Antioxidant Effects of Curcumin on the Blood Tissue in Rats
Kurkuminin Sıçanların Kan Dokuşu Üzerinde Antioksidan Etkileri

Şevkinaz KONAK*, Emine Hilal ŞENER1
1 Burdur Mehmet Akif Ersoy University, Faculty of Health Sciences, Department of Nursing, Burdur, Turkey

Abstract: Curcumin is a pigment found in Indian saffron spices, also known as turmeric. The aim of this study is to investigate the antioxidant effect of curcumin, a phytochemical, on the blood tissue of rats. In the study, 24 Wistar rats were 8 weeks old, randomly divided into 2 groups which were the control group and the experimental group was fed with curcumin supplement. Curcumin supplemented group was fed at 300mg/kg/day curcumin dissolved in corn oil by oral gavage for 12 days. 24 hours after the last feeding, TAC (Total Antioxidant Capacity) and TOC (Total Oxidant Capacity) were analyzed in blood samples. When the TAC and TOC levels of curcumin-supplemented feeding group were examined, the level was higher than the control group (P <0.05). Results of the study show that curcumin strengthens the antioxidant defense system.

Keywords: Curcumin, functional food, blood tissue, antioxidant.

Öz: Kurkumin, zerdçe olarak da bilinen Hint safran baharatlarında bulunan bir pigmenttir. Bu çalışmanın amacı kurkuminin sıçanların kan dokuşu üzerinde antioksidan etkilerini araştırmaktır. Çalışmada 8 haftalık 24 Wistar sıçan, kontrol grubu ve kurkumin takviyeli beslenen uygulama grubu olmak üzere 2 gruba ayrılmıştır. Kurkumin grubuna 12 gün boyunca günde 300 mg/kg dozunda kurkumin, mısır yağı içerisinde çözülerek oral gavaj yoluyla verilmiştir. Son beslenme saatinden 24 saat sonra alınan kan örneklerinde TAS (Total Antioksidan Seviyesi) ve TOS (Total Oksidan Seviyesi) seviyeleri analiz edilmiştir. Kurkumin takviyeli beslenen grupta TAS ve TOS seviyelerine neden olan etkisini göstermiştir. Çalışmada elde edilen bulgular kurkuminin antioxidan savunma sistemini güçlendirdiği göstermektedir.

Anahtar Kelimeler: Kurkumin, kan dokuşu, antioksidan.

Introduction
Curcuma longa L. (Curcumin), belonging to the family Zingiberaceae, is a multi-year herbaceous plant with yellow flower and is widely found in India and China. Turmeric, derived from the roots of this plant, has been used in India for centuries as a spice, medical drug and cosmetic product. This plant, commonly used as a coloring agent in foods and contains tetrahydrocurcumin which is odorless and heat resistant antioxidant compound (Aggarwal et al., 2007). Curcumin is known has lots of pharmacological properties include anticancer, antiinflammatory, antioxidant and antiapoptotic effects (Kunnumakkara et al., 2008, Lin et al., 2011).

Curcumin is not a toxic substance and has limited bioavailability (Hatchera et al., 2008). Three grams of turmeric contains approximately 30-90 mg curcumin which is the active ingredient of turmeric. Turmeric, which has been used for centuries as a cure in different parts of the world, is commonly used to increase the body’s general energy level, to relieve gastrointestinal gas, to get
To cite this article: Konak S, Şener EH. (2019). Antioxidant effects of curcumin on the blood tissue in rats. MAKU J. Health Sci. Inst., 7(1), 8-14.

ISSN: 2148-2837 / MAKU J. Health Sci. Inst.
University Animal Experiments Production and Experimental Research Laboratory. Approval from the Animal Experiments Local Ethics Committee of Burdur Mehmet Akif Ersoy University was obtained prior to the commencement of the study (No:278/01.03.2017). Rats used in the study were divided into 2 groups, the control group and the experimental group. First group is control group and rats’ live weights were taken. During the study, food (corn oil) and water were given as ad libitum without any interruption of feeding or any limitation which caused the stress. Second group is experimental group, and rats’ live weights were taken. Rats (n=12) in this group, were given 300 mg/kg/daily dissolving curcumin (C1386; Sigma Chemical, St. Louis, MO) in corn oil by oral gavage for 12 days. Their food and water were given as ad libitum without any nutrition interruption or any limitation which caused the stress. Rats were weighed daily before curcumin or carrier supplement for 12 days reinforcement period. 24 hours after the last curcumin or carrier were given, abdominal cavities of rats were opened under ether anesthesia and blood samples were taken from vena cava caudalis. Blood samples of both groups were prepared and TAC and TOC (Paraoxonase kit - Rel Assay - Turkey) parameters were studied. Oxidative stress indices were determined by measuring total oxidant level (TOC) and total antioxidant level (TAC) from the blood taken from the experimental and control groups with a spectrophotometer (Perkin Elmer UV/Vis spectrophotometer model lambda 20) at Burdur Mehmet Akif Ersoy University Scientific and Technological Application and Research Center.

Total Antioxidant Capacity (TAC) Assay: TAC levels were measured using commercial kits. Findings were expressed as mmol Trolox equivalent/L (Aslan et al., 2014).

Total Oxidant Capacity (TOC) Assay: TOC levels were measured using commercial kits. Findings were expressed as mmol H₂O₂ equivalent/L (Aslan et al., 2014).

