal to the old one for $X^{1}(0) \neq 0$. Then for the new λ we have (2.1) if additionally $X^{1}(0) \neq 0$. Then we have (2.1) for all X in question because of the smooth and density arguments.

Since $\mathcal{A}(X)$ depends linearly on X, λ is constant.
Then $A\left(\left(\mathcal{W}_{m}^{r} X\right)_{\theta}\right)-\lambda\left(\mathcal{W}_{m}^{r} X\right)_{\theta}$ is vertical. Then by Lemma 1.1, $A(v)-\lambda v$ is vertical for any $v \in T_{\theta} W_{m}^{r}\left(\mathbf{R}^{m} \times G\right)$. Then $A-\lambda I d$ is vertical because of the $\mathcal{P} \mathcal{B}_{m}(G)$-invariance of $A-\lambda I d$.

Proof of Theorem 2.1. Because of Lemma 2.2 we can assume that A is vertical. We define a $B: J_{0}^{r-1}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right) \rightarrow\left(J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right)\right)_{0}$ by

$$
B\left(j_{0}^{r-1} X\right)=j_{0}^{r} \tilde{X}
$$

where \tilde{X} is a right-invariant vector field on $\mathbf{R}^{m} \times G$ such that $\left(\mathcal{W}_{m}^{r} \tilde{X}\right)_{\theta}=A\left(\left(\mathcal{W}_{m}^{r} \bar{X}\right)_{\theta}\right)$ and \bar{X} is the unique right-invariant vector field on $\mathbf{R}^{m} \times G$ such that $j_{0}^{r-1} X=j_{0}^{r-1} \bar{X}$
and \bar{X} has coefficients with respect to a basis of right invariant vector fields (consisting with the constant vector fields $\frac{\partial}{\partial x^{i}}$ on \mathbf{R}^{m} and the right invariant vector fields on G corresponding to some basis $B_{j} \in T_{e} G$) being polynomials of degree $\leq r-1$.

Then $A\left(\left(\mathcal{W}_{m}^{r} X\right)_{\theta}\right)=A^{B}\left(\left(\mathcal{W}_{m}^{r} X\right)_{\theta}\right)$ for all right invariant vector fields on $\mathbf{R}^{m} \times G$ such that X has coefficients (with respect to the basis as above) being polynomials of degree $r-1$. Since the union of all orbits with respect to the $\mathcal{P} \mathcal{B}_{m}(G)$-maps preserving θ of jets $j_{0}^{r} X$ of right-invariant vector fields X on $\mathbf{R}^{m} \times G$ with coefficients (with respect to the basis as above) being polynomials of degree $\leq r-1$ is dense in $J_{0}^{r}\left(T_{G-i n v}\left(\mathbf{R}^{m} \times G\right)\right.$) (see Lemma 2.1), $A\left(\left(\mathcal{W}_{m}^{r} X\right)_{\theta}\right)=A^{B}\left(\left(\mathcal{W}_{m}^{r} X\right)_{\theta}\right)$ for all rightinvariant vector fields X on $\mathbf{R}^{m} \times G$. Then $A(v)=A^{B}(v)$ for all $v \in T_{\theta} W_{m}^{r}\left(\mathbf{R}^{m} \times G\right)$ because of Lemma 1.1. Then $A=A^{B}$ because of the $\mathcal{P} \mathcal{B}_{m}(G)$-invariance and the fact that W_{m}^{r} is a transitive bundle functor (i.e. $W_{m}^{r} P$ is the $\mathcal{P} \mathcal{B}_{m}(G)$-orbit of $\theta)$.

If $G=\{e\}$, then $\mathcal{P} \mathcal{B}_{m}(\{e\})$ is the category $\mathcal{M} f_{m}$ of all m-dimensional manifolds and their embeddings, and $W_{m}^{r}=P^{r}$ is the r-th order frame bundle functor. Thus we reobtain the result of [4], where a classification of all $\mathcal{M} f_{m}$-natural affinors on the r-th order frame bundle $P^{r} M$ is given.

Natural affinors play a very important role in the differential geometry. They can be used to define generalized torsion of connections, [3]. In our situation any natural affinor $A: T W_{m}^{r} P \rightarrow T W_{m}^{r} P$ defines a torsion $\tau(\Gamma):=[\Gamma, A]$ of a principal connection $\Gamma: T W_{m}^{r} P \rightarrow V W_{m}^{r} P$ on $W_{m}^{r} P \rightarrow M$, where the bracket is the Frolicher-Nijenhuis one. That is why natural affinors on some natural bundles have been classified in many papers. Principal G-bundles play crucial role in the geometrization of physic, [1], [6], [7].

References

[1] Fatibene, L., Francaviglia, M., Natural and Gauge Natural Formalism for Classical Field Theories, Kluver, 2003.
[2] Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
[3] Kolář, I., Modugno, M., Torsions of connectionons on some natural bundles, Differential Geom. Appl., 2(1992), 1-16.
[4] Kurek, J., Mikulski, W.M., The natural affinors on the r-th order frame bundle, Demonstratio Math. 41(3)(2008), to appear.
[5] Kurek, J., Mikulski, W.M., Canonical vector valued 1-forms on higher order principal prolongations, Lobachevskii Math. J., (2008), to appear.
[6] de Leon, M., Rodrigues, P.R., Generalized Classical Mechanics and Field Theory, NorthHolland Math. Studies 112, 1985, Amsterdam.
[7] Palais, R., The Geometrization of Physics, Lecture Notes in Mathematics, Taiwan, 1981.
Institute of Mathematics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, Lublin, POLAND

E-mail address: kurek@hektor.umcs.lublin.pl
Institute of Mathematics, Jagiellonian University, ul. Reymonta 4, Kraków, POLAND
E-mail address: mikulski@im.uj.edu.pl