Statistical Analyzes: The results obtained were given as mean ± standard deviation. As a nonparametric test, Kruskal-Wallis variance analysis test was applied. Mann Whitney-U test was used to compare statistically different parameters. Calculations were made using the Windows-compatible SPSS 15.0 statistical program.

Results

Total Antioxidant Capacity (TAC): When the statistical significance between total antioxidant capacity (TAC) values measured in the study were evaluated; the increase in the experimental group in comparison with control group was statistically significant (p<0.05) (Table 1, Figure 1).

Total Oxidant Capacity (TOC): When the statistical significance between total oxidant capacity (TOC) were evaluated, it was determined that the increase in the experimental group was statistically significant compared to the control group (p<0.05) (Table 2, Figure 2).

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>TAC (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12</td>
<td>1.22±0.06</td>
</tr>
<tr>
<td>Experimental</td>
<td>12</td>
<td>1.32±0.13</td>
</tr>
</tbody>
</table>

Table 1. TAC values of the groups

To cite this article: Konak S, Şener EHL (2019). Antioxidant effects of curcumin on the blood tissue in rats. MAKU J. Health Sci. Inst., 7(1), 8-14.

ISSN: 2148-2837/ MAKU J. Health Sci. Inst.
Table 2. TOC values of the groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>TOC (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12</td>
<td>3.08±0.47</td>
</tr>
<tr>
<td>Experimental</td>
<td>12</td>
<td>3.52±0.37</td>
</tr>
</tbody>
</table>

Discussion

As a result of the study, it was determined that TAC and TOC level increased significantly in curcumin supplement group compared to the control group (P<0.05) (Table 1, Table 2). In the direction of this result, it has been determined that curcumin strengthens the antioxidant defense.
system. In the literature, there are studies which are supporting the antioxidant properties of turmeric is origines curcumin as a phenolic component. In the literature, there are studies support that turmeric's antioxidant properties originate from curcumin which is a phenolic component. Because of this reason, curcumin is an antioxidant that can be safely used in food industry (Ak and Gulcin, 2008).

In study by Jayaprakasha et al. (2005), it was found that turmeric increases the period of storage by inhibiting the formation of peroxides in food, the components isolated from turmeric (Curcuma longa L.) show a strong antioxidant effect and important for lipid oxidation even more effective than vitamin E. In another study, 400 ppm of turmeric extract was added to chicken meat and the antioxidant properties were investigated. When the results of the study were compared with the control group, it was stated that the turmeric extract was significantly effective and turmeric's antioxidant properties are originated from the phenolic components (Sharma, 1976). Similarly, in another study, antioxidant properties of curcuminoids were investigated and the antioxidant capacity of these extracts was determined to be equivalent to ascorbic acid. It has been determined that the antioxidant activity of curcumin is higher than 100 ppm BHT (Khanna, 1999).

In studies, it has been reported that curcumin has a protective role on the heart due to the antioxidant effect and that 300 mg / kg dose shows antioxidant effects (Thiyagarajan, 2004; Nazam et al., 2007; Zhao et al. 2008; Naik et al., 2011; Diyan et al., 2012). Belviranlı et al. (2012) found that curcumin protects the cardiac tissue of aged female rats against oxidative damage and strengthens the antioxidant defense system. In another study, curcumin showed strong antioxidant and antiinflammatory effects against tissue damage that may occur in liver and kidney because of experimental sepsis model in rats (Gülay et al., 2013). In a study by Kavaklı et al. (2011), curcumin effectively protected the spinal cord tissues against oxidative damage.

Curcumin has sweeping effects to many free radicals mainly hydrogen peroxide and also superoxide anions, nitrogen dioxide radicals, hydroxyl radicals. Moreover it reduce oxidative stress by increasing levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase. Many studies discovered that curcumin inhibits lipid peroxidation, lipid degradation and oxidative DNA damage in vitro and in vivo (Sharma, 2005; Maheshwari, 2006; Goel, 2008; Pari, 2008). The effects of curcuminoids on brain tissue and liver microsomes of rats were investigated and it was found that all of the curcuminoids inhibited lipid peroxidation; the methoxy group attached to the phenolic ring and the diketone structured curcumin were found highly prominent in antioxidant effect (Sreejayan and Rao, 1994). In Thiyagarajan and Sharma's study (2004), curcumin reduced tissue damage in a cerebral ischemia reperfusion injury by inhibit lipid peroxidation, reduced antioxidant defense enzymes and decreased free radical formation.

Curcumin has a great antioxidant effect comparable to the known strong antioxidant compounds. This situation makes it potential factor in the treatment of many diseases (Miquel et al., 2002; Sharma, 2005; Maheshwari, 2006; Goel, 2008; Pari, 2008). In conclusion, findings from this study show that curcumin supplementation for 12 days protects rats against oxidative damage in blood tissue and strengthens the antioxidant defense system.

References

gold. Advances in Experimental Medicine and Biology 595, 1–75.

Aslan, R., Kutlu, R., Civi, S., Tasyurek, E., 2014. The correlation of the total antioxidant status (TAS), total antioxidant status (TAS) and paraoxonase activity (PON1) with smoking. Clinical Biochemistry 47(6), 393-397.

To cite this article: Konak S, Şener EH. (2019). Antioxidant effects of curcumin on the blood tissue in rats. MAKU J. Health Sci. Inst, 7(1), 8-14.

ISSN: 2148-2837/ MAKU J. Health Sci. Inst.